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Abstract

The Weber point of a given point set P is a point in the plane that
minimizes the sum of all distances to the points in P. In general, the
Weber point cannot be computed. However, if the points are in specific
geometric patterns, then finding the Weber point is possible. We investi-
gate the case of biangular configurations, where there is a center and two
angles o and 3 such that the angles w.r.t. the center between each two
adjacent points is either a or 3, and these angles alternate. We show that
in this case the center of biangularity is the Weber point of the points,
and that it can be found in time linear in the number of points.

1 Introduction

Consider the following optimization problem: given the locations of a set of
customers, find a placement for a manufactory that minimizes the sum of the
distances from all customers. This problem is known as Weber’s problem, and
can be formalized as follows: Given a set of points P = {p1,...,pn} and a point
z in the plane, we define the Weber distance between x and P by W Dp(z) :=
> pep [P — z|, where |p — z| denotes the Euclidean distance between p and z.
A point w is Weber point of point set P if it minimizes the Weber distance
between P and any point z in the plane, i.e., if WDp(w) = min,cg2 WDp(z).
Thus, a Weber point minimizes the sum of all distances to the points in P.

Weber points have been studied for a long time. The first formulation of
the problem for n = 3 is by Fermat (1600). Then it was studied under different
assumptions: by Cavalieri (1647, three points vertices of a triangle); Fagnano
(1775, n = 4); Tedenat (1810); Steiner (1837) [1]. However, Weber was probably
the first who stated this problem with the purpose of minimizing the sum of the
transportation costs from the plant to sources of raw material and to the market
center: hence, this problem for n points has become known as the generalized
Weber problem [9].
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Figure 1: Example for intractable 5 points configuration [4]

If the points in P are on a line and the number of points 7 is even, then point
w is Weber point of P if and only if it is positioned between the two median
points, inclusive (note that in this case the Weber point is not unique). On the
other hand, if n is odd, then the median point is the unique Weber point of P.
Hence, for collinear points the Weber point(s) are known.

If the points are not collinear, then a Weber point for the points exists, and
it is unique [2]. In the following, we will always assume that the points are not
collinear (hence, n > 3).

Observe that in general, a Weber point is distinct from the center of gravity,
defined by pyrav = % Z?:l p;, that minimizes the sum of squares of distances
to all points in P. The center of gravity, in contrast to the Weber point, is
not invariant under straight line movement towards it. For a more detailed
discussion on the differences between Weber points and centers of gravity, see
8]

No finite algorithm can exist that finds the Weber point of any arbitrary
set of points, since finding the Weber point is equivalent to solving polynomial
equations of high degree (which is known to be intractable). In particular,
already for the simple configuration of 5 points shown in Figure 1 the Weber
point cannot be computed [4]. However, several approximation algorithms can
be found in literature. For instance, in [10], an intersting iterative geometrical
construction to approximate the region of the plane where the weber point
is, is presented. Other approximation algorithms for this problem have been
presented in [7, 6].

On the other hand, in some point configurations it is indeed possible to deter-
mine the Weber point. In fact, it might be possible to find the roots of the first
derivative of WDp(x), thus candidates for the Weber point. Moreover, in some
special geometric patterns the Weber point can be characterized immediately.
For instance, if there are two (or more) symmetry axes for the points, then the
Weber point is at the intersection of these axes, since it is unique. Moreover,
if the points are rotational symmetric, then the Weber point is at the center
of rotational symmetry. Observe that the example in Figure 1 already implies
that finding the Weber point is hard for some special geometric patterns, e.g. if
there is only one axis of symmetry, or if the points are on a circle (by moving
the point (0,0) to

In this paper, we present and investigate another geometric pattern where
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Figure 2: Example for a) equiangular configuration (n = 8) b) equiangular
configuration (n = 5) ¢) biangular configuration (n = 8)

Figure 3: Examples for points not in equiangular configuration (n = 5 and
n =11)

the Weber point can be found in linear time, namely biangular point configura-
tions. Here, we say that n points P = {p1, ..., pn} are in biangular configuration
if there exists a point b & {p1,...,pn} — the center of biangularity — an order-
ing of the points, and two angles' «, 3 > 0 such that each two adjacent points
form an angle a or § w.r.t. b, and the angles alternate (see Figure 2.c). In the
special case where the two angles a and § are equal, we say that the points are
in equiangular configuration (see fig. 2.a, 2.b). Figure 3 shows that most sets of
points in the plane are not biangular.

