UNIVERSITA DI Pisa

DIPARTIMENTO DI INFORMATICA

TECHNICAL REPORT: TR-01-24

Flocking by A Set of
Autonomous Mobile Robots

Vincenzo Gervasi Giuseppe Prencipe

October 30, 2001

ADDRESS: Corso Italia 40, 56125 Pisa, Italy. TEL: +39 050 2212700 FAX: 439 050 2212726

Flocking by A Set of Autonomous Mobile Robots*

Vincenzo Gervasi Giuseppe Prencipe

October 30, 2001

1 Overview

Control and coordination of a set of autonomous vehicles that can freely move
on a plane is a widely studied topic in robotics. The focus on this kind of
problem has grown in recent years because of the increased interest in studying
systems populated by many, simple units, instead of few, powerful ones. In
particular, these units simply observe the environment by using their sensors,
and react following simple rules: the reaction to the environmental stimuli is
called the behavior of the unit. Despite the simplicity of the units, it has been
shown that these groups of vehicles can exploit rather complex group behaviors
[14]. Moreover, such a system is preferable to one made up of just one large
and powerful unit for many reasons: low costs in changing faulty units; ability
to solve tasks otherwise unsolvable by a single unit [6, 16] (e.g., robots that
have to move big objects [15]); certain problems can be solved quicker [2] (e.g.,
robots that are asked to clean a room [13]); for fault tolerance considerations;
the decreased cost through simpler individual unit design. An extensive survey
can be found in [4].

One major question that arises is: How is it possible to properly coordinate
these group of mobile robots, such that they can together accomplish what they
are asked to do? And another question is: How simple can these units be [7]?

In this paper we study the flocking problem: a set of mobile units are required
to follow a leader unit while keeping a predetermined formation (i.e., they are
required to move in flock, like a group of soldiers). Moreover, the units in the
flock do not know beforehand the path the leader will take: their task is just to
follow him wherever he goes, and to keep the formation while moving. This is
a problem often studied in robotics, with several applications (e.g. military [3],
or in factories, where robots can be asked to move heavy loads). The approach
usually adopted to study this and similar problems, is to design solutions based
on heuristics and tailored on the capabilities of the robots employed, and then
test them by computer simulations, or on real robots.

For instance, in [14], experiments are conducted on a team of simple mobile
units in order to produce complez behaviors, by compounding basic ones (such as

*A preliminary version of this paper has been published in [11].

safe-wondering, i.e. the ability to avoid collisions while moving; dispersion, i.e.
the ability of the robots to spread out over an area; aggregation, i.e. the ability
to gather; and homing, i.e. the ability to reach a predetermined destination). In
particular, the author points out that flocking can be obtained combining safe-
wandering, aggregation, dispersion, and homing. Hence, in her experiments, all
the units have a common destination to reach.

T. Balch and C. Arkin studied formation and navigation problems in multi-
robot teams. In particular in [1] the problem of specifying the behavior for the
navigation of a mobile unit is analyzed, and results of both computer simulation
and real experimentation are reported. In [3] the approach is extended to multi-
robot teams that navigate the environment maintaining particular formations:
in particular the case of a line, column, diamond and wedge are examined.
In their study, the authors assumed that the path along which the group of
robots has to move is known in advance to every unit. This same assumption
is made in [5], where the robots are asked to move in a matrix shape along a
path represented by a straight line followed by a right turn and then a straight
line again. In contrast, in this paper we do not assume any knowledge by the
followers of the path that the leader will follow. The followers have only a
common description of the formation they have to keep while moving.

A similar problem is studied in [17], where the author derives equations de-
scribing navigational strategies for robots moving in formation, and following
the movement described by one (ore more) leader. In the studied framework, the
robots have identities, hence their positions in the formation are fixed. More-
over, in order for the i-th robot to compute its position at time ¢, it has to know
the position of either the (i — 1)-th robot or the leader at time ¢. Hence, some
degree of synchrony has to be introduced in order to implement these strategies.

In this paper, we analyze the flocking problem by using very simple units
and by dropping the assumption that all the ships in the flock know the path,
or that they can derive it (e.g. by observing the orientation of the leader’s prow,
or by deriving it by observing the leader in different positions). Following the
motivations that prompted previous studies ([8, 12]), we adopt simple units to
study the problem: the ships are completely anonymous, identical (no iden-
tities are used during the computation), asynchronous, memoryless, and with
no means of direct communication. We describe an algorithm (the same for
all the ships) that allows the followers to keep a formation given to them as
input, while following a path determined at run-time by the leader, that acts
completely independently and does not behave according to the followers’ al-
gorithm. Moreover, we present results of computer simulations that show the
effectiveness of the proposed solution.

2 The Model

We consider! a system of autonomous mobile units (ships). There are two
kinds of ships in the environment: the leader and the followers. The leader acts
independently from the others, and we can assume that it is driven by a human
pilot. In the following we will discuss only about the followers.

Each ship is capable of observing its surrounding, computing a destination
based on what it observed, and moving towards the computed destination; hence
it performs an (endless) cycle of observing, computing, and moving,.

Each ship has its own local view of the world. This view includes a local
Cartesian coordinate system having an origin (that without losing generality we
can assume to be the position of the ship), a unit of length, and the directions
of two coordinate axes (which we will refer to as the x and y axes), together
with their orientations, identified as the positive and negative sides of the axes.
In general, there is no agreement among the followers on the chirality of the
local coordinate systems (i.e., the ships do not share the same concept of where
North, East, South, and West are).

The ships are modeled as units with computational capabilities, which are
able to freely move in the plane. They are equipped with sensors that let each
ship observe the positions of the others with respect to their local coordinate
system. Each ship is viewed as a point, and can see all the other ships in the
flock (and the leader).

