
Università di Pisa

Dipartimento di Informatica

Technical Report: TR-04-18

Computing All the Best Swap
Edges Distributively

P. Flocchini L. Pagli G. Prencipe N. Santoro P. Widmayer

T. Zuva

November 1, 2004

ADDRESS: via F. Buonarroti 2, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726

Computing All the Best Swap Edges Distributively ∗

P. Flocchini† L. Pagli‡ G. Prencipe‡ N. Santoro§ P. Widmayer¶

T. Zuva‖

November 1, 2004

Abstract

Recently great attention has been given to point-of-failure swap rerouting, an efficient tech-
nique for routing in presence of transient failures. According to this technique, a message follows
the normal routing table information unless the next hop has failed; in this case, it is redirected
towards a precomputed link, called swap; once this link has been crossed, normal routing is
resumed. The amount of precomputed information required in addition to the routing table is
rather small: a single link per each destination. Several efficient serial algorithms have been pre-
sented to compute this information; none of them can unfortunately be efficiently implemented
in a distributed environment. In this paper we present protocols, based on a new strategy, that
allow the efficient computation of all the optimal swap edges under several optimization criteria.

1 Introduction

In systems using shortest-path routing tables, a single link failure is enough to interrupt the message
transmission by disconnecting one or more shortest-path spanning trees. The on-line recomputation
of an alternative path or of the entire new shortest path trees, rebuilding the routing tables accord-
ingly, is rather expensive and causes long delays in the message’s transmission [5, 10]. Hopefully,
some of these costs will be reduced if the serial algorithms for dynamic graphs (e.g., those of [1]) could
be somehow employed; to date, the difficulties of finding an efficient distributed implementation have
not been overcome (e.g., see [9]).

An alternative approach is to precompute additional information and use it to augment the
shortest-path routing tables so to make them operate when a failure occurs. Examples of this
approach are techniques (e.g., see [4]) of pre-computing several edge-disjoint spanning trees for
each destination. However, the alternative routes do not satisfy any optimization criterion (such as
shortest path) even in the case when, at any time, only one link (not necessarily the same at all
times) might be down.

A new strategy has been recently proposed [2, 5, 7, 8, 11]. It starts from the idea of precomputing,
for each link in the tree, a single non-tree link (the swap edge) able to reconnect the network
should the first fail. The strategy, called point-of-failure swap rerouting is simple: normal routing
information will be used to route a message to its destination. If, however, the next hop is down, the
message is first rerouted towards the swap edge; once this is crossed, normal routing will resume.
Experimental results [11] show that the tree obtained from the swap edge is very close to the new
shortest-path spanning tree computed from scratch.

Clearly, some swap edges are preferable to others. In [8], four main objective functions were
defined, giving rise to four different problems. These functions have the goal to find a new tree that

∗Research partially supported by “Progetto ALINWEB”, MIUR, Programmi di Ricerca Scientifica di Rilevante
Interesse Nazionale, NSERC Canada, and the Swiss BBW 03.0378-1 for EC contract 001907 (DELIS).

†University of Ottawa, Canada, flocchin@site.uottawa.ca
‡Università di Pisa, Italy, {pagli, prencipe}@di.unipi.it
§Carleton University, Canada, santoro@scs.carleton.ca
¶ETH, Zurich, Switzerland, widmayer@inf.ethz.ch
‖University of Botswana,Gaborone, zuvat@mopipi.ub.bw

1

minimizes, respectively, the distance between the point of failure to the root (Fdist); the sum of
distances (Fsum), the largest increment in the distance (Fincr), and the largest distance (Fmax) of
all nodes below the point of failure to the root.

In [8] they showed that these problems can be solved sequentially with different complexities:
Fdist and Fincr in O(m · α(m, n)), Fsum in O(n2), and Fmax in O(n

√
m), where α(m, n) is the

functional inverse of Ackermann’s function. These bounds are achieved using Tarjan’s sophisticated
technique of transmuters [12]. Unfortunately, there is currently no efficient distributed implementa-
tion of this sequential technique. From a distributed point of view, only the first of those problems,
Fdist, has been investigated and solved. A simple but non-optimal solution has been developed in [5].
An efficient optimal solution has been recently proposed [3]. No efficient distributed solution exists
to date for the problems Fsum, Fincr, and Fmax. These problems appear to be rather important,
since they minimize the average, the additional and the maximum delivery time of a message issued
at any node. In this paper, we will be able to solve efficiently all three problems.

We propose two general distributed strategies, each solving the three problems with simple
modifications. The first scheme uses O(n∗

r) short messages, where n∗
r is the size of the transitive

closure of Tr \ {r}; note that 0 ≤ n∗
r ≤ (n − 1)(n − 2)/2. In the second scheme the number of

messages decreases to O(n) if long (i.e., O(n) bits) messages are allowed. Both schemes use an
overall complexity of O(n∗

r).
All proofs are reported in the Appendix.