If the points are in bianguluar configuration and the two angles o and 3 are
different, then by definition n is even, since the angles alternate. In contrast, n
can be even or odd if the points are in equiangular configuration (a = ).

Biangularity is in a way a generalization of rotational symmetry: Assume
that the configuration is biangular with center b, and in addition all points are
on a circle with center b. Then the configuration is rotational symmetric as
well. Hence, b is the Weber point of these points. Obviously, moving any of the

LAll angles are oriented, say counterclockwise.



points straight in the direction of the center of biangularity b does not change
the angles w.r.t. b, and the points remain in biangular configuration with the
same center.2. Hence, the center of biangularity is always the Weber point of
the points.

As mentioned before, Weber points have many applications in economics and
social systems. However, our interest arises from the context of robotics, namely
the problem of coordinating a set of “stupid” autonomous mobile robots that
cannot communicate at all and that can only observe the positions of all other
robots. Their task is to gather at any arbitrary point in the plane that is not
fixed in advance. Although Weber points could - in principle - serve as meeting
points, they do not solve the problem since they cannot be computed for any
point set. Recently, biangular configurations have been applied successfully to
gather the robots: in many initial configurations of the robots, they can first
change their positions such that the configuration becomes biangular, and then
they gather at the center of biangularity (which is in fact the Weber point). For
a more detailed discussion, see [3].

The remainder of the paper is organized as follows. In Section 2 we present
some basic properties of Weber points and biangular configurations. Then we
present the linear time algorithm to find the center of biangularity (if any) in
Section 3. Finally, we draw conclusions in Section 4.

2 Biangular Configurations and Weber Points

In this section, we present some basic properties of biangular configurations and
Weber points, and in particular their connection.

First, observe that if the point configuration of n points P = {py,...,pn} is
rotational symmetric with rotation center ¢, then ¢ is the Weber point of P: To
see this, let  be the angle of rotational symmetry. Let p} be the point arising
from p; after rotation by ¢ around ¢, for 1 <4 < n. Let w be the Weber point
of {p1,...,pn}, and w' the point arising from w after the rotation. Then w' is
the Weber point of {pi, ..., pl,}, since all points were rotated by the same angle.
Since the points are rotational symmetric, we have {p1,...,pn} = {p1,--., 0L}
Then w = w', since the Weber point is unique. Obviously, the center of rotation
c is the only point that remains invariant under rotation around ¢, thus the
Weber point w must be the center of rotation c.

Using this, it is easy to see that if n points are in biangular configuration,
then the center of biangularity is their Weber point, and hence unique.

Lemma 1. Given a set of n points P = {p1,...,pn}. If the points are in bian-
gular configuration with centerpoint b, then b is the Weber point of P. Moreover,
the center of biangularity b and the angles of biangularity o and B are unique.

21t is even possible to relax the definition of biangular configurations and allow b €
{p1,...,pn}. In this case, all adjacent points form angles a or § and they alternate, ex-
cept for some gaps from the points that are at b. However, for sake of simplicity we will not
consider this special case.



Figure 4: Constructing a circle from p;, ..., p, by straight movement towards b.

Proof. Given points P in biangular configuration with center b, let r be the
minimum distance between a point in P and b. Let P’ = {p},...,pl,} be the
set of points that arises when we move all points straight in the direction of
b until they all have distance r from b (cf. Figure 4). Then all points in P’
are on a circle with center b and radius r. Since the angles between adjacent
points w.r.t. b are the same in P and P’, the points in P’ are in biangular
configuration as well. Moreover, the points are now rotational symmetric with
rotation angle % = a + (3, and rotation center b. Thus, b is the Weber point
of P'. Since P arises from P’ by moving each point to its original position, and
since all these movements are straight away from b, and since the Weber point
is invariant under straight movement, b is the Weber point of P as well.

