UNIVERSITA DI P1sA

DIPARTIMENTO DI INFORMATICA

TECHNICAL REPORT: TR-00-11

Achievable Patterns by an
Even Number of
Autonomous Mobile Robots

Giuseppe Prencipe
Dipartimento di Informatica, Universita di Pisa
Corso Italia, 40, 56100 - Pisa, Italy
e-mail: prencipe@di.unipi.it

August 17, 2000

ADDRESS: Corso Italia 40, 56125 Pisa, Italy. TEL: 439 050 887111 FAX: 439 050 887226

Achievable Patterns by an
FEven Number of
Autonomous Mobile Robots

Giuseppe Prencipe
Dipartimento di Informatica, Universita di Pisa
Corso Italia, 40, 56100 - Pisa, Italy
e-mail: prencipe@di.unipi.it

August 17, 2000

Abstract

The distributed coordination and control of a set of autonomous, mobile agents/robots
is a widely studied topic in a variety of fields, such as engineering, artificial intelligence,
and artificial life. In the majority of the studies, the problem has been approached from
an empirical point of view. A different approach to the problem has been introduced
in [6], where the authors analyze the distributed coordination and control of a set of
autonomous, mobile robots from a computational point of view. With this purpose,
they defined a model where the world was inhabited by a set of totally autonomous,
mobile, memoryless entities that were requested to form a generic pattern. From that
study, it turned out that whether or not such a task could be accomplished depended
on the amount of common knowledge the robots had; in particular, on the direction and
orientation of the local coordinate system. Among the issues left open, was which kind
of patterns a set of such mobile units can form when they are even in number and agree
on the orientation and direction of only one axis. This paper answers that question.

1 Introduction

In this paper, we deal with the problem of coordinating and controlling a set of autonomous,
anonymous, memoryless robots that asynchronously move on a plane. They all execute the
same deterministic algorithm and are required to accomplish some predetermined task,
specifically to form a given pattern. To study such a set of mobile units, we adopt the
model first introduced by Flocchini et al. in [6], in which the authors study the problem
from a computational point of view. That is, they try to understand under what conditions
the set of robots can accomplish the given task, and what kind of capabilities they must
have. This approach to the problem is quite different from that taken in typical studies
that can be found in the engineering or artificial intelligence fields. Flocchini et al. defined
a model, later called CORDA in [12], in which the robots were weak mobile units: they have
no central control, they move independently from each other, they do not have any means of
direct communication, and no capability to remember the past (the model will be described
in more detail in Section 3). Motivations on the use of such a model and on the utility of
such a study can be found in [6, 7].

In [6] the arbitrary pattern formation problem was studied. From that study, it was
shown that whether or not an arbitrary pattern could be formed depended on the amount
of (the initial) common knowledge the robots have, regarding the direction and orientation
of the local coordinate system. Among the issues left open, there was the following: what
kind of pattern can be formed by an even number of robots? In fact, in that paper the
following negative result was proven:

Theorem 1.1 ([6]). In a system with n anonymous robots that agree only on one axis
direction and orientation, the arbitrary pattern formation problem is unsolvable when n is
even.

The above theorem states that an even number of robots cannot form an arbitrary
pattern; that is, that there are certain patterns which they cannot form. Informally, a
general pattern can not be formed by an even number of units, because there can be an
initial symmetric configuration (the definition of configuration will be given below) that
can not be broken deterministically. Flocchini et al. [6] did not, however, explore which
patterns or class of patterns —if any— could be formed by a set of even-numbered robots,
notwithstanding the possible symmetric configuration the robots can be in at the beginning.
This is a question that is addressed instead in this paper.

In Section 2 a brief overview on the related work is given. In Section 3 the formal
definition of the model is presented. In Section 4 the problem under study is stated and an
oblivious algorithm that lets the robots solve it is provided. Finally, in Section 5 we draw
some conclusions.

2 Related work

In recent years, interest in the problem of coordinating and controlling a set of autonomous,
mobile robots has increased considerably. The reason for this growing interest is the shift
from approaching the problem using a group of few, powerful units, to using a group of
many, not-so-powerful ones. The advantages of using the latter approach are many: the
simpler units are less expensive; there is an increase in fault tolerance; and the tasks can
be completed more quickly. Among the interesting studies that have been done in a variety
of fields, we can cite, in the engineering area, the Cellular Robotic System (CEBOT) of
Kawaguchi et al. [8], the Swarm Intelligence of Beni et al. [3], and the Self-Assembly
Machine (”fructum”) of Murata et al. [10]. A remarkable effort on the study of the problem
has been conducted also in the Al area, analyzing, for example, social interaction leading
to group behavior [9]; selfish behavior of cooperative robots in animal societies [11]; or
primitive animal behavior in pattern formation [2] (for a survey, refer to [4]).