The ships act totally independently and asynchronously from each other, and
do not rely on any centralized directives, nor on any common notion of time.
Furthermore, they are oblivious, meaning that they do not (need to) remember
any previous observation nor computations performed in the previous steps.
Note that this feature gives the algorithms designed in this model the nice
property of self-stabilization [9]: in fact, every decision taken by a follower can
not depend on what happened in the system previously, and hence is not based
on corrupted data stored in its local memory. They have as input, however,
the same pattern F representing the flock to be kept. F is described as a set of
coordinates in the plane, relative to a point representing the leader.

The ships in the flock are anonymous, meaning that they are a priori indis-
tinguishable by their appearances, and they do not (need to) have any kind of
identifiers that can be used during the computation. They can only distinguish
if a ship is the leader or a fellow follower. Moreover, there are no explicit direct
means of communication; hence the only way they have to acquire information
from the fellow ships is by observing them?.

They execute the same algorithm, which takes as input the observed posi-
tions of the ships, and returns a destination point towards which the executing
ship moves. A ship, asynchronously and independently from the other ships,

IThe model we adopt is based on one introduced in [10, 8]. It has been adapted, however,
to the particular problem under study.

2The obliviousness of the ships also renders the observations weaker. In fact, nothing ob-
served in the past can be remembered, hence used in order to let the ships organize themselves
to accomplish their task.

(1) observes the environment (Look), by taking a snapshot of the positions of
all other ships with respect to its local coordinate system. Each ship is viewed
as a point, and therefore its position in the plane is given by its coordinates.
The observation returns the positions of all the other ships in the plane (leader
and followers). (2) It computes a destination point p according to its oblivious
algorithm (Compute); the local computation is based only on the current (i.e.,
at the time of the previous Look) locations of the observed ships. (3) Finally,
the ship moves an unpredictable amount of space towards p (Move), which is
however assumed to be neither infinite, nor infinitesimally small (see Assump-
tion A2 below), and goes back to the Look state. Hence, there is no assumption
on the maximum distance a ship can travel before observing again (apart from
the bound given from the destination point that has to be reached). The life of
a follower consists in repeating an endless cycle of states (1)—(3). Moreover, the
only assumptions made in the model are the following [10]: (A1) The time for
a ship to complete a Look-Compute-Move cycle is neither infinite nor infinites-
imally small (i.e., is finite and bounded from below). (A2) For each follower
f, there exists an arbitrary (small) constant 7 > 0, representing the minimum
distance it travels in the Move state; if the computed destination point is closer
than ¢, f will reach it. (A3) Since we need to model ships that “continuously”
move, we assume that the time spent in looking and computing is negligible
compared to the time spent in moving.

Summarizing, each ship moves totally independently and asynchronously
from the others, not having any bound on the time it needs to perform a Move,
hence a cycle (it has to be, however, finite by Assumption A1); therefore, a ship
can be seen while it is moving; in addition, they are oblivious, and anonymous.
Moreover, no one of the followers knows in advance the path that the leader
will follow, nor can it derive it at run-time. Their only task is to observe
where the leader and the other followers are, reach an agreement — without
communicating — on how and where to form the pattern in the plane, and
move to positions such that the flock is formed and maintained.

Adopting such “simple” units aims at understanding what kind of complex
tasks can be achieved, and under which conditions (for a detailed discussion on
this model and its motivations, refer to [10, 8, 9, 12]).

3 The Flocking Problem

In this section we give a formal definition of a family of problems that we call
collectively the Flocking Problem. In particular, we propose two variants of the
problem, and characterize through several metrics the degree of acceptability of
an approximate solution.

3.1 Definitions

Definition 3.1 (Formation). A formation F = {p;,...,pn_1,pr} is a con-
figuration with a distinguished point, p;,. We call the distinguished point the

leader of the formation, and the remaining points the followers of the formation.

We call radius of a formation F, denoted by Rp the maximum distance
between the designated point pr, and the other points in F:

Ry = max dist(pr,pi)- a
i=1..n—1

Configurations are used to model the positions of a set of vehicles, and also
to express the set of points that constitute the desired formation. The formation
whose points are the current positions of the vehicles (included the leader) is
called the (current) fleet (denoted by E), while the formation given in input to
the robots, and whose points represent the desired position of the vehicles once
the flock is formed, is called the pattern (denoted by P).

In order to assess the degree of success of the flocking, we need a measure of
how well the current fleet approximate the desired pattern. We introduce such
a measure in the following

Definition 3.1 (D-distance). Given two configurations C = {c¢y,...,¢,} and
G ={91,---,9n}, we define the D distance among them as follows:

IC|
D(C, G) = frnellr'll Zl dZSt(cia gﬂ'(’l))

where II is the set of all the possible permutations of 1...|C].

Moreover, we define p;(C,G) = dist(c;, g5 (;)), where 7' is the permutation
such that D(C,G) = ZLZL dist(ci, g (7)) As a shorthand, we will write simply
p; when the configurations are evident in the context. <>

As an aside, we note that other kind of measures can be used. For instance,
the maximum of the sum of the distances, or its average, or the sum of the
squares of the distances. Our experiments, however, have been tested according
to the measure defined in Definition 3.1.

We can consider that the desired pattern is reached when the vehicles place
themselves in the desired shape, with no regard for the orientation, or we can
ask, in addition, for a specific orientation (typically, corresponding to the cur-
rent heading of the leader). These two alternatives are defined formally in the
following

Definition 3.2 (Target). Given a pattern P and a fleet E, we call an undirected
target of the vehicles any formation that is obtained by translating P so that its
leader point coincides with the leader of E, and rotated by an arbitrary angle.
We denote such a formation with 7p k.

Given, in addition, an angle 8, we call the directed target of the vehicles the
particular undirected target that is rotated by 8. We denote this formation with
7FP‘?’]E We call the followers’ positions in a target the slots of the target. <>

) ® ©
O

'AL o o
¢ o o o o
o o

o o
o o
a b.

Figure 1: Undirected and directed targets. The triangle represents the leader.

Notice that, given a pattern and the position and heading of the leader,
there are infinite undirected targets (Figure 1.a), but only one directed target
(Figure 1.b) — that, naturally, is also an undirected target.