Since the Weber point is unique (recall that we always assume that the points
are not on a line), any point set can have at most one center of biangularity,
independent of the angles. On the other hand, any point b defines a unique
ordering of all points except for those that are on a same line starting in b (say
counterclockwise). Hence the sequence of angles between adjacent points (where
some angles might be zero) is unique. O

In our algorithm to find the center of biangularity, if any, we will use Thales
circles that are defined as follows (refer to Figure 5):

Definition (Thales circle). Let p and q be two disctinct points on the plane,
and o an angle, with 0° < o < 180°. A circle C is a Thales circle of angle
a for p and q if p and q are on C and there is a point x on C such that

p,z,q) = .

The name ”Thales circle” refers to Thales of Miletus, who first showed that
all angles in a semicircle have 90°. In fact, it is well-known from basic geometry
that all angles on one side of a circular segment are equal, i.e., given a Thales
circle C of angle a for points p and ¢, then <(p,y,q) = « for all points y on
C that are on the same circular segment of C. Moreover, if 0° < a < 180°
and C is a Thales circle of angle a for points p and ¢, then C' is a Thales
circle of angle 180° — « for the two points as well: Let ¢ be the center of C,



Figure 5: A Thales circle of angle a.

let M be the perpendicular bisector of the line segment from p to ¢ (cf. Figure
6), and let x and y be the point on M that are on C. Since C is a Thales
circle, we have angle a in one of these two points, say z. Let 8 = <(p,y,q).
Points x and y are opposite points on C'. Thus, C is a Thales circle of angle
90° for ¢ and y. This yields <(z,p,y) = 90°. With <(p,z,y) = §, we get
% = <(p,y,z) = 180° = <(z,p,y) —<(p,x,y) = 180° = 90° — § = 90° — §. This
yields 8 = 180° — a.

Figure 6: A Thales circle of angle a for p and ¢ is a Thales circle of angle
180° — a as well.

Let n points be in equiangular configuration with center e, and let a = %.
Then there is an ordering of the points such that each two adjacent points have
angle a w.r.t. e. Hence, e must lie in the intersection of the corresponding n
Thales circles of angle a. This yields a simple (and very inefficient) algorithm to
find the center of equiangularity, if it exists: First, we compute all permutations
of the points. For each permutation, we compute both Thales circles of angle
a for adjacent points. Then we intersect each selection of n of these circles.



If they intersect in exactly one point, then this is the center of equiangularity.
If the intersection is empty for all permutations and all selections of Thales
circles, then the points are not in equiangular configuration. For biangular
configurations, a similar approach is possible, since n points are in biangular
configuration if and only if they can be partitioned into two disjoint subsets so
that they are in equiangular configuration with the same center.

Obviously, these sketched algorithms have finite, but super-exponential run-
ning time. It is possible to improve the algorithms to obtain a polynomial
running time, but we abstain from presenting this, since we will give algorithms
with linear running time in the Section 3.

We conclude this section with showing how to construct a Thales circle of a
specific angle « in constant time:

Lemma 2. Given two points p,q and an angle a(0° < a < 180°), a Thales
circle of angle a for p and q can be constructed in constant time. Moreover,
there is exactly one Thales circle of angle 90°, and there are exactly two Thales
circles of angle a # 90° for p and q.

Figure 7: Construction of a Thales circle of angle a

Proof. We first show how to construct a Thales circle of angle a where a < 90:
Let d := |p — q|, L be the line segment from p to ¢, and M be the ”lefthanded”
part of the perpendicular bisector of L (cf. Figure 7). Let

d

= 2tan §’

and let 2 be the point on M with distance h from L. Then we have <((p,z,q) =

a. To obtain r, we use the fact that 7 = {/(£)2 4+ ¢? and h = r + t. This gives
us
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Let ¢ be the point on M with distance r from x and C be the circle with
center ¢ and radius 7. Then p,q and z are on C' and we have <(p, z,q) = a.
Thus, C is a Thales circle of angle a.

If @ = 90°, then the circle C' which has p and g on a diameter is a Thales
circle. For a > 90°, we can use the construction above for a Thales circle of
angle 180° — a. Then Lemma 2 implies that this is already a Thales circle of
angle a as well.