Most of these studies, however, did not focus on algorithmic aspects of the problem [7].
One which did have, however, an algorithmic flavor was by Durfee [5], who suggested to
limit the knowledge that a robot must possess in order to better coordinate its behavior
with others. However, the main studies, to our knowledge, that aim to better understand
the power and the limitations of the distributed coordination and control of a set of au-
tonomous, mobile robots from an algorithmic and computational point of view, are by
Suzuki and Yamashita [1, 13, 14], and by Flocchini et al. [6, 7]. In order to analyze the
problem in this light, they present formal models focused on the understanding of the al-
gorithmics of several problems, in particular pattern formation, under several assumptions
on the power of the individual robot. The main objective of these studies is to highlight

which kind of capabilities/features (available amount of memory, need or kind of common
knowledge, sensors’ power) the units must have in order to efficiently coordinate and reach
some common goal they are required to achieve. In both [1, 14] and [6, 7], are defined
models to formally describe the mobile units and the environment in which they operate.
There are, however, substantial differences between the two models, which are analyzed in
depth in [12]. In this paper we will study the pattern formation problem under the model
of [6, 12], that will be described in detail in the next section.

3 The model

In this section, we describe the model that will be used in this paper, [6, 12]. The robots
we consider are: homogeneous (they all follow the same set of rules); autonomous (there
is no a priori central authority, and each robot’s computing capabilities are independent
from the others’); asynchronous (there is no central clock, no a priori synchronization,
no a priori bounds on processing or motorial speed); mobile (robots are allowed to move
on a plane); anonymous (they are a priori indistinguishable); and oblivious (they do not
explicitly remember the past). Moreover, there are no explicit direct means of communica-
tion: the communication occurs in a totally implicit manner, through the modification to
the environment, namely through the change of robots’ positions in the plane during their
movements.

These assumptions make the robots simple and rather “weak” in light of current en-
gineering technology. But, as already noted, the interest in this study is to approach the
problem from a computational point of view; in fact, by assuming the “weakest” robots, it
is possible to analyze the strengths and weaknesses of the distributed control, and better
understand which kind of power (limitations) such robots have in the totally asynchronous
environment in which they operate. Furthermore, this simplicity can also lead to some
advantages. For example, the lack of ability to remember what has been computed in the
past, gives to the system the nice property of self-stabilization [7].

Each robot has its own local view of the world. This view includes a local Cartesian
coordinate system with: origin (that we assume without loss of generality placed in the
current position of the robot); unit of length; and the directions of two coordinate axes,
identified as X axis and Y axis, together with their orientations, identified as the positive
and negative sides of the axes. Notice, however, that the local views could be totally different
making it impossible for the robots to reach an agreement on directions or on distances.

A robot is initially in a waiting state (Wait); at any point in time, asynchronously and
independently from the other robots, it observes the environment in its area of visibility
(Observe), it calculates its destination point based only on the current locations of the
observed robots (Compute), it then moves towards that point (Move) and goes back to
a waiting state. A computational cycle is defined as the sequence of the Wait-Observe-
Compute-Move actions; the “life” of a robot is then a sequence of computational cycles.
More formally, a cycle is constituted by the following four phases:

1. Wait The robot is idle. A robot cannot stay infinitely idle.

2. Observe The robot observes the environment by taking a snapshot of all other robots’
positions with respect to its local coordinate system. Each robot r is viewed as a
point, and therefore its position in the plane is given by its coordinates, indicated as
the pair (r.z,r.y). The observation returns a set of robots’ positions (i.e. points) to

the observing robot. In addition, the robot cannot in general detect whether there is
more than one fellow robot on any of the observed points; we say, it cannot detect
multiplicity. Two different models can arise depending on whether we assume that a
robot can see all the other robots in the system (called Unlimited Visibility model)
or that a robot can see only the robots that are at most at some fixed distance from
it (Limited Visibility model). In this paper we will deal with the Unlimited Visibility
model.