2 Terminology and Problems

Let G = (V, E) be a 2-connected undirected graph, with n = |V | vertices and m = |E| edges. A label
of length l ≤ log n is associated to each vertex of G. A non negative real length w(e) is associated
to each edge e. We say that the length of a path is the sum of the lengths of its edges, and the
distance d(x, y) between two vertices x and y is the length of a shortest path between them. Let
T = (V, E(T)) be a spanning tree of graph G rooted in r. Let Tq = (V (Tq), E(Tq)) denote the
subtree of T rooted in q.

Consider an edge e = (x, y) ∈ E(T) with y closer to r; if such an edge is removed, the tree is
disconnected in two subtrees: Tx and T \ Tx. A swap edge for e = (x, y) is any edge e′ = (u, v) ∈
E \ {e} that connects the two subtrees and forms a new tree Te/e′ , called swap tree.

Let Se be the set of all possible swap trees with respect to e. Depending on the goal of the
swapping algorithm, some swap edges are preferable to others. Given an objective function F over
Se, an optimal or best swap edge for a link e is a swap edge e′ such that F (Te/e′) is minimum.

Let dT (u, v) (shortly d(u, v)) denote the distance between nodes u and v in T , and let dTe/e′
(u, v)

(shortly de/e′ (u, v)) denote their distance in Te/e′ . Given a subtree Tw of T , we denote by W (Tw)
=

∑

t∈V (Tw) d(t, w) the weight of Tw, and by n(Tw) the number of nodes in Tw.

Given a rooted tree S, let C(x, S) denote the set of children of node x in tree S, let p(x, S) be
the parent of node x in S, and A(x, S) denote the ancestors of x in S. When S = T we will simply
write C(x), p(x) and A(x). We consider the main problems studied in [8]:
1) Fsum-problem: minTe/e′∈Se{Fsum(Te/e′)}, where Fsum(Te/e′) =
∑

t∈V (Tx) de/e′ (t, r). Choose one of the swap edges e′ that minimizes the sum of the distances

Fsum(Te/e′) from all nodes in Tx to r.
2) Fincr-problem: minTe/e′∈Se{Fincr(Te/e′)} where Fincr(Te/e′) =

maxt∈V (Tx)(de/e′ (t, r) − d(t, r)). Choose the swap edge that minimizes the maximum increment of
the distance from r to any node in Tx.
3) Fmax-problem: minTe/e′∈Se{Fmax(Te/e′)} where Fmax(Te/e′) =

maxt∈V (Tx) de/e′ (t, r). Choose the swap edge that minimizes the maximum distance from the nodes
in Tx to r.

As an example, consider the 2-connected weighted graph and its shortest-path spanning-tree
rooted in A shown in Figure 1.(a). The best swap edge for link (D, B) is (E, C) when considering
Fsum or Fincr ; (F, B) (D, C) and (E, C) are best swap edges if using Fmax.

2

1

1

2

D

4
1

3

3
1 E

H

4

B

2

G

I

F

1

1

1

1

2

3

6

C

A

x

Tx \ Tz

p(z)

q

z

z′

T(x,y)\(u,v)

r

v

x

u

y

(a) (c)(b)

Figure 1: (a) An example: the thick line represents the starting SPT, rooted in A. (b) Structure of
the subtree Tx with respect to the swap edge (z, z′). (c) Properties 2–3.

3 Algorithmic Shell and Computational Tools

3.1 A Generic Algorithm

Consider the problem of computing the best swap edge for link e = (x, p(x)) ∈ E(T), where p(x)
denotes the parent of x in T . We now present a generic distributed algorithm to perform this
computation; the details of its modules depend on the objective function F and will be described
later.

The algorithm is started by x; during its execution each node z ∈ V (Tx) will determine the best,
according to the objective function, local swap edge (z, z′) for (x, p(x)). Among the local swap edges
of all nodes, the swap edge yielding the global minimum cost will be then selected. More precisely,
we define:

Procedure BSE(F, (x, p(x))

− Node x determines, among its local swap edges for (x, p(x)), the one that minimizes F . As we will
see, x is the only node that can do so without any additional information.

− After this, x sends to each child the enabling information it needs to compute the best among its
local swap edges for (x, p(x)).

− Upon receiving the enabling information from its parent, a node computes the best among its local
swap edge for (x, p(x)); it then sends enabling information to its children. This process terminates
once the leaves of Tx are reached.

− The leaves then start a minimum finding process to determine, among the swap edges chosen by the
nodes in Tx, the one that minimizes the objective function F .

− The optimal swap edge for (x, p(x)) is thus determined at node x.

This procedure finds the best swap edge for link (x, p(x)) (according to F). Thus, the generic
algorithm to find all the best swap edges is

Algorithm Best F -Swap

1. Pre-processing(F)

2. ∀x 6= r: BSE (F, (x, p(x)))

where Pre-processing(F) is a preliminary process to be executed only if the nodes do not have
the required initial information.

3

3.2 Identifying Swap Edges

Before proceeding with the instantiation of the generic algorithm for each of the objective functions,
we describe a tool that allows a node to distinguish, among its incident edges, the ones that are
swap edges for a given edge (x, p(x)).