For the second claim, observe first that each Thales circle can be flipped
along the line segment from p to ¢q. This yields a second Thales circle, except
for the case of & = 90°. No more Thales circles can exist, since all Thales circles
for p and ¢ intersect in the two points, and each circle with radius different from
r as constructed above yield different angles. O

3 Linear Algorithms for Equi- and Biangular
Configurations

In this section, we present algorithms to find the center of equiangularity or
biangularity, if any. For the case of equiangularity, we distinguish two cases
depending on the parity of n, the number of points. The algorithm for n even
yields immediately an algorithm to find the center of biangularity, if any.

Lemma 3. Given n points P = {p1,...,pn}, with n even, there is an algorithm
with running time linear in n that decides whether the points are in equiangular
configuration, and if so, outputs the center of equiangularity.

Proof. If n = 2, then the points are always in equiangular configuration. Hence,
we can assume that n > 2.

Assume for a moment that the points are in equiangular configuration with
center e. For every point p € P there is exactly one corresponding point p' € P
on the prolongation of the line from p to e (there cannot be more than one point
on this line, since this would imply an angle of 0° between these points w.r.t.
e). Hence, the line through p and p' divides the set of points in two subsets of
equal cardinality n/2 — 1, and e lies on the intersection of all these lines. This
will be used in the following to find e, if it exists.



Given point set P, we first compute a point z on the convex hull of P
(observe that the line which divides the set of points in two subsets of equal
cardinality is only unique for points on the convex hull). Instead of computing
the entire convex hull itself - which would take time ©(nlogn) - we take as x
any point with minimal x-coordinate. This is a point on the convex hull. Then
we compute the slope of the line from z to p; for all points p; # x, and store
them (unsorted) in an array. We pick some median element z’ in this array of
slopes and call the corresponding line from z to ' M, the median line of x.
This takes time linear in n, since selecting the k-th element - and consequently
the median as well - in an array can be done in linear time [5]. If there are
any other points on the line M, from z to z', then the points in P cannot be
in equiangular configuration. Otherwise, M, separates the points in P in two
subsets of size § — 1.

We choose a second point y as a point with maximal slope in the array. If
there is more than one candidate for y, then we take the one closest to . Then
point y is the neighbour of z on the convex hull (clockwise). Again, we pick
some point y' such that the slope of the corresponding line M, is the median
among all slopes; if there are other points on M,, then again the points in P
are not in equiangular configuration. Otherwise, the two median lines M, and
M, are different: Assume by contradiction that M, = M,. Then z' = y and
y' =z, and M, is the line from z to y. Since x and y are on the convex hull of
P, all points from P are on one side of M,. On the other hand, M, is a median
line, hence the number of points from P on both sides of M, is equal. Hence,
n = 2, in contradiction to our assumption at the beginning of this proof.

The two median lines M, and M, do intersect (if x has § — 1 points on
the same side as y, then a parallel line to M, through y has at most § — 2
points on one side), and their intersection e is the only candidate for a center of
equiangularity. Let a = %. We fix an arbitrary point p € P and compute all
angles between p and p; w.r.t. e for all p; # p. If any of these angles is not a
multiple of «, then the points are not in equiangular configuration. Otherwise,
we store the points from P in an array of length n — 1, where we store p; in
the array at position k if the angles between p and p; w.r.t. e is k- a (this
resembles a kind of bucket counting sort, see [5]). If there is exactly one point
in each position of the array, then the points are in equiangular configuration
with center e (and the array already represents the corresponding ordering).
Otherwise the points are not in equiangular configuration.

Obviously, this algorithm runs in time linear in n. O

The same algorithm can be used to find a candidate for center of biangularity,
since for biangular configurations n is always even. This yields the following

Corollary 4. Given n points P = {p1,...,pn}, there is an algorithm with
running time linear in n that decides whether the points are in biangular con-
figuration, and if so, outputs the center of biangularity.

We now show how to find the center of equiangularity for the case n odd.
This algorithm is more sophisticated than the one for n even, since the concept



of median lines has to be relaxed to median cones. However, the main idea
remains the same.

Lemma 5. Given n points P = {p1,...,ps}, with n odd, there is an algorithm
with runmning time linear in n that decides whether the points are in equiangular
configuration, and if so, outputs the center of equiangularity.