Since in our model the leader is constantly moving, while the followers only
execute discrete cycles, it is impossible for them to exactly form and maintain
the pattern at any desired time. To take this effect into account, we introduce
two distinct notions for ezactly and approzimately forming the pattern in the
definitions below.

Definition 3.2 (Exact Formation). Given a fleet E and a pattern P, we say
that the followers in E exactly form an undirected target 7p g if

D(E, Tp g) = 0.

Moreover, if v is the heading of the leader, we say that the followers exactly
form the desired pattern if

D(E, Tp') = 0. <>
We extend the above definitions to the case in which the formation is not
kept exactly.

Definition 3.3 (Approximate Formation). An undirected target is formed
up to & if

D(E, Tp &) < €.
Analogously, the directed target is formed up to £ if
D(E, 7;»1{)13) <& a

Finally, we can introduce our formal definition of the Flocking Problem.

Definition 3.4 (The Flocking Problem). Let fi,..., f,—1 be a group of
vehicles according to our model, and let L be an additional distinguished leader
vehicle, with heading 1, whose positions constitute a formation E, and let P
be a pattern given in input to fi,..., fn—1- The vehicles solve the exact (resp.
approximate) Flocking Problem if, starting from an arbitrary formation at time
to, 3t1 > to such that, V¢ > t; the vehicles exactly (resp. up to &) form a certain
formation. More specifically, four variants of the flocking problem exists:

e exact undirected flocking: D(E, Tpg) =0
e exact directed flocking: D(E, 771;/’15) =
e approximate undirected flocking: D(E, Tp) < &

e approximate directed flocking: D(E, Tp'g) < & NS

The exact flocking variants cannot be solved in our model, since we assume
that the leader moves continuously and arbitrarily, while the followers only have
discrete opportunities for observing the position of the leader and adjust their
course accordingly. Hence, while exact flocking can be considered as an ideal
reference problem, in the following we will concentrate on the two variants of
approximate flocking.

Notice however that, since we characterize through £ the degree of approx-
imation, and since we will give conditions that relate £ to the features of the
vehicles, an arbitrarily good approximation can be obtained.

3.2 Conditions

In order for the problem to be solvable, a number of conditions must be met.
Let vz, and wy, be the maximum linear and angular velocity of the leader, re-
spectively, and let vy be the maximum linear velocity of follower f. Firstly, the
leader must not be too fast, otherwise the followers will not be able to maintain
the formation. Formally,

vy, < minwvyg;. (1)
K2

Moreover, the slots must not move too fast for the followers, as a consequence
of the leader changing direction; thus, also the angular velocity of the leader
must be limited:

vr, +wr - Rp < minwvy,. (2)
k3

In fact, in the worst possible case the leader is moving away from a follower f
while at the same time turning so that the tangential velocity of the points in
’ﬁpf”]E that f is trying to reach is maximal (see Figure 2).

Secondly, in order to maintain the flocking up to £, the time spent in a
Move by a follower must not be too long. Otherwise, the leader could change

f' [V1, + Wi, 'E]p

f’s target
Rp

L,
~

wr,

UL

Figure 2: Limitations on the linear and angular velocity of the leader.

direction and move away from a follower in the time between two consecutive
Looks, without the follower having a chance to correct its course. Formally, let

k? = (vg + wr, - Rp) max7{/ (5)
j

where T]{VI (7) is the duration of the Move phase of the j-th cycle of the follower
f- In the above definition, &/ is the maximum distance that a point in 7 x may
travel during the longest Move phase of the follower f. Since we want that the
overall D-distance remains bounded by &, the following condition must be met:

S ki< (3)
2

The condition above is overly restrictive, though, since we consider the max-
imum duration for the Mowve of all the followers. We can state a less restrictive
(but still only sufficient) condition by considering the duration of a Move at
a specified point in time. In detail, let 7¢(¢) be the time between ¢ and the
beginning of the Move of the follower f that is being executed at time ¢ (see

Figure 3). Then,

Vt, Y (vr +wr, - Re) 7y, (t) < & (4)
K3

As a last remark, we note that, since we want the vehicles to form a specific
formation and to keep that formation while moving, it is necessary for the fol-
lowers to agree on a common unit measure. Otherwise (i.e. if the input pattern
can be scaled), the formation would be formed even if, instead of following the
leader, the followers would simply “scale” the input formation (that is, we would
have a situation where the vehicles would form a pattern that becomes bigger

and bigger as the leader goes farther away, see Figure 4). Hence,

Observation 3.1. In order for the problem to be significant, f ..., f,—1 must
have common knowledge on the unit measure. o

Figure 3: Definition of 7.

O O
a. b.

Figure 4: The triangle represents the leader, and the circles the positions of P.
If the vehicles did not have a common unit distance, then they could scale P,
and the flock would not follow L while it moves.

The farthest |F1| The next |Fo| — |So| The remaining ships
in Sy towards towards the available towards the available
the slots of F; slots in Sy (closest) slots in F

Figure 5: Examples of the behavior of Algorithm 1. The filled triangle is the
leader, the filled circles are the followers, and the empty circles the slots the
followers want to reach.

4 Basic Algorithm For The Flocking Problem

In this section we present an algorithm to solve the approximate directed flock-
ing problem that works in the general setting where there is no agreement on
the local coordinate systems. Every follower f; is given in input a pattern P
described as a set p1,...pp| of points, relatives to the leader vehicle, L; we
clearly assume to have |P| — 1 followers arbitrarily placed on distinct positions
at the beginning (this defines a wvalid initial configuration for this problem).
The intuition behind the basic algorithm is described in the following (see
also Figure 5). First, the generic follower f computes the baricenter B of the
followers’ positions (Line 1), by executing Baricenter (Followers) (Followers
and L are the positions of the followers and of the leader retrieved in the pre-
vious Look state, respectively), and a shared vertical axis Y given by the line
passing through L and B, and oriented according to BL can be derived: this
is accomplished by Get_Y_axis (L, B), that returns the axis Y that all the fol-
lowers will use to agree on orienting themselves in the plane.® Then Sy, S; and
Sa, containing respectively vehicles whose positions are exactly on Y, to its left,
and to its right, are computed (according to the local concept of left/right of

3If L = B, the followers can simply wait for the leader to move away from B, or for some
fellow follower that is already moving to break the tie.