Consider the following labeling of the nodes λ : V → {1, . . . , n}2
. Given T , for x ∈ V let

λ(x) = (a, b), where a is the numbering of x in the preorder traversal of T ; and b is the numbering of
x in the inverted preorder traversal of T , i.e., when the order of the visit of the children is inverted.
The pairs given by the labeling form a partial order (λ,≥) of dimension 2 (let λ(z) = (z1, z2) and
λ(w) = (w1, w2), then λ(z) ≥ λ(w) if z1 ≥ w1 and z2 ≥ w2). The “dominance” relationship between
these pairs completely characterizes the relationship “descendant” in the tree:

Property 1 A node z is descendant of a node w in T if and only if λ(z) ≥ λ(w).

In our algorithms, we assume that each node z knows its own pair λ(z) as well the pairs of its
neighbors. If not available, this information can be easily acquired by having each node exchange
the information with its neighbors. Such a labeling will be given to the tree in a preprocessing phase.
Based on Property 1, we can now see how the labeling can be used by a node u to recognize its
incident swap edges for a given link (x, p(x)) (refer to Figure 1.(b)).

Property 2 An edge (u, v) ∈ E \ E(T) is a swap for (x, p(x)) ∈ E(T) if and only if only one of u
and v is a descendant of x in T .

Thus, node u ∈ Tx will be able to tell whether its incident edge (u, v) is a swap edge for (x, p(x))
simply by comparing λ(v) with λ(x); if λ(v) ≥ λ(x), then (u, v) is not a swap edge for (x, p(x)).

4 The Fsum-problem.

In Problem Fsum, the optimal swap edge for link e = (x, p(x)) is one which minimizes the sum of
the distances from all nodes in Tx to the root r, in the new spanning tree T ′ = Te/e′ . A swap edge
(u, v) solving Fsum will also minimize the average distance of all the nodes belonging to Tx from the
root r, since the size of Tx is the same for all the swap edges for x.

For solving the Fsum-problem (known also as average stretch factor [2]), we require each node
z to possess the following a-priori information: its distance d(z, r) from the root; the sum of the
distances of all nodes in Tq to z for each of the children q of z; and the number of nodes n(Tq) in Tq

for each of its children q. If this information is not initially available, it can be easily acquired by
the nodes in a pre-processing phase, composed of a simple convergecast in T , executed only once at
the beginning of the algorithm, and described in the Appendix.

Let z be a node in Tx that needs to compute the cost of a candidate swap edge e′ = (z, z′) for
e. Let T ′ = Te/e′ . Let sum(Tx, (z, z′)) denote the sum of distances from all nodes of Tx to z′, i.e.,
sum(Tx, (z, z′)) = W (T ′

z) + n(T ′
z) · w(z, z′).

Lemma 1 The sum of the distances in T ′ from all nodes in Tx to r is:

Fsum(T ′) = W (T ′
z) + n(T ′

z) · w(z, z′) + n(Tx) · d(z′, r).

Notice that the subtrees of node z in T and in T ′ are different; in particular, the children of z in T ′

consists of all the children of z in T plus the parent of z in T (see Figure 1.(c)). With this observation
in mind, we can write: W (T ′

z) = W (Tz)+ sum(Tx \Tz, (p(z), z)) and n(T ′
z) = n(Tz)+ n(Tx \Tz). It

is then clear that x can locally compute the cost of its candidate swap edges (since it has no parent
in Tx); on the other hand, any other node z in Tx requires some additional information.

To instantiate algorithm BSE for Fsum we have to specify what is the enabling information to be
propagated. The enabling information that any node z has to send down to its child q is composed
of: the sum sum(Tx \ Tq, (z, q)) of the distances from q to the nodes in the subtree Tx \ Tq; and the
number n(Tx \ Tq) of nodes in this subtree.

The algorithm for finding the best swap edge for (x, p(x)) according to Fsum is as follows:

4

BSE(Fsum, (x, p(x)))

(* Algorithm for node z *)
1. If z = x

− Compute cost of each local candidate swap edge:
(for each e′ = (x, x′), Fsum(Te/e′) = sum(Tx, (x, x′)) + n(Tx) · d(x′, r))

− select best candidate
− for each child q: compute the enabling information sum(Tx \ Tq, (x, q)) and n(Tx \ Tq) and send it
to q. It will be shown that this information can be computed locally.

− wait for the result of minimum finding; determine the best swap edge for (x, p(x))

2. Else {z 6= x} – Receiving enabling info (s, n) for (x, p(x)).

− Compute cost of each local candidate swap edge:
(for each e′ = (z, z′), Te/e′ : = s + sum(Tz, (z, z′)) + (n + n(Tz)) · d(z′, r)).
It will be shown that this information can be computed locally.

− select best candidate
− if I am a leaf: start minimum finding

− if I am not a leaf

− for each child q: compute the enabling information sum(Tx \ Tq, (z, q)), and n(Tx \ Tq) and send
it to q.

− participate in minimum finding (wait for info from all children, select the best and send to parent)

Lemma 2 Let e = (x, p(x)). Each node z ∈ Tx can correctly compute: 1) the best local swap edge
for e, 2) the value sum(Tx \ Tq, (z, q)) for each q ∈ C(z), 3) the value n(Tv \ Tq) for each q ∈ C(z).