3. Compute The robot performs a local computation according to its algorithm. We
assume that the algorithm is deterministic, and takes in input only the observed set
of points: we say that the algorithm is oblivious. The algorithm is said to be non
oblivious, if it takes in input also the positions of the robots observed in the past;
in this paper, we will deal exclusively with oblivious algorithms!. The result of the
computation can be a destination point or do_nothing().

4. Move As a result of the computation, the robot either stands still (do_nothing() was
the result of the computation), or it moves (along any curve it likes, towards the
point computed in the previous phase). The robot moves towards the computed
destination of an unpredictable amount of space, which we assume neither infinite,
nor infinitesimally small (see Assumption A2 below). Hence, the robot can only go
towards its goal along a curve, but it cannot know how far it will go in the current
cycle, because it can stop anytime during its movement.

Notice that, because of the obliviousness assumption, both the result of the computation
and that of the observation phase will not be available to a robot at its next computational
cycle.

In addition, we have the following assumptions on the behavior of a robot:

A1l (No Infinite Sleep) A robot can not Wait indefinitely.

A2 (Minimal Step) There is a lower bound 6, > 0 on the distance a robot r can travel,
unless its destination is closer than d,. In this case it will reach its destination point
in one cycle.

The environment in which the robots operate is totally asynchronous, in the sense that
there is no common notion of time, and a robot observes its fellows at unpredictable time
instants. Moreover, it is not made any assumption on how much a cycle of each robot lasts,
neither on the time elapsed by a robot to execute one of the four phases of each cycle (for
the sake of uniformity, we use this approach also with the Observe phase, even if its result
is a snapshot of all the robots’ positions). It is only assumed that each cycle is completed
in finite time, and that the distance traveled in a cycle is finite; moreover, the distance is
not infinitesimally small (unless the robot reaches its destination).

Notice that since other robots could obviously move during the computing phase of a
given robot, the movement of this could be based on a past situation which is not valid
anymore at the moment of the actual move.

'We refer also to the robots as oblivious, because of this feature of the algorithms they execute.

4 The Problem and its solution

In this paper, we concentrate on the particular coordination problem that requires the
robots to form a specific geometric pattern, the pattern formation problem. In particular,
we answer the following question: given an even number of robots, what kind of patterns
are achievable in a finite number of cycles when there is common knowledge only on the
direction and orientation of one axis?, say Y?

We study this problem for arbitrary geometric patterns, where a pattern is a set of
points (given by their Cartesian coordinates) in the plane. The pattern is known initially
by all robots in the system. For instance, we might require the robots to place themselves on
the circumference of a circle, with equal spacing between any two adjacent robots, just like
kids in the kindergarten are sometimes requested to do. We do not prescribe the position
of the circle in the world, and we do not prescribe the size of the circle, just because the
robots do not have a notion of the world coordinate system’s origin or unit of length.

All the robots are given in input the same pattern P, and they are required to form it
in finite time. We call P a symmetric pattern if it has at least one axis of symmetry S,
that is, for each p € P there exists exactly another point p’ € P such that p and p' are
symmetric with respect to S (see Figure 1.c, d and e). Let P} be the set of final positions of
the robots as viewed in the local coordinate system of the robot r;. The robots are said to
form the pattern, if there exists a transformation 7, where 7 can be translation, rotation,
scaling, or flipping into mirror position, such that ’T(P}) = P, Vi. In other words, the final
positions of the robots must coincide with the points of the input pattern, where the formed
pattern may be translated, rotated, scaled, and flipped into its mirror position with respect
to the input pattern P in each local coordinate system. Initially, the robots are in arbitrary
positions, with the only requirement that no two robots are in the same position, and that,
of course, the number of points prescribed in the pattern and the number of robots are
the same. The only means for the robots to coordinate is the observation of the others’
positions; therefore, the only means for a robot to send information to some other robot is
to move and let the others observe. For oblivious robots, even this sending of information
is impossible, since the others will not remember previous positions.

This problem has been investigated quite a bit in the literature, mostly as an initial
step that gets the robots together and then lets them proceed in the desired formation; it
is interesting algorithmically, because if the robots can form any pattern, they can agree
on their respective roles in a subsequent, coordinated action. It includes, as special cases,
many coordination problems, such as leader election: we just define the pattern in such a
way that the leader is represented uniquely by one point in the pattern.

We know from [6] that an arbitrary pattern can not be formed by an even number of
robots (Theorem 1.1). Therefore, we want to find out which class of patterns can be formed
in this case, if any. From now on, we will assume that the robots in the system have common
knowledge on the direction and orientation of only the Y axis?, and that the number n of
robots in the system is even. We are ready now to introduce some definitions that will be
useful in the following.