10

Algorithm 1 The Basic Flocking Algorithm

Input: The pattern P to be kept, relative to the leader. Followers and L are
the positions of fi,..., fn—1 and of the leader retrieved in the last Look
state, respectively. me represents the robots executing the algorithm.

B := Baricenter (Followers);
Y := Get_Y_axis (L, B);
So := {Robots On Y'};
S1 := {Robots On The Left Of Y'};
5: Sy := {Robots On The Right Of Y'};
F := Final Positions(P,L,Y);
Bp := Baricenter (F);
Fy := {Final Positions On Y'};
F := {Final Positions On The Left Of Y'};
10: F, := {Final Positions On The Right Of Y'};
For All j =0,1,2 Do
Sort (F}, L, Br);
Sort (S;, L, B);
End For
15: Case me in
e 5
k := Rank(me, S1);
If k < |Fi| Then
Move (k-th Position In F7).
20: Else If k < |Fi| + |Fo| — |So| Then
H := {Robots In S; Whose Rank > |F;|}U
{Robots In S> Whose Rank > |F»|};

Sort(H,L,B);
k' := Rank (me, H);
25: p:= (k' +|So|)-th slot in Fp;
Move (p).
Else
MOVG((|F2| - (k — |F1| — |F0| + |S()|) + 1)—th Position In FQ)
e S
30: /* This case is symmetric to the previous one */
e Sy

k := Rank (me, Sp);
If k < |Fy| Then
Move (k-th Position In Fj).
35: Else If |S;| < |Sz2| Then
Move ((|F1| — |S1| + (k — |Fbl))-th Position In Fy).
Else
Move ((|F2| — |S2| + (|k — |Fol))-th Position In F»).

11

Y).
At this point, f executes Final Positions(P,L,Y) (Line 6), that rotates
the points in P, assuming that the leader is moving according to the direction
and orientation of Y, and translates them into the observed leader’s position.
The positions returned by this routine are the slots that the followers will try
to reach. After having computed the baricenter Br of the slots in Line 7, these
positions are partitioned in three subsets: those exactly on Y (Fy, Line 8), to
the left of Y (F1, Line 9), and to its right (F, Line 10). Then, F}, j =0,1,2,
are sorted in decreasing order with respect to the distances from L and Bp
(Line 12), and S, j = 0,1,2, are sorted in decreasing order with respect to
the distances from L and B (Line 13). These sorting operations are done by
Sort (4,1,b), where A is the array (set of points) to be sorted. In particular,
after the sorting, it is guaranteed that

Vi,j, i<j = (dist(l,p;) > dist(l,p;)) V

where p; and p; are points in A. Next, the rank &k of f in the subset it belongs
to is computed, by Rank (me,-).

Now, if f is the k-th follower in Si, and k < |Si|, then it moves towards
the k-th position in F; (Line 19; a similar argument applies if f is in Sa, see
Line 34). Otherwise, if there are positions available in Sy (i.e., |Fo| > |So| and
k—|Fi| < |Fo|—|Sol), f is directed towards So. In particular, Line 21 computes
the set H containing the vehicles in S; and Sy whose rank is respectively bigger
than |Fy| and |Fy|; H is then sorted, and the rank &' of f in H is computed in
Line 24. Then, f is directed towards the (k' + |Sp|)-th slot in Fy (Lines 25-26),
that is towards a slot in Fp that is not a target of vehicles in Sy (refer to Lines
31-38 to see how vehicles in Sy choose their targets). If no position in Sy is
available, f moves towards the (|Fy| — (k — |Fi| — |Fo| + |So|) + 1)-th position
in F3, that is towards one of the slots in F5 that are not a destination point of
either a vehicle in S; whose rank is smaller than k, or of a vehicle in Sy (Line
28).

If f is in Sp, and its rank k is smaller than |Fp|, then it simply moves towards
the k-th slot in Fy (Line 34). Otherwise, it chooses to move towards the side
that has fewer vehicles (note that if [S1| = |Sz|, then it chooses to move towards
a slot in F1). In Figure 5, an example of how the followers chose their slots is
depicted.

Finally, Move (p) moves the executing vehicle towards p, and terminates the
current cycle. As already pointed out, in general the vehicle does not reach p in
one Move (the distance it travels is finite, but unpredictable). Clearly, since the
vehicles can not remember p in the next cycle (obliviousness), this implies that
it is possible that f changes its destination point in the next cycle, because its
ranking can change.

Since the vehicles are memoryless, they can not be sure of the direction
of movement of L. They only assume that the leader is going away from B

(i.e. according to BL). Furthermore, the followers assume that the direction of

12

a b.

Figure 6: With a non-lb-symmetric pattern, the destination point of a unit
depends on the chirality of the local coordinate system.

movement of L is given by the axis passing through B and L, and oriented from
B towards L, hence they can reach an agreement on Y. They can not, however,
reach in general a similar agreement on X, that is on an axis hortogonal to Y
that would let them agree on the concept of left and right. Hence, the basic
algorithm applies only to formations that are symmetric with respect to the
direction of movement of L.

4.1 Applicability of The Algorithm

The basic algorithm statistically solves the approximate undirected flocking
problem. Furthermore, it statistically solves the approximate directed flock-
ing problem, provided that

1. the pattern is centered on the leader and directed according to the Bj
axis;

2. the pattern P = {p1,...,pn, L} is symmetric with respect to the axis
passing through L and the baricenter of the other points in P (we call this
kind of patterns lb-symmetric), and

3. the pattern contains at most 1 point lying on this axis.

In fact, if the pattern is not 1b-symmetric, the target slot of a follower robot
depends on whether the follower is in S; or S, and thus on whether it should
try to form the semi-patterns Fy or F>. However, this assignment depends on
the chirality of the local coordinate system (see Figure 6), and thus the followers
cannot generally reach an agreement on the formation to keep.* Notice that if
the pattern is lb-symmetric, the choice still cannot be made, but it becomes
unrelevant since the two semi-patterns are indistinguishable.