5 The Fmax and Fincr Problems

In Problem Fmax, the optimal swap edge e′ for link e = (z, p(z)) is any swap edge such that the
longest distance of all the nodes in Tz from the root r is minimized in the new spanning tree Te/e′ ;
in Fincr , it is any swap edge such that the maximum increment in the distance from the nodes in
Tz to the root r is minimized in the new spanning tree Te/e′ .

The algorithm for computing the best swap edges with respect to Fmax and Fincr have the same
structure as the one for Fsum. What differs is: (i) the information propagated in the preprocessing
phase, and (ii) the “enabling information” to be sent to the children during the algorithm.

For solving the Fmax and the Fincr problems we require each node z to possess the following
information: its distance d(z, r) from the root, and the maximum distance mD(Tq, z) to z from
a node in Tq for each q ∈ C(z). If this information is not available, it can be computed in the
preprocessing phase with a basic convergecast described in the Appendix.

Let z be a node in Tx that needs to compute the cost of a candidate swap edge e′ = (z, z′) for
e = (x, p(x)). Let T ′ = Te/e′ .

Lemma 3 The maximum distance Fmax(T ′) and the maximum distance increment Fincr(T
′) in T ′

from a node in Tx to r are:

Fmax(T ′) = max
q∈C(z,T ′)

{mD(Tq, z) + w(z, z′) + d(z′, r)}

Fincr(T
′) = max

q∈C(z,T ′)
{mD(Tq, z) + w(z, z′) + d(z′, r)} − d(z, r)

To instantiate the generic algorithm of Section 3 for the Fmax and the Fincr objective functions
we have now to specify what is the enabling information that needs to be propagated so that all the
nodes can make their local choice. As it will be shown, in both cases the enabling information that
a node z has to send down to its child q is composed of the maximum distance mD(Tx \Tq, q) of the
nodes in the subtree Tx \ Tq to q. The algorithm for node z is then the same as the one for Fsum,
where the computation of the cost of the local candidate swap edges and the enabling information
change as follows:

5

Changes: MAX Algorithm

1. If z = x, the cost of each local candidate swap edge is computed as follows: for each e′ = (z, z′),
Fmax(Te/e′) = maxq∈C(x){mD(Tq, x) + w(x, x′) + d(x′, r)}
Fincr(Te/e′) = maxq∈C(x){mD(Tq, x) + w(x, x′) + d(x′, r)} − d(x, r).

2. Else {z 6= x} – Receiving enabling info m for (x, p(x)), the cost of each local candidate swap edge is
computed as follows:
Fmax(T ′) = max{m, maxq∈C(z){mD(Tq , z) + w(z, z′) + d(z′, r)}}
Fincr(T

′) = max{m, maxq∈C(z){mD(Tq , z) + w(z, z′) + d(z′, r)} − d(z, r))}.

3. The enabling information to be sent is mD(Tx \ Tq, q).

Lemma 4 Given e = (x, p(x)) , each node z ∈ Tx correctly computes: 1) the local best swap edges
for e, 2) the value mD(Tq, z) for each q ∈ C(z).

6 Correctness and Complexity

Lemma 5 Algorithms BSE(Fsum),BSE(Fmax), and BSE(Fincr), find the best swap edge for e =
(x, p(x)) according to the corresponding objective function.

Theorem 1 Independently executing Algorithms BSE(Fsum),BSE(Fmax), and BSE(Fincr) for each
edge, the problems {r,

∑

}, {r, δ}, and {r, max} are solved.

Let us now examine the complexity of the proposed algorithm. Let n∗ be the number of edges
of the transitive closure of Tr \ {r}.

Theorem 2 The message complexity of the Algorithms is at most 3n∗.

Since each message contains only a constant number of units of information (i.e., node, edge,
label, weight, distance), the overall information complexity is of the same order of magnitude, i.e.,
O(n∗).

7 An O(n) Messages Algorithm

7.1 Algorithmic Shell

The idea is that each node x simultaneously computes the “best” swap edges, not only for (x, p(x)),
but also for each (a, p(a)), where a is an ancestor of x in T . At an high level, the algorithm consists
simply of a broadcast phase started by the children of the root, followed by a convergecast phase
started by the leaves.

Best F -Swap-Long (BSL)

[Broadcast.]

1. Each child x of the root starts the broadcast by sending to its children a list containing its name and
its distance from the root.

2. Each node y, receiving a list of names and distances from its parent, appends its name and dT (y, r)
to the received list and sends it to its children.

[Convergecast.]

1. Each leaf z first computes the best local swap for (z, p(z)); then, for each a in the received list, it
computes the best candidate swap for (a, p(a)); finally, sends the list of those edges to its parent (if
different from r).

2. An internal node y waits until it receives the list of best swap edges from each of its children. Based
on the received information and on its local swap edges, it computes its best swap edge for (y, p(y));
it then computes for each ancestor a the best candidate for (a, p(a)); finally, it sends the list of those
edges to its parent (if different from r).

6

To show how this generic algorithmic structure can be used to solve the three studied problems,
we need to specify how the convergecast part is done. The differences in three solutions are: (i) the
computation of the best swap edge in the convergecast phase, and (ii) the additional information,
of constant size, to be communicated to the ancestors together with the swap edge.