Definition 4.1. Let a configuration (of the robots) be a set of robot positions, one position

2By ” common knowledge on the direction and orientation of Y, we mean that at the beginning ” Everyone
knows that everyone knows that ... that everyone knows what is the direction and the positive orientation
of Y.

3This implies that there is common knowledge also on the direction of the X axis, but not on its orien-
tation.

per robot, with no position occupied by more than one robot. A final configuration is a
configuration of the robots in which the robots form the desired pattern.

Definition 4.2 (Pattern Formation Algorithm). A pattern formation algorithm is an
oblivious deterministic algorithm that brings the robots in the system to a final configuration
in a finite number of cycles, independently from the initial configuration.

Another problem that we will refer to in the following is the leader election problem:
the robots in the system are said to elect a leader if, after a finite number of cycles, all the
robots deterministically agree on (choose) the same robot [, called the leader. Similarly to
the pattern formation algorithm, we can define

Definition 4.3 (Leader Election Algorithm). An oblivious deterministic algorithm that
lets the robots in the system elect a leader in a finite number of cycles, given any initial
configuration, is called a leader election algorithm.

The following lemma states the unsolvability of the leader election problem under the
assumptions under study.

Lemma 4.1. There exists no deterministic algorithm that solves the leader election prob-
lem, when n is even.

Proof. For the sake of contradiction, let A be a leader election algorithm. Now consider
a particular initial situation of the robots in which, intuitively speaking, each robot has a
symmetric partner with respect to the Y axis. More precisely, assume that initially, for
every robot r there exists a symmetric partner robot 7 such that the directions of the X
axis of and the X axis of 7 are opposite, and the view of the world is the same for r and
7 (see Figure 1l.a). Now, for any move that r can make in its local coordinate system by
executing algorithm A, we know that 7 can make the same move in its local coordinate
system. If both of them move in the exact same way at the same time, they again end
up in symmetric positions. Therefore, by letting all the robots move at the same time,
with symmetric partners moving in the same way, we always proceed from one symmetric
situation to the next, hence each robot will always have a partner that is indistinguishable
from it. This never leads to a situation where the robots can deterministically agree on a
unique robot, hence the leader cannot be elected. O

The unsolvability result of Lemma 4.1 is useful to better understand which kind of
patterns can not be formed, hence which kind of pattern formation algorithm can not be
designed. In fact, the ability to form some kind of patterns would imply the ability to elect
a robot in the system as the leader. More formally,

Lemma 4.2. There exists no pattern formation algorithm that lets the robots in the system
form

a. an asymmetric pattern (refer to Figure 1.b), or

b. a symmetric pattern that has all its azes of symmetry passing through a vertez (refer to
Figure 1.c).

Proof.

01 K 02

To T1 T2 3
o\— - -1 — ®— — — — —
7'4\, /
/
Y X X ~ g 7
T @—» @ 7 roo
X X ~ s 8 o ~ .
ry @—= -—@ 7 1 ~.
X X Te k\ 82 ’I‘7:u
r; @—= ‘<@ T3 RN e i
- [-o~ g
rg | T9
a b.
Y S
A !
X
(1,0) B
c d. e.

Figure 1: (a) Proof of Lemma 4.1: each r; has the same view of the world of 7, for i = 1,2, 3.
(b) An unachievable asymmetric pattern. In this example, the sorted sequence of pairs of
robots from the proof of Lemma 4.2 is the following: (r1,72), (0, 0), (r3,0), (r4,0), (r5,0),
(re,77), (r8,79). In this case ry would be elected as the leader. (c) An achievable pattern
with one axis of symmetry not passing through any vertex. (d) An unachievable pattern.
(e) An achievable pattern that has three axes of symmetry not passing through any vertex.
Note that this pattern has also axes of symmetry passing through vertices. In this case, the
routine Choose (P) of Algorithm 1 would choose the axis Ss.