4In particular, no agreement can be reached if all the vehicles occupy positions that are

symmetric with respect to the Bj axis, while the pattern is not symmetric. See Section 6.4
for a more detailed discussion on this case and for possible solutions.

13

Figure 7: More than 1 position on the axis.

Also, if the pattern is Ib-symmetric but has more than one position lying
on the BL axis (see Figure 7), two vehicles could be ranked equal in step 24 of
the algorithm. In this case, the two vehicles would select the same slot on Fy
as destination, preventing the correct formation of the pattern. Notice that for
any number m > 2 of slots on the axis, the same problem could happen when
m — 2 slots are taken by as many vehicles, while the two remaining vehicles
could occupy symmetric positions as shown in Figure 7.

4.2 Analysis of Experiments

To measure how far the vehicles are at time ¢ from the aimed formation, we use
the following functions:

e A (t) = D(E(2), 7—¢]§(%)) the distance from the estimated formation, ob-
tained from the position of the baricenter at time ¢. In particular, E(t)
denotes the positions of the robots at time ¢, and T¢B()) is the directed
target obtained by translating the leader of P onto the leader of E(t), and
by rotating P of an angle ¢g(t) such that the baricenter of p1,...,pr—1
lies on the line passing through the leader of E(t) and the baricenter of
the followers in E(t); and

o A.(t) = D(E(®), Ewg(%)) the distance from the real formation, obtained
taking into account the actual heading of the leader at time ¢, ¥y, (¢).

14

(©] @) O O Wedge formation, 6 ships
Line formation, 4 ships @) O

Spread formation, 10 ships

0 50

Figure 8: Fleet formations used in the simulations.

In Figure 11, some plots of A, and A, are reported, relative to computer
simulations run with six followers trying to keep a wedge shaped formation, four
in a line, ten in a spread formation (all shown in Figure 8), and with random
formations.

In all cases, the simulations® started with all the vehicles (leader and follow-
ers) randomly placed in a square area with a side of 512 units. Each vehicle also
had a random direction and orientation of the axes for its local coordinate sys-
tem. Each follower had a random velocity between 0.5 and 5.0 units/move, while
the leader’s speed was determined in accordance with the limitations stated in
Section 3.2. The fixed formations used in the experiments are shown in Fig-
ure 8; random formations were obtained by randomly choosing from two to eight
symmetric points in the area delimited by the points (-150,-50) and (-50,+50),
where (0,0) represents the leader and the axes are oriented so that z coincides
with the leader’s direction.

The leader’s course was determined as follows: at all times, the leader would
move forward according to its velocity. At each move, with a probability of 1/20,
the leader could start turning to its left or right with an angular speed limited
again according to Section 3.2. If already turning, with the same probability
the leader could stop and continue its course as a straight line. Figures 9 and 10
show the courses of the vehicles in two simulation runs.

In Figure 11, it can be observed how convergence to the estimated formation
(A.) is obtained on average in less than half the time needed to reach the real
formation. Figure 11 also reveals other interesting phenomena. In the A, graph
for the wedge formation, we can observe a “plateau” caused by the vehicles
forming the pattern in exactly the wrong direction, i.e. in front of the leader
rather than behind it. This correctly formed, but incorrectly-headed pattern, is
kept until the leader starts changing its direction, at which point all the followers
rapidly reach their proper positions behind the leader. Related effects can also
be observed in the A, graphs for the other formation, in which instabilities
in the distance are caused by the followers trying to catch up with change of
directions of the leader.

5The simulator has been written by Vincenzo Gervasi - University of Pisa.

15

L/ . Initial Positions

Figure 9: Trace of the vehicles while forming and keeping a wedge shaped
formation.

Initial positions

-
W

AS
Ay

Figure 10: Trace of the vehicles while forming and keeping the spread formation
with ten vehicles. Note the circular trajectory of the vehicles at the beginning,
while trying to align the formation with the course of the leader.

16

All our experiments demonstrated that the algorithm is properly behaved,
and in all cases the followers were able to assume the desired formation and
to maintain it while following the leader vehicle along its route. Indeed, while
Section 3.2 provides conditions under which the ability of the vehicles to follow
the leader is guaranteed, even when those conditions were relaxed the followers
were usually able to compensate for sudden turns or accelerations of the leader
(as long as the effective speed of the leader remained, at least on average, lower
than that of the slowest follower). As a further remark, we note that the obliv-
iousness of the algorithm contributes to this result, since the followers do not
base their computation on past leader’s positions.

5 Extended Algorithms

The algorithm given above does not guarantee convergence, although simula-
tions show that it provides statistical convergence in most cases. In this sec-
tion we briefly discuss the problems with the basic algorithm, and provide two
slightly more complex variations that solve these problems.

5.1 Problems With The Basic Algorithm

The basic algorithm suffers from a number of problems, and is subjected to
somewhat restrictive conditions. In particular:

1. The basic algorithm converges rapidly only for approximate undirected
flocking, while convergence in the case of approximate directed flocking is
typically slower. This is caused by the followers’ inability to observe the
real heading of the leader (and by their obliviousness, since they cannot
remember the previous position of the leader).

2. The followers can assume and maintain for an unpredictably long time
a wrong formation. For instance, the followers can assume a formation
that is specular to the correct one, and placed “in front” of the leader
instead of behind it. In such a situation, as long as the leader maintains
an heading that coincides with the BL axis, the followers will compensate
any movement of the leader towards them by moving farther away, while
keeping the formation on the wrong side and thus reproducing the same
situation.

Problems 1 and 2 can be solved perfectly by observing the heading of the leader
(i-e., by being able to distinguish the prow of the leader from the back), or —
with a better approximation wrt the baricenter — by having enough memory
to store the previous position of the leader.

3. In certain situations, two or more vehicles could continue changing the
slots they have to reach, causing instability and slowing down or impeding
altogether the convergence of the algorithm.