In the following, we will denote by SL(x) the Swap List associated to node x; it is defined as a list
of records (edge, value, attributes), where edge indicates a swap edge for (x, p(x)); value the value
of the objective function computed in the tree where (x, p(x)) has been substituted with edge; and
attributes a list of parameters to be specified for the particular problem being solved. Moreover, let
ASL(x) be the swap list associated to the ancestors of x; it is a list of records (edge, value, attributes,
node) indicating for each node a ∈ A(x) (stored in the field node) the best candidate for (a, p(a))
(stored in edge), and the value of the objective function (value); attributes is as in SL(x).

Let us describe in details the operations executed by node x. First of all x computes the best
swap edge for (x, p(x)) by considering the set InS(x) of all local swap edges for (x, p(x)) and the set
of swap edges transmitted to it from its children (Algorithm MyBSE). Then for each ancestor a it
computes, among the swap edges in Tx, the best candidate for (a, p(a)) (Algorithm MyABSE). Note
that the swap edges x computes for its ancestors can be worse than the final swap edges computed
by its ancestors when they execute Algorithm MyBSE.

MyBSE

(* Algorithm for node x, where e = (x, p(x)) is the link to be swapped *)

1. Determine which of x’s incident edges are swap edges for (x, p(x)); i.e., x constructs the set InS(x).

2. For each swap edge ei = (x, yi) ∈ InS(x), compute the value of the objective function via ei, and the
value of the other attributes and insert them together with ei in SL(x).

3. If x is not a leaf, from each ASL(xj) received from xj ∈ C(x), extract (ej , value, attributes, x) (or
NIL, if no such record exists), and insert (ej , value, attributes) in SL(x) (or NIL).

4. Sort SL(x) in non decreasing order of value. The minimal element of SL(x) gives one of the best swap
edges for x and the value which minimizes the objective function.

MyABSE

(* Algorithm for node x *) For each ancestor node a ∈ A(x):

1. Select the swap edge ei ∈ SL(x) which is also a swap edge for (a, p(a)), if any, with the minimal value
of value, and consider its record (ei, vi, attributes, a).

2. For xj ∈ C(x),1 ≤ j ≤ h, let (ej , vj , attributes, a) be the record from ASL(xj). Update the val-
ues of vj and of the attributes in relation to node x. Consider the set of the updated records
{(ej , vj , attributes, a) ∪ (ei, vi, attributes, a)}, 1 ≤ j ≤ h, where (ei, vi, attributes, a) is the record
computed in Step 1. Select from this set the record (e, v, attributes, a) with minimal value, if any, and
insert it, in ASL(x) (to be sent to x’s parent); if no record can be selected, insert NIL in ASL(x).

7.2 Identifying a Swap Edge

In order for a node to decide if one of its incident edge is a swap edge it is sufficient to check, during
the convergecast phase, the information collected in the broadcast phase.

Property 3 The fact that an edge (u, v) ∈ E \E(T) with u ∈ Tu and v ∈ T \ Tu is a swap edge for
(x, p(x)), with x ∈ A(u), can be checked at node u, and no communication is needed.

Property 3 derives from the fact that, after the broadcast phase, u knows all its ancestors (refer
to Figure 1.(b)). Observe that if an edge is not a swap edge for e = (x, p(x)), it is not feasible for
none of a ∈ A(x).

7

8 The Fsum Problem with O(n) Messages

Problem Fsum is solved with minor modifications of the Convergecast Phase of Algorithm BSL.
To compute, each node z need some additional information: the distance dT ′(z, r) in Te/e′ for

each considered swap edge e′ for (z, p(z)); the weight W (Tz) of the subtree Tz; the number of nodes
n(Tz) in such a subtree. The records of the list SL(z) will thus have the form: (edge, Fsum(Tz),
{dT ′(z, r), W (Tz), n(Tz)}); the same three items (plus the field node indicating the ancestor) are
stored in the records of ASL(z).

The parameters n(Tz) and W (Tz) are easily computed inductively from the values sent to z by
its children zj, and from the weight of the edge (zj , z). Namely: n(Tz) =

∑

zi∈C(z) n(Tzi) + 1; and

W (Tz) =
∑

zi∈C(z) W (Tzi) +
∑

zi∈C(z) n(Tzi)w(z, zi). If z is a leaf n(Tz) = 1 and W (Tz) = 0.

Let us now show how to compute the new values of Fsum(Tz), and of dT ′(z, r) (Step 2 of MyBSE
and of MyABSE).

Lemma 6 Let (z, y) ∈ InS(z). Then

(i) Fsum = W (Tz) + n(Tz) · (w(z, y) + dT ′(y, r).

(ii) For each record (ei 6= NIL, Fsum(Tzi), {dT ′(zi, r), W (Tzi), n(Tzi)}, z) received from child zi,
dT ′(z, r) = w(z, zi) + dT ′(zi, r), and

Fsum(Tz) = Fsum(Tzi)+dT ′(z, r)+
∑h

j=1,j 6=i(W (Tzj)+n(Tzj)(w(z, zj)+w(z, zi)+dT ′(zi, r))).