Part a. Let A be a pattern formation algorithm, and let P be a specific asymmetric pattern
of n points. The task for the robots is to form P by executing A. Let F be the final
configuration after they execute the algorithm. Since the robots in the system agree
on the direction and orientation of the Y axis, it is possible for them to elect a leader.
In fact, let O1 and O3 be respectively the vertical axis passing through the outermost
robots in F (all the robots must agree on these two axis, since they agree on the
orientation of Y), and let K be the vertical axis equidistant from O; and Oy (see
Figure 1.b). K splits the plane in two regions, S; and Sp*. If some robots are on K,
the highest on K can be elected as a leader, thus contradicting Lemma 4.1. So, let us
suppose that no robot is on K. We can distinguish two cases:

1. |S1| # |S2|, the robots can agree on the most populated region as the positive side
of X, hence it is now possible to elect as a leader the lexicographically smallest

“The names given to the regions is only for the sake of the proof. It can be different among the robots,
since there is no agreement on the orientation of the X axis.

robot, for instance the topmost rightmost one, again contradicting Lemma 4.1.

2. |S1] = |S2|, for each robot 7; € S1, we build a pair in the following way: we have
(ri,rj), if there exists r; € Sy such that h(r;) = h(r;), where h(r) indicates the
height of robot r, and px(r;) = px(r;j), where px(r) indicates the prozimity of
robot r to K, that is the horizontal distance between r and K; otherwise we
simply have (r;,#). Analogously, we build pairs for each r; € S;. Given that
(ri,rj) = (rj,m3), Vri € 81,1 € S, we then sort in descending order all the pairs,
with respect to the height and the proximity of the robots to K. More formally
(see the example in Figure 1.b):

(riy0) > (r5,0), if h(ri) > h(r;) V (h(ri) = h(rj) Apk(ri) < pk(rj))
(ri,0) > (rj,rn), if h(ri) > h(r;) V (h(ri) = h(rj) Apx(ri) < px(r;))
(riyri) > (rn,0), if h(ri) > h(ra) V (h(ri) = h(rp) Apx(ri) < px(rh))
(risr) > (rhy i), if h(ri) > h(ra) V (h(ri) = h(rp) Apk(ri) < p(rh))

We observe that the set of pairs obtained is independent from the orientation of
the X axis. Moreover, since it is hypothesized that F is asymmetric w.r.t K,
there must exist at least a pair with an (). We can elect as a leader the robot in
the first pair that has () as an element. Therefore, A would be a leader election
algorithm. This is a contradiction by Lemma, 4.1.

Part b. Let us suppose there exists a pattern formation algorithm .4 that lets the robots
form a symmetric pattern P that has all its axes of symmetry passing through some
vertex in P. Therefore, after the robots run A, they are in a final configuration F
whose positions correspond to the vertices of P (apart from scaling and rotation),
hence also F must be symmetric with all its axes of symmetry passing through some
vertex (robot’s position). We distinguish two cases.

F is not symmetric w.r.t. any axis Y’ parallel to Y. By using an argument sim-
ilar to that used in the previous Part a., we can conclude that a leader can be
elected.

F is symmetric w.r.t. some Y’ parallel to Y. Since we know that Y’ must pass
through a vertex, and that the positions of the robots are all distinct, we must
have an unique topmost robot on Y’, that can be elected as leader.

a

According to Part b. of the previous lemma, the only patterns that can be formed are
symmetric ones with at least one axis of symmetry not passing through any vertex (see
Figure 1.c and 1.e). In the following we describe an algorithm that lets the robots form
these kind of patterns.

Algorithm 1 (One axis direction and orientation, n even).

Input: An arbitrary pattern P described as a sequence of points pi,...,pn, given in lex-
icographic order. P is symmetric and has at least one axis of symmetry not passing
through any vertex of P. The direction and orientation of the Y axis is common knowl-
edge.

12:

16:

20:

24:

28:

32:

36:

40:

44:

48:

S := Choose (P);
P := Rotate (P, S);
P_Length := Pattern Length(P);
(Outery, Outers) := Outer Most ();
If Outeri.y > Outery.y Then
If I Am Not Outers Then
do_nothing();
Else
p := (Outery.z, Outery.y);
Move (p);
If Outer1.y < Outers.y Then
If I Am Not Outer; Then
do_nothing();
Else
p = (Outery.z, Outery.y);
Move (p);
If Outer,.y = Outery.y Then
If I Am Outer; Or Quters Then
do_nothing();
Else
K := Median_Axis (Qutery, Outers);
If Some Robot Is On K Then
If I Am On K Then
r :=Highest (K);
If I am r Then
(Left, Right) := Sides (K);
Move _Towards(Smallest (Left, Right));
Else
do_nothing();
Else
do_nothing();
Else
(My_Side, Other_Side) := Sides (K);
If |My_Side| > |Other_Side| Then
Close_High := Closest (K, My_Side);
If I Am Close_High Then
Move_Towards (Other_Side);
Else
do_nothing();
If |My_Side| < |Other_Side| Then
do_nothing();
If |My_Side| = |Other_Side| Then
Final_Positions := Find Final Positions (K, P, S, My_Side,
P_Length, Outery, Outery);

Free_Points := {Final_Positions in My_Side with no robots on them};

If I Am On One Of The Final_Positions Then
do_nothing()
Else

Free_Robots := { Robots in My_Side not on Final_Positions};
Go_To_Points (Free_Robots, Free_Points)

The routine Choose (P) locally chooses the “smallest” axis of symmetry in the input
pattern P. Since this is a local operation, and P is the same for all the robots, every robot
will choose the same axis of symmetry®.