17

Wedge formation, 6 ships Wedge formation, 6 ships

700 T T T T 900 T T T T
Do — A —
800 b
600 B
700 B
500 B
600 B
g 400 1 8 500 R
5 5
© 300] G 400]
300 1
200 B
200 B
100 H B
100 - N
0 0
0 1000 500 2000 2500 0 1000 1500 2000 2500
Time Time
Line Formation, 4 ships Line Formalion, 4 ships
400 T T T T T T 700 T T T
Be — A
350 b 600 1
300 B
500 B
250 B
N o 400 B
5 200 B g
e © 300 B
150 B
200 B
100 B
sl 1 100 B
0 : L oc
0 0 w0 w0 w00 1000 1200 1400 F 800 1000 1200 1400
Time Time
Spread Formation, 10 shlps Spread Formation, 10 ships
1200 T T T 1200 T T T T T T 7y
v
1000 B 1000 B
800 B 800 B
8 8
5 600 b 5 600 b
a a
400 b 400 1
200 H B 200 | B
oc 0
20 w00 w0 2000 1200 2200 1600 0 20 800 1000 1200 1400 1600
Time Time
Random Formation Random Formation
900 T T T T T T 1400 T T T T T T 7y
A — ’
800 B
1200 B
700 B
1000 B
600 B
3 500 1 g 0 1
o 400 b S ool 1
300 H b
400 B
200 B
200 B
100 | B
ot oc
20 w0 2000 1200 1600 800 1000 1200 1400 1600
Time Time

Figure 11: Some plot of the A, and A,, while forming a wedge of six vehi-
cles, a line of four vehicles, a spread formation with ten vehicles, and random
formations (with a number of vehicles variable between two and eight).

18

In the following, we discuss some suggestions that can help in fixing some of
the problems pointed out with Algorithm 1. Unfortunately, we did not imple-
ment this ideas yet; hence, we can not present evidence of the goodness of such
strategies. This will be part of our near future work.

5.2 The Hula-Hoop Algorithm

A source of instability in the basic algorithm lies in the fact that the ranking of
the vehicles in a semi-space (S1 or Ss) can change during the execution. As a
consequence, the assignment of the slots to the vehicles can change, and this in
turn can cause sudden changes of direction of the followers. Although very rare,
it is also theoretically possible that, in pursuing the new slots, two followers
keep exchanging their ranking, so that the flock never stabilizes.

One way to solve this problem consists in ensuring that the initial rankings
among the followers never change during the execution of the algorithm.

In the basic algorithm, the ranking is assigned based on the lexicographical
ordering that is given by the distance from the leader and from the baricenter.
Let f, g and h be the (i — 1)-th, i-th, and (¢ + 1)-th vehicle in the ranking,
respectively (refer to Figure 12). The area in which the ranking of g does not
change is given by the region delimited by the circles having as center the leader
L, and as radius dist(L, f) and dist(L, h) respectively (the obvious extensions
apply if g is the first or last vehicle in the ranking). We call this region the
stable space of g.

To try to maintain a stable ranking, each follower has to remain always in
its stable space. This entails:

1. stopping before crossing the stable space boundary if the target is out-
side the stable space (waiting until the movements of other vehicles have
changed the boundaries, possibly bringing the target inside the stable
space), and

2. choosing curved trajectories instead of straight ones to reach a target that
is inside the stable space when the straight trajectory would cross the
boundaries.

While the above strategy increases the stability of the algorithm, it is not suf-
ficient to guarantee it. In fact, it is possible that the movement of the leader,
by changing the distances between the leader and the followers, changes the
ranking of the followers even if they try to stay inside their stable spaces.

5.3 The Stripe Algorithm

A second variant of our basic algorithm increases the stability by changing the
measure upon which the ranking is based rather than by changing the followers’
strategies, as done with the hula-hoop algorithm.

The stripe variant uses a lexicographical ordering of the vehicles in a semi-
space based on the distance from the Y axis, from the leader, and from the

19

g’s target

Figure 12: Strategy for the hula-hoop algorithm.

baricenter. More specifically, the Sort (A4,1,b) routine in the basic algorithm is
changed so that, after the sorting,

Vi,j, i<j = (dist(Y,p;) > dist(Y,p;))V
(dist(Y,p;) = dist(Y,p;) A dist(l, p;) > dist(l,p;)) V
(dist(Y,p;) = dist(Y,p;) N dist(l, p;) = dist(l, p;) A
dist(b, p;) > dist(b,p;))

where dist(Y,p) is the distance between the Y axis (passing through [and b)
and the point p.

In this case, the stable space of a follower is defined as follows (refer to
Figure 13). Let f, g and h be the (i — 1)-th, i-th, and (¢ + 1)-th vehicle in
the ranking, respectively. The area in which the ranking of g does not change
is given by the stripe parallel to the Y axis and delimited by the lines, also
parallel to the Y axis and passing through f and h, respectively (again, the
obvious extensions apply if g is the first or last vehicle in the ranking).

Also in this case, the followers must take care not to deliberately cross their
stable space boundaries. However, since the stripes are oriented according to
the (estimated) direction of the leader, there is lesser risk that the movements
of the leader can change the ranking and thus introduce instabilities. On the
other hand, this variant is more sensible to variations of the heading of the
leader, especially when the distance between the followers and the leader is

20

Figure 13: Stable spaces in the strip algorithm.

greater than a certain threshold, since the stripes can swipe rapidly. However,
this effect is only significant if the real heading can be observed. When the
heading is estimated via the baricenter, sudden change of estimated heading are
possible only when the baricenter is near the leader, and this in turn typically
only happens when the follower are near the leader, thus rendering the effects
of the swipe less important.

Notice however that there is no need to follow non-rectilinear trajectories.
This variant of the algorithm is thus simpler than the hula-hoop one.