Proof. Assume for a moment that the points are in equiangular configuration
with center e. For any point p € P, there is no other point on the line from e
to p, since n is odd. Hence, this line divides the set of points in two subsets of
equal cardinality "T_l If we pick two points p;, p, € P that are ”closest” to this
line, in the sense that the slope of the line from p to e is right between the slope
of the lines L, resp. U, from p to p; resp. from p to p,, then these two points
define the median cone Cone, starting in p such that the number of points on
each side of the cone (the lines L, resp. U, inclusive) equals 251 (cf. Figure 8).
We will use these cones to find the center of equiangularity, if it exists.

Given point set P, we first compute a point z on the convex hull of P, where
z is a point with a minimal x-coordinate. Then we compute the slopes of lines
from z to any point p € P,p # x, and store them in an (unsorted) array. Then
we select points x; and x, such that the slope of the lines L, resp. U, from x
to z; resp. from z to z, is the [n/2]-th resp. the [n/2]-th largest among all
computed slopes. These two points can be found in time linear in n [5]. Let
Cone, be the median cone starting in x that is defined by z; and z,,. Obviously,
there is no point from P strictly inside this cone.

Let y be the clockwise neighbour of 2 on the convex hull (compare to proof
of Lemma 3). As before, we construct the cone Cone, for point y by defining
appropriate points y;,y, and lines L, and Uy. Let p be the intersection of U,
and L,, and let k;, be the number of points from P — {z,y} that lie in or on
the convex angle in p with edges U, and L, (cf. Figure 9). Obviously, if the
points in P were in equiangular configuration, then the center of equiangularity
e would be strictly inside the intersection of C'one, and Cone,. Moreover, in the
corresponding ordering of the points there would be exactly k,, points between
z and y. Hence, the angle between z and y w.r.t. e would be (kzy + 1) - o,
with a = %, and center e would be on one of the two Thales circles of angle
(kzy + 1) - for  and y. Even without knowing e we can define these two
Thales circles. Since z and y are points on the convex hull of P and the center
of equiangularity must be inside the convex hull, it is obvious on which of the
two Thales circles the center would be, if it exists. Hence, we can define Circle,,
to be this Thales circle.

We will now choose a third point z on the convex hull such that a center
of equiangularity, if any, lies on the intersection of Clircle,, and Circle,. (a
corresponding Thales circle), and this intersection has at most two points.

For the choice of z we have to be careful. If we simply took z as the next
point clockwise on the convex hull (after  and y), it might happen that the
corresponding Thales circle Circle,, of angle (k. +1)-a coincides with Circlegy,
and consequently there are still infinitely many possible candidates for the center
of equiangularity. Therefore, we will choose z such that it is on the convex hull

10



Figure 8: Median Cone Cone,

and not on Circleyy (see fig. 10): Let g be the line through the starting and
ending point of C, the circle segment Circle,, N Cone(x) N Cone(y). Line
g defines two halfplanes. If the halfplane which does not contain = and y is
empty, then the points are not in equiangular configuration, since a center of
equiangularity must be on C, which would be in this case outside the convex
hull of P. Let S be the set of points in this halfplane. For each point in S we
compute the perpendicular distance to g, and take z as a point with maximal
distance. Then z is on the convex hull of P, since all points from P are on one
side of the line through z that is parallel to g. Moreover, z is not on Circleg,.
Analogous to the construction of Clircle,, above, we construct a second Thales
circle Circley, of angle (ky. +1) - .

Since z ¢ Circlegy, the two circles Clircle,, and Circle,, intersect either in
one or two points. If they intersect in one point, then they intersect in y, and
no center of equiangularity can exist. If they intersect in two points, then one
of the two points is y. The other point is the only candidate for a center of
equiangularity. Similar to the proof of Lemma 3, it can be checked whether it
is a center of equiangularity.

Obviously, the running time of this algorithm is linear in n.

O

4 Conclusion

We have shown that the Weber point of n points in biangular configuration is
just the center of biangularity, and that it can be found in linear time. Obvi-
ously, this result can be extended to point configurations where the sequence
of angles w.r.t. some center is periodic (biangular configuration have period
length two, while equiangular configurations have period lenght one). However,

11






characterizing configurations where the Weber point can always be computed
remains an open problem.
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