Rotate (P, S) locally rotates P in such a way that the axis of symmetry S chosen with
Choose (P) is parallel to the Y axis. The rotation is (locally) performed clockwise.

Pattern Length(P) returns the horizontal length of P according to the local unit dis-
tance, measured as the distance between the two outermost vertical axes tangent to P.

Outermost () returns the current outermost and topmost robots in the world. Since
there is no agreement on the orientation of the X axis, it returns two robots, Outer; and
Outers.

Move (-) and Move _Towards(-) are the two routines that allow a robot to move towards
some destination. In particular, Move(p) terminates the local computation of the calling
robot and moves it towards the point p, using a straight movement. Move _Towards(-) is
executed to let a robot move towards the specific region passed as parameter. In this case,
we assume that the robot moves horizontally towards the specified region, stopping if there
is some other robot on the way.

The function Median_Axis (71, 7r9) returns the vertical axis K, which is the median axis
between the vertical axes passing through r; and ro. The routine Sides(K) returns two
sets, each containing the robots currently lying in the two sides in which the plane is split
by K: if the calling robot is on K, it returns respectively the robots on the Left and on the
Right of K, according to the local orientation of the calling robot’s X axis; otherwise, it
returns two sets, My_Side and Other_Side, corresponding respectively to the robots lying
on the half of the plane where the calling robot currently lies and the number of robots
on the opposite half of the plane. By |My_Side| (|Other_Side|) we indicate the number
of robots currently lying in the region My_Side (Other_Side). Smallest(-) returns the
region, among the ones passed as parameter, with the lesser number of robots currently
lying inside it. Closest (K, My_Side) returns the topmost robot that lies on My_Side and
that is closest to K.

Find Final Positions (K, P, S, My_Side, Pattern_Length, Outery, Outer2) returns the
set of final positions lying on the side of the plane where the calling robot currently lies,
My_Side. These positions are computed in the following way: K is viewed as the axis of
symmetry S computed in line 1; furthermore, because of the way P has been rotated in line
2, there are exactly two outermost topmost points in P that are symmetric with respect to
S: these two points are viewed as Outer; and Qutere (which are symmetric with respect
to K). The common scaling of the input pattern is defined by identifying Pattern_Length
with the horizontal distance between Outer; and Outery (that are at the same height and
already in their final positions).

Go_To_Points (Free_Robots, Free_Points) chooses the robot in Free_Robots that is
closest to a point in Free_Points, and moves it as follows:

Go_To_Points (F'ree_Robots, Free_Points)
(r,p) :== Minimum(Free_Robots, Free_Points);

5For instance, starting from the point (1,0) on the unit circle centered in the origin of the local coordinate
system, the routine can return the first axis that is hit moving counterclockwise (according to the local
orientation of the X axis), after having translated the axes of symmetry in such a way that they pass
through the origin. In the example depicted in Figure 1.e, the axis S> would be chosen.

10

If T am r Then
Move (p)

Else
do_nothing()

Minimum(F'ree_Robots, Free_Points) finds one of the Free_Robots that has the min-
imum Euclidean distance from one of the Free_Points (i.e. with no robot on it). If more
than one robot has minimum distance, the topmost and closest to K is chosen. We note
that this robot is unique, since the robots in Free_Robots and the points in Free_Points
are all on the same side of the plane, My_Side.

4.1 Correctness of Algorithm 1

In this section we will prove that Algorithm 1 lets the robots form the patterns described
in Lemma 4.2, and that it is a pattern formation algorithm. Let us introduce one more
definition.

Definition 4.4 (Agreement Configuration). An agreement configuration is one in which
all robots agree on the position of a vertical axis K in the plane. K has no robots on it,
and splits the plane in two sides, each containing n/2 robots.

We first show that Algorithm 1 lets the robots reach an agreement configuration in a
finite number of cycles.