6 Remarks on Different Levels of Common
Knowledge

As can be expected, the amount of shared knowledge among the followers and
their computational and observational capabilities condition the type of prob-
lems that can be solved. In this section, we analyze how different combinations
of shared knowledge, observation abilities and amount of memory influence the
kind of flocking problems that can be solved by the followers.

6.1 Observability

Our model already assures us that the positions of the leader and of the followers
are observable by any follower, and all the algorithms presented so far only rely

21

on this simple capability. If, in addition to that, we can also observe the heading
of the leader (e.g., by observing the direction of its prow), we can avoid relying
on the self-stabilization of a reference point (i.e., the baricenter) “behind” the
leader, and lying along its direction of movement.

In particular, the followers can compute the slots to reach according exactly
to the current direction of the leader, rather than approximating it based on
the ﬁ axis. Thus, it never happens that the followers stabilize on wrong
directions (e.g., in front of the leader rather than behind it), and convergence
is faster (actually, A, coincides with A.).

We do not discuss here whether being able to observe the direction of move-
ment of the followers can improve® further the convergence.

6.2 Local Coordinate Systems

We distinguish four different levels of agreement on the direction and orientation
of the coordinate axes.

6.2.1 No agreement

The basic algorithm we presented in Section 4 does not assume any agreement
among the followers on the direction and orientation of the axes. In this case,
we have that:

e The basic algorithm and its variants in Section 5 solve the approximate
undirected flocking problem if the input pattern is Ib-symmetric and con-
tains at most 1 point lying on the BL axis.

e They also solve the approximate directed flocking problem, assuming that
the leader does not indefinitely keep the same direction. In this case
convergence is slower than in the previous one.

e If the pattern is Ib-symmetric, but contains more than 1 point on the 37
axis, it may not converge.

e Any deterministic algorithm may not converge if the pattern is not lb-
symmetric.

e A non-deterministic algorithm may reduce the probability of non-
convergence to an arbitrarily small amount (see discussion in Section 6.4)
6.2.2 One axis direction and orientation agreement

In the case in which the followers agree only the direction of a single axis” (and
not on its orientation), they can use it and the BL axis to obtain a chirality
(e.g., by assuming that the clockwise direction for angles goes from Bj towards

6This would allow some estimation of where the other followers will be at some future time.
"Hence, they agree on the direction of both axes.

22

the acute angle between B—L> and the shared axis z). However, if one of the two
shared axes coincides with the BL axis, no chirality can be obtained. Thus, in
general, having agreement on one axis direction does not improve the capability
of the vehicles to solve the flocking problem.

It should be noted, however, that even if the two axes coincide, the followers
could simply wait (by executing a Mowve towards their current position) until a
move by the leader or by a fellow follower breaks the tie.

Once a chirality is obtained, it can be used to establish a shared orienta-
tion on the common axis. Thus, having agreement on the orientation of the
shared axis at the beginning of the computation does not improve the followers’
capability to solve the problem.

6.2.3 Chirality

The followers can observe L and B, and assume that B—L) is a shared Y axis.
Then, given the chirality, all the followers can agree that a shared X axis is
oriented according to the clockwise direction and assume B as the origin. Thus,
given the chirality a complete shared coordinate system can be established.

6.2.4 Two axes

If all the followers agree on the direction and orientation of both axes, any tie
condition can be broken. In particular, the followers can form non lb-symmetric
patterns, and they can also form patterns with more than one slot on the Y
axis.

6.3 Memory

So far we have discussed the case of oblivious algorithms, i.e. the robots cannot
use any memory to store information about previous observations or decisions
taken. In the following, the consequences of allowing bounded storage capabili-
ties are discussed.

In particular, if the vehicles can store 1 position (e.g., two real numbers),
the heading of the leader can be inferred by storing the position of the leader
at the time of the last observation and considering the movement vector to the
position observed in the current cycle. In this case, what said in Section 6.1
about being able to observe the real heading of the leader applies.

It is interesting to observe that even with an unbounded amount of memory
(non-oblivious algorithm), the followers cannot form patterns that are not lb-
symmetric. In fact, consider the case in which the initial configuration of the
vehicles is Ib-symmetric, while the pattern to be formed is not. Given a follower
v, we call its buddy v’ the follower that occupies the position symmetric to that of
v in the other semi-space. If, for each follower, its buddy has the same velocity
and moreover their look-compute-move cycles are perfectly synchronized, i.e.
they execute the algorithm according to a synchronous activation schedule, we
end up in configurations that maintain the symmetry for an indefinitely long

23

A
O
?

a

Figure 14: Cases of undeterminatedness with lb-symmetric formations with
more than 1 point on the BL axis.

time.® Thus, any number of observations will not provide a means to break the
symmetry, hence storing them does not help.

6.4 Randomization

If we can assume that the vehicles have the ability to take random choices (i.e.,
they are equipped with a proper entropy source), a larger class of problems can
be solved. In particular, Algorithm 1 can be slightly modified in order to make
it applicable also to formations that are not lb-symmetric or have more than
one point lying on the 37 axis.

In the latter case, two difficult cases arise, illustrated in Figure 14:

a. when two vehicles (or more) occupy positions lying exactly on the ﬁaxis,
and two (or more) symmetrical slots are available, one on each semi-space.
Lacking a shared direction for the z axis, the vehicles cannot agree on
which of them should move towards the left-side slot and which towards
the right-side one, and

b. when two vehicles (or more) occupy positions that are symmetric wrt the

Bjaxis, and two (or more) slots on the Bjaxis are available. Lacking a
shared direction for the z axis, the vehicles cannot agree on which of them
should move towards which slot.

In such cases, our basic algorithm always chooses a fixed slot as target: towards
the available slot in the local F; in case a., towards the slot closest to the leader
in case b. Obviously, this strategy does not produce an assignment of vehicles
to slots that covers all the slots. In practice, this “tie” conditions are usually
broken by differences in the velocity of the vehicles and by the asynchronicity
of their cycles.

However, a stronger guarantee can be obtained by randomly choosing the
target slot among the possible candidates in steps 29 and 40 of the algorithm.

8Provided, naturally, that the algorithm employed by the followers is deterministic.