Consider in the example of Figure 1.(a) the computation of node D. Assume that nodes F
and E have already computed the lists ASL(F) = {(F, B), 15, 4, 3, 3, D), NIL} and ASL(E) =
{(E, C), 7, 3, 1, 2, D), (E, C), 7, 3, 1, 2, B)} and sent them to their parent D. D first computes the
new values of n(TD) = 6 and W (TD) = 9. D has only one feasible swap edge (D, C), for which
dT ′(D, r) = 4 and Fsum = W (TD) + n(TD)4 = 33. Then, among the values sent by its children, D
considers FB for which dT ′(D, r) = 5 Fsum(TD) = Fsum(TF)+dT ′(D, r)+W (TE)+n(TE)(w(E, D)+
w(D, F) + dT ′(F, r)) = 33. For the swap edge (E, C), dT ′(D, r) = 4 and Fsum(TD) = 29, hence the
best swap for D is E, C, that will be also selected for B.

The messages used in the convergecast phase are now longer with respect to the messages used
in the approach of Section 4, but still of constant size. We finally have:

Theorem 3 Each node z 6= r:

(i) correctly computes its best swap edge:

(ii) determines for each ancestor a 6= r the best swap edge for a in Tz.

Theorem 4 Fsum can be solved with the O(n) message complexity and O(n∗
r) data complexity.

9 The Fmax and Fincr Problems with O(n) Messages

We will show how Fmax is solved by BSL. The value to be minimized is the maximal distance from
the nodes in Tz to the root via a swap edge ei. Similarly to Fsum, we need to compute inductively
two values; namely, the distance from z to the root via ei, dT ′(z, r), and the maximal distance
from the nodes in Tz to z, that is mD(Tq, z), with q ∈ C(z). The list SL(z) is now composed
of records of four elements; namely: (edge, Fmax(Tz), {dT ′(z, r), mD(Tq, z)}); ASL(z) contains the
same information, plus the field node.

Let us now show how to compute the new values of the parameters along a new swap edge ei

(Step 2 of MyBSE) and how to compute the same values when a swap edge transmitted from a
child is considered. The same operations are performed also in Step 2 of MyABSE. We have:

Lemma 7 Let Tzk
be the subtree of Tz containing the node at the maximal distance from r. More-

over, let mD2(z) = maxq 6=k(mD(Tq, z) be the maximal distance of the nodes in Tzj to z, with
zj ∈ {C(z) \ zk}. For (z, l) ∈ InS(z), we have

8

(i) Fmax(Tz) = maxq∈C(z,T)(mD(Tq, z) + w(z, l) + dT ′(l, r)).

(ii) For each record (es 6= NIL, Fmax(Tzs), {dT ′(zs, r), mD(zs)}, z) received from child zs, dT ′(z, r) =
(w(z, zs) + dT ′(zs, r)). Moreover, if s = k, then Fmax(Tz) = max(Fmax(Tzs), mD2s(z) +
dT ′(z, r)); otherwise, Fmax(Tz) = max(Fmax(Tzs), mD(z) + dT ′(z, r)).

Thus, it follows that:

Theorem 5 Each node x 6= r:

(i) correctly computes the best swap edge for (x, p(x)) according to Fmax;

(ii) determines for each ancestor a 6= r the best swap edge for v in Tu.

Fincr can be solved with a simple extension of the solution of Fmax.

Theorem 6 Problems Fmax and Fincr can be solved with O(n) messages and an overall O(n∗
r)

information complexity.

References

[1] D. Eppstein, Z. Galil, and G.F. Italiano. Dynamic graph algorithms. CRC Handbook of Algorithms and Theory,

CRC Press, 1997.

[2] A. Di Salvo and G. Proietti. Swapping a failing edge of a shortest paths tree by minimizing the average stretch
factor. Proc. of 10th Colloquium on Structural Information and Communication Complexity (SIROCCO 2004)
2004.

[3] P. Flocchini, T. Mesa, L. Pagli, G. Prencipe, and N. Santoro. Efficient protocols for computing optimal swap
edges. In Proc. of 3rd IFIP International Conference on Theoretical Computer Science (TCS 2004), 2004, to
appear.

[4] A. Itai and M. Rodeh. The multi-tree approach to reliability in distributed networks. Information and Compu-

tation, 79:43-59, 1988.

[5] H. Ito, K. Iwama, Y. Okabe, and T. Yoshihiro. Polynomial-time computable backup tables for shortest-path
routing. Proc. of 10th Colloquium on Structural Information and Communication Complexity (SIROCCO 2003),
163–177, 2003.

[6] H. Mohanty and G.P.Bhattacharjee. A distributed algorithm for edge-disjoint path problemProc. of 6th Con-

ference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS), 44-361, 1986.

[7] E. Nardelli, G. Proietti, and P. Widmayer. Finding all the best swaps of a minimum diameter spanning tree
under transient edge failures. Journal of Graph Algorithms and Applications, 2(1):1–23, 1997.

[8] E. Nardelli, G. Proietti, and P. Widmayer. Swapping a failing edge of a single source shortest paths tree is good
and fast. Algoritmica, 35:56–74, 2003.