Lemma 4.3. If the robots are not in a final configuration and not in an agreement config-
uration, they will reach an agreement configuration in a finite number of cycles.

Proof. After having chosen an axis of symmetry S on line 1 of the algorithm, a robot
locally rotates P in such a way that S becomes parallel to Y. As it will be shown later in
Lemma, 4.6, this is a necessary operation. After this, the two outermost and highest robots
in the world are localized (Outer; and Outery at line 4), and until they are at the same
heightS all the other robots do not move. Once they reach the same height (line 17), Quter;
and Quters will never move again. At this point, all the robots can agree on the axis K
that is in the middle between the vertical axis passing through Outer; and the vertical axis
passing through Outery (line 21). Since Outer; and Outers moved a finite number of cycles
to reach their final positions, the agreement on K is reached in a finite number of cycles.

Successively, starting from the highest robots on K (line 24), all the robots on this axis
will move away in a finite number of cycles (line 27), while the others stay still (line 29).
Hence, after a finite number of cycles, there will be no robot on K.

Let 81 and Ss respectively be the two sides created by K, and computed on line 33.
Until |Si| # |Sz|, only the highest and closest robot to K in the most populated side is
allowed to move horizontally towards the less populated side (line 36 and 37), while the
others stay still (line 39 and 41). Let us suppose that r € Sy is such a robot. Since r moves
towards K, if it does not pass K in one cycle, it will be the highest and closest robot to K
once more, and, again, the only one allowed to move. Therefore, by Assumptions Al and
A2, in a finite number of cycles it will either reach K or pass it. In the first case, since
r is the only one on K, line 24 is executed, and, being n even, r moves towards the less

5We recall that we can talk about same heights because all the robots agree on the direction of Y, hence
they can commonly agree on this.

11

populated region, S. Hence, it passes K and 81 decreases its size by one unit in a finite
number of cycles. The same situation holds in the second case.
Therefore, in a finite number of cycles, |S1| = |S2|, and the lemma follows. O

Moreover, we can prove the following

Lemma 4.4. In any agreement configuration, the number of robots on each side equals the
number of final positions on that side.

Proof. In any agreement configuration, we have that on each side there are n/2 robots.
Moreover, by Lemma 4.2, we know that P has at least one axis of symmetry S not passing
through any vertex in P. Hence, S splits P in two patterns that are symmetric with
respect to S, each of them with n/2 points. The lemma follows from the fact that in line 2
of Algorithm 1, P is rotated in such a way that S becomes parallel to Y, and from the way
the routine Find Final Positions(-) computes the final positions. O

Thus, the robots on the two sides can now move in parallel. The following lemma states
that after an agreement configuration is reached, a final configuration will eventually be
reached.

Lemma 4.5. From an agreement configuration, only an agreement configuration or a final
configuration can be reached, and a final configuration will eventually be reached.

Proof. Algorithm 1 makes sure that from any initial configuration that is not final
and not an agreement configuration, we reach an agreement configuration (Lemma 4.3).
Outer; and Quters, after the agreement, never move again. Furthermore, since they are
viewed as the outermost and topmost point in P (in Find Final Positions(-)), the other
robots move only in such a way that Outer; and Outers remain always the outermost and
topmost robots in the system. Moreover, after the two sides created by the agreement on
K have equal size, no robot is allowed any more to cross K, therefore the agreement on K
is kept. By Lemma 4.4, there is the exact number of final positions on each side, therefore
all the other robots can reach them according to the routine Go_To_Points(). Hence, after
a number of agreement configurations, a final configuration will eventually be reached. O

Therefore, we can state the following
Theorem 4.1. Algorithm 1 is a pattern formation algorithm.

Corollary 4.1. An even number of autonomous, anonymous, oblivious, mobile robots that
agree on the direction and orientation of only one axis, can form only symmetric patterns
with at least one azis of symmetry not passing through a vertex of P.

Line 2 of Algorithm 1 rotates the input pattern. Therefore, at the end of the algorithm,
the robots will form a pattern that is obviously scaled (since the robots must find an
agreement on the unit distance), but also rotated with respect to the input pattern P. This
operation is indeed necessary, as stated by the following;:

Lemma 4.6. Let F be the final configuration of the robots after they execute a pattern
formation algorithm, and let us assume that F is not the initial configuration. Then F can
not be asymmetric, and F must be symmetric, with at least one azis parallel to' Y and not
passing through any robot’s positions (vertices of F).