24

In the simplest case, involving only two slots, the probability of two vehicles
always choosing the same target after k cycles is 1/2*. Even if the vehicles
have the same velocity and synchronized cycles, as soon as they choose different
target slots the symmetry is broken and the algorithm can continue normally.

Randomization can be used also in the case of non Ib-symmetric formations.
In this case, the algorithm for a follower f can

1. rank the semi-patterns according to some metric;
2. rank the semi-spaces according to the same metric;

3. assign the first semi-space to the first semi-pattern, and the second semi-
space to the second semi-pattern;

4. rank the vehicles in the semi-space that contains f, and the slots in the
corresponding semi-pattern;

5. choose a target for f in the semi-pattern corresponding to the semi-space
that contains f, as done in the basic algorithm.

One way to compare configurations for the purpose of ranking semi-patterns
and semi-spaces is defined by the following procedure:

Ranking

Input: Two configurations C' and D with |C| = |D|, and two points L and B.
Output: +1 if C ranks higher than D, 0 if they rank equal, —1 otherwise.
Sort(C, L, B);
Sort(D,L,B);
1:=1;
While i < |C| Do
If (dist(c;, L) > dist(d;, L)) V (dist(c;, L) = dist(d;, L) A dist(c;, B) >
dist(d;, B)) Then
Return +1;
If (dist(c;, L) < dist(d;, L)) V (dist(c;, L) = dist(d;, L) A dist(c;, B) <
dist(d;, B)) Then
Return -1;
=14 1;
End While
Return 0;

Notice that the semi-patterns will always rank differently (since the pattern
is asymmetric). It can happen, however, that the semi-spaces compare equals,
that is, all the vehicles occupy positions that are symmetric wrt the ﬂaxis. In
this case, the vehicles cannot agree on the assignment of semi-spaces to semi-
pattern. Vehicles observing such a situation can, however, simply make a Move
towards a random point in order to break the tie. As in the previous case, the
probability of a tie continuing after k decisions is 1/2*.

25

7 Conclusions

In this paper we have presented a novel algorithm for coordinating a set of non-
communicating, asynchronous and memoryless vehicles into following a leader
while keeping a fixed formation. The algorithm only assumes the vehicles share
a common unit of distance, but no common sense of direction (i.e., a common
coordinate system) is needed, nor any previous knowledge of the path the leader
will follow. Moreover, the followers do not need to have an identity, and are not
distinguishable in any way one from the other.

Indeed, the algorithm we propose exhibits remarkable robustness, and nu-
meric simulations indicate that in most cases the formation is reached in a
relatively short time and kept after that, as desired.

References

[1] R. C. Arkin. Motor Schema-Based Mobile Robot Navigation. Int. J. of Robot.
Res., 8(4):92-112, 1989.

[2] R. C. Arkin and T. Balch. Cooperative Multiagent Robotic Systems, chapter in
Artificial Intelligence and Mobile Robots. MIT/AAAT Press, D. Kortenkamp and
R. P. Bonasso and R. Murphy edition, 1998.

[3] T. Balch and R. C. Arkin. Behavior-based Formation Control for Multi-robot
Teams. IEEE Trans. on Robot. and Autom., 14(6), 1998.

[4] Y. U. Cao, A. S. Fukunaga, A. B. Kahng, and F. Meng. Cooperative Mobile
Robotics: Antecedents and Directions. In IEEE/TSJ Int. Conf. on Intell. Robots
and Sys., pages 226-234, 1995.

[5] Q- Chen and J. Y. S. Luh. Coordination and Control of a Group of Small Mobile
Robots. In Proc. of IEEE Int. Conf. on Robot. and Autom., pages 2315-2320,
1994.

[6] B. R. Donald, J. Jennings, and D. Rus. Analyzing Teams of Cooperating Mobile
Robots. Technical Report TR 94-1429, Dept. of Comp. Sci., Cornell University.

[7] E. H. Durfee. Blissful Ignorance: Knowing Just Enough to Coordinate Well. In
International Conference on MultiAgent Systems (ICMAS), pages 406-413, 1995.

[8] P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Hard Tasks for Weak
Robots: The Role of Common Knowledge in Pattern Formation by Autonomous
Mobile Robots. In 10th International Symposium on Algorithm and Computation
(ISAAC ’99), pages 93-102, 1999.

[9] P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Distributed Coordi-
nation of a Set of Autonomous Mobile Robots. In IEEE Intelligent Vehicles
Symposium (IVS2000), pages 480-485, 2000.

[10] P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Gathering of Asyn-
chronous Mobile Robots with Limited Visibility. In 18th International Symposium
on Theoretical Aspects of Computed Science (STACS 2001), 2001.

[11] V. Gervasi and G. Prencipe. Need a Fleet? Use The Force! In FUN With
Algorithms 2 (FUN 2001), pages 149-164, May 2001.

26

[12]

[13]

[14]
[15]

[16]

[17]

G.Prencipe. A New Distributed Model to Control and Coordinate a Set of Au-
tonomous Mobile Robots: The CORDA Model. Technical Report TR-00-10, Univ.
di Pisa, 2000.

D. Jung, G. Cheng, and A. Zelinsky. Experiments in Realising Cooperation
between Autonomous Mobile Robots. In §th International Symposium on Ezper-
imental Robotics (ISER), June 1997. Barcelona, Catalonia.

M. J Matari¢. Interaction and Intelligent Behavior. PhD thesis, MIT, May 1994.

F. R. Noreils. Toward a Robot Architecture Integrating Cooperation between
Mobile Robots: Application to Indoor Environment. The Int. J. of Robot. Res.,
pages 79-98, 1993.

L. E. Parker. Adaptive Action Selection for Cooperative Agent Teams. In Proc.
Second Int’l. Conf. on Simulation of Adaptive Behavior, pages 442-450, 1992.

P. K. C. Wang. Navigation Strategies for Multiple Autonomous Mobile Robots
Moving in Formation. J. of Robot. Sys., 8(2):177-195, 1991.

27