[9] P. Narvaez, K.Y. Siu, and H.Y. Teng. New dynamic algorithms for shortest path tree computation IEEE

Transactions on Networking, 8:735–746, 2000.

[10] L. L. Peterson and B. S. Davie. Computer Networks: A Systems Approach, 3rd Edition. Morgan Kaufmann,
2003.

[11] G. Proietti. Dynamic maintenance versus swapping: An experimental study on shortest paths trees. Proc. 3rd

Workshop on Algorithm Engineering (WAE 2000), 207–217 2000

[12] R. E.Tarjan. Application of path compression on balanced trees. Journal of ACM, 26:690–715, 1979.

9

Appendix

A Pre-processing Phase for the Fsum-problem.

For solving the Fsum-problem we require each node z to possess the following information:

• its distance d(z, r) from the root,
• the sum of the distances W (Tz) of all nodes in Tq to z for each of the children q of z,
• the number of nodes n(Tq) in Tq for each of its children q.

If the information is not initially available, it can be easily acquired by the nodes in a pre-
processing phase, composed by the following simple convergecast procedure in T , executed only
once at the beginning of the algorithm.

Pre-processing(Fsum)

1. The root r sends down a message to each child q containing a request-for-sum and a value k = w(r, q).

2. the message is propagated down to the leaves (adding to k the weight of each traversed edge so that
each node z knows its distance d(z, r) to the root).

3. when a leaf l receives the message it starts a convergecast up to the root to propagate the requested
information.

4. a leaf l with parent p(l) sends up sum(Tl, (l, p(l))) = w(l, p(l)) and n(Tl) = 1

5. an internal node z receiving from each of its children q, the values W (Tq) and n(Tq), will compute:

sum(Tz, (z, p(z))) = W (Tz) +

∑

q∈C(z)

n(Tq) + 1

 · w(z, p(z))

n(Tz) =
∑

q∈C(z)

n(Tq) + 1

and will send up the information [sum(Tz, (z, p(z))), n(Tz)].

The correctness of the pre-processing procedure is proven by the following Lemma :

Lemma 8 Let z be a node in T .

• The total number of nodes in Tz is: n(Tz) =
∑

q∈C(z) n(Tq) + 1.

• The sum of the distances from all nodes in Tz to p(z) is:

sum(Tz, (z, p(z))) = W (Tz) + n(Tz) · w(z, p(z))

Proof. Part 1. is obvious. Let us consider Part 2. By definition, sum(Tz, (z, p(z))) =
∑

u∈V (Tz) d(u, p(z)).
Thus,

sum(Tz, (z, p(z))) =
∑

u∈V (Tz)

d(u, z) +
∑

u∈V (Tz)

w(z, p(z))

= W (Tz) + n(Tz) · w(z, p(z)).

Once all the information are available to the nodes, each node will exchange its local information
with the neighbours in G.

The number of messages exchanged during the preprocessing phase is then: O(|E|).

10

B Preprocessing for the Fmax and Fincr Problems

For solving the Fmax and the Fincr problems we require each node z to possess the following infor-
mation:

• its distance from the root d(z, r),
• the maximum distance max(Tq, z) to z from a node in Tq for each q ∈ C(z)

This will be accomplished with a basic convergecast like in the previous section. In this case,
lines 4. and 5. of protocol Pre-processing change as follows:

In the Pre-processing

4. a leaf l with parent p(l) sends up max(Tl, p(l)) = w(l, p(l))

5. an internal node z receiving from each of its children q, the values max(Tq, z) will compute

max(Tz, p(z)) = max{max(Tq, z)} + w(z, p(z))

and will send up the information max(Tz, p(z)).

C Proofs of Lemmas and Theorems

Proof. of Lemma 1
By definition we know that Fsum(T ′) =

∑

t∈V (Tx) de/e′ (t, r) =
∑

t∈Tx
[de/e′ (t, z′) + d(z′, r)] =

∑

t∈Tx
de/e′ (t, z′) +

∑

t∈Tx
d(z′, r), which is equal to sum(T ′

z, (z, z′)) + n(Tx) · d(z′, r).
Substituting sum(T ′

z, (z, z′)) and observing that, using the same reasoning as the one in the proof
of Lemma 8, n(T ′

z) =
∑

q∈C(z,T ′) n(Tq) + 1, the Lemma follows.

Proof. of Lemma 2
First observe that, by Lemma 8, after the preprocessing phase, a node z has available: the labeling
λ(y) of each of its neighbours y; the distance d(y, r) to r from each of its neighbours y; the sum of
the distances sum(Tq, (q, z)) of all nodes in Tq to itself and the number of nodes n(Tq) in Tq for each
of its children q. The proof is by induction on the number of nodes in the path from z to of x.

Basis. z = x; i.e., the link to be swapped is (z, p(z)). By Lemma 1 we know that, for each swap
edge (x, x′),

∑

t∈V (Tx) de/e′ (t, r) = sum(Tx, (x, x′)) + n(Tx) · d(x′, r). Since x is the root of Tx,
all the needed information is available at x after the preprocessing phase. Thus, x can locally
compute all the swap edges and choose the minimum. Moreover x can compute, by using local
information only, sum(Tx \ Tq, (x, q)) and n(Tx \ Tq) for each q ∈ C(x).