12

Proof. From Lemma 4.2, F must be clearly symmetric and with at least one axis not
passing through any robot’s positions (vertices of F). If none of such axes were parallel to
Y, by using an argument similar to the one used in the proof of Lemma 4.2.a, we would
have a contradiction. O

Therefore, if the input pattern has no axis of symmetry parallel to Y, any pattern
formation algorithm must allow the local rotation of P. Hence, in the final configuration
the robots will form a pattern that is necessarily rotated with respect to P. That is,

Corollary 4.2. There exists no pattern formation algorithm that does not allow local ro-
tation of P, and that lets the robots form a symmetric pattern P that has at least one azis
of symmetry that is not parallel to Y, and does not pass through any vertex.

As a concluding remark, we note that skipping the Rotate (P) at line 2 in Algorithm 1,
we have a pattern formation algorithm that does not make use of local rotation and allows
the formation of a symmetric pattern that has at least one axis of symmetry that is parallel
to Y and not passing through any vertex.

5 Conclusions

In this paper we analyzed the pattern formation problem for an even number of autonomous,
anonymous, memoryless mobile robots. We analyzed which kind of patterns are achievable
by such a team of units when they agree only on one axis direction and orientation. The
only patterns that can be formed must be symmetric, with at least one axis of symmetry not
passing through a vertex of the pattern. Moreover, we described an oblivious, deterministic
algorithm that lets the robots form such patterns in finite time.

A further development of this problem could be the study of which class of patterns can
be formed in the more general case, when the robots do not have any kind of agreement
neither on the direction nor on the orientation of any axis. In fact, in this case it has already
been proven that general patterns can not be formed by any number of robots [6]; therefore
it could be interesting to know which kind of patterns, hence agreement, can be reached by
a set of autonomous, mobile robots in this case.

Acknowledgment

I would like to thank Paola Flocchini and Nicola Santoro for the discussions and comments
that helped with the writing of this paper.

References

[1] H. Ando, Y. Oasa, I. Suzuki, and M. Yamashita. A Distributed Memoryless Point
Convergence Algorithm for Mobile Robots with Limited Visibility. IEEE Trans. on
Robotics and Automation, 15(5):818-828, 1999.

[2] T. Balch and R. C. Arkin. Behavior-based Formation Control for Multi-robot Teams.
IEEE Trans. on Robotics and Automation, 14(6), December 1998.

[3] G. Beni and S. Hackwood. Coherent Swarm Motion Under Distributed Control. In
Proc. DARS’92, pages 39-52, 1992.

13

[4]

[13]

[14]

Y. U. Cao, A. S. Fukunaga, A. B. Kahng, and F. Meng. Cooperative Mobile Robotics:
Antecedents and Directions. In Int. Conf. on Intel. Robots and Sys., pages 226-234,
1995.

E. H. Durfee. Blissful Ignorance: Knowing Just Enough to Coordinate Well. In ICMAS,
pages 406413, 1995.

P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Hard Tasks for Weak Robots:
The Role of Common Knowledge in Pattern Formation by Autonomous Mobile Robots.
In ISAAC 99, pages 93-102, 1999.

P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Distributed Coordination of
a Set of Autonomous Mobile Robots. In IV, 2000.

Y. Kawauchi and M. Inaba and. T. Fukuda. A Principle of Decision Making of Cellular
Robotic System (CEBOT). In Proc. IEEE Conf. on Robotics and Autom., pages 833—
838, 1993.

M. J Matarié. Interaction and Intelligent Behavior. PhD thesis, MIT, May 1994.

S. Murata, H. Kurokawa, and S. Kokaji. Self-Assembling Machine. In Proc. IEEE
Conf. on Robotics and Autom., pages 441-448, 1994.

L. E. Parker. On the Design of Behavior-Based Multi-Robot Teams. Journal of Ad-
vanced Robotics, 10(6), 1996.

G. Prencipe. A New Distributed Approach to Control and Coordinate a Set of Au-
tonomous Mobile Robots: The CORDA Model. Technical Report TR-00-10, Universita
di Pisa, August 2000.

K. Sugihara and I. Suzuki. Distributed Algorithms for Formation of Geometric Patterns
with Many Mobile Robots. Journal of Robotics Systems, 13:127-139, 1996.

I. Suzuki and M. Yamashita. Distributed Anonymous Mobile Robots: Formation of
Geometric Patterns. Siam J. Comput., 28(4):1347-1363, 1999.

14