Induction step. Let it be true for a node and consider its child z in T . By Lemma 1 we know that,
for each swap edge (z, z′),

∑

t∈V (Tx) de/e′ (t, r) = sum(Tx, (z, z′)) + n(Tx) · d(z′, r). Moreover,

sum(Tx, (z, z′))sum(T ′
z, (z, z′)) =

∑

q∈C(z,T ′) sum(T ′
q, (q, z)) +(

∑

q∈C(z,T ′) n(Tq)+1) ·w(z, z′).

Notice that the children of z in T ′ consists of all the children of z in T plus the parent of z
in T (i.e., C(z, T ′) = C(z) ∪ {(z, p(z))}. The values of sum(T ′

q, (q, z)), and n(T ′
q) for q ∈ C(z)

have been computed in the preprocessing phase and are locally available. Since, by induction
hypothesis, p(z) has computed the locally best swap edge and the values of s(Tx \Tz, (p(z), z))
and n(Tx \ Tz), and since it has sent to z these information, z can now correctly compute
the cost of all its local swap edge and choose the minimum. Moreover, it can now compute
s(Tx \ Tq, (z, q)) and n(Tx \ Tq) for each of its children q ∈ C(z).

11

Proof. of Lemma 4
The values w(u, u′) and d(u′, r)) are locally available because they have been computed in the
preprocessing phase. We know that C(u, T ′) = C(u) ∪ {(u, p(u))}). If q ∈ C(u), then max(Tq, u) is
locally available because it has also been computed in the preprocessing phase. On the other hand,
if q = p(u), max(Tq, u) has to be computed during the algorithm. By definition, this is the enabling
information sent to u by p(u).

Proof. of Lemma 5
By Lemmas 2, and 4 respectively, every node correctly computes its local best swap edge for e. By
the correctness of the minimum finding, the global best swap edge will be communicated to x.

Proof. of Theorem 2
The preprocessing phase is executed only once and its complexity is O(|E|). During the swap
algorithm for (x, p(x)) the number of messages exchanged is 2|V (Tx)|, thus, in total we have:
∑

x 2|V (Tx)| = 2n∗.

Proof. of Lemma 6
Assume that the children of z have already terminated their computation and transmitted their lists
to z. Case (i) follows by Lemma 1. The scenario of Case (ii) is better understood looking at Figure 2.
If a swap edge ei belonging to Tzi is considered, all the nodes in Tzi maintain their distance from
the root, hence they contribute to Fsum(Tz) only for Fsum(Tzi). Node z contributes for dT ′(z, r).
All the other nodes in Tzj , 1 ≤ j ≤ h, j 6= i, to get the root, follow a path through edges (zj, z),
(z, zi) and finally through the swap edges ei.

Proof. of Theorem 3
First observe that, as result of the broadcast, every node receives the label of its ancestors (except
r) and it can determine which edges are swap edges for itself and its ancestors (Property 2 and 3).
The proof is by induction on the height h(z) of the subtree Tz.

Basis. h(z) = 0; i.e., z is a leaf. In this case, one component contains only z, while the other
contains all the other nodes. In other words, the only possible swap edges are incident on z.
Thus, z can correctly compute its best swap edge by computing the value of the distance as
stated in point (i) of Lemma 6, thus proving (i). It can also immediately determine the swap
edges with respect to all of its ancestors and compute for them the value of the parameters as
stated in point (ii) of Lemma 6, and select, for each ancestor, the best candidate.

Induction step. Let the theorem hold for all nodes z with 0 ≤ h(z) ≤ k − 1; we will now show
that it holds for z with h(z) = k. By inductive hypothesis, it receives from each child y the
best candidate for each ancestor of y ∈ C(z), including z itself. Hence, based on these lists
and on the locally available set InS(z), z can correctly determine its optimal swap edge, as
well as its best feasible swap edge for each of its ancestors.

Proof. of Theorem 4
The theorem follows immediately from Properties 2 and 3, and from the fact that, by Lemma 6, the
messages still have constant size.

Proof. of Lemma 7
Assume that the children of z have already terminated their computation and transmitted their lists
to z. From these values z can compute the maximum distance of a node in Tz, and Case (i) follows
immediately. For Case (ii), if the swap edge es does not belongs to Txk

, the maximal distance is
given by the maximal value among Fmax(Tzs) and (mD(z) + dT ′(z, r)). Otherwise, all the nodes in
Txk

maintain their distance from the root; for all the other nodes (in Tj, 1 ≤ j ≤ h, j 6= k), called
far nodes, to get to the root the path goes through edges (zj , z), (z, zk), and finally through the
swap edge zs. Hence, in this case, to compute the distance of the far nodes we have to consider the
node at the maximal distance not belonging to Txk

, whose distance is mD2(z).

Proof. of Theorem 6
It follows immediately from Properties 2 and 3, and from Lemma 7.

12

z1 zi zh

r

z

ei

Figure 2: Case (ii) in Lemma 6: the computation of Fsum(Tz) via the swap edge ei. The thick line
represents the path to the root via ei.

13

