UNIVERSITA DI P1sA

DIPARTIMENTO DI INFORMATICA

TECHNICAL REPORT: TR-00-10

A New Distributed Model to

Control and Coordinate a Set of
Autonomous Mobile Robots:

The CorDA Model

Giuseppe Prencipe
Dipartimento di Informatica, Universita di Pisa
Corso Italia, 40, 56100 - Pisa, Italy
e-mail: prencipe@di.unipi.it

August 17, 2000

ADDRESS: Corso Italia 40, 56125 Pisa, Italy. TEL: 439 050 887111 FAX: 439 050 887226

A New Distributed Model to Control and Coordinate a Set of
Autonomous Mobile Robots:
The CORDA Model

Giuseppe Prencipe
Dipartimento di Informatica, Universita di Pisa
Corso Italia, 40, 56100 - Pisa, Italy
e-mail: prencipe@di.unipi.it

August 17, 2000

Abstract

Over the past few years, the focus of robotic design has been moving from a scenario
where few, specialized (and expensive) units were used to solve a variety of tasks, to
a scenario where many, general purpose (and cheap) units were used to achieve some
common goal. Consequently, part of the focus has been to better understand how to
efficiently coordinate and control a set of such “simpler” mobile units. Studies can be
found in different disciplines, from engineering to artificial life: a shared feature of the
majority of these studies has been the design of algorithms based on heuristics, without
mainly being concerned with correctness and termination of such algorithms. Few
studies have focused on trying to formally model an environment constituted by mobile
units, studying which kind of capabilities they must have in order to achieve their goals;
in other words, to study the problem from a computational point of view. This paper
focuses on one of these studies, based on a model first introduced in [6]. First, its main
features are described. Then, the main differences from a previous model [1, 14] (the
only one, to our knowledge, that analyzes the problem of coordinating and controlling
a set of autonomous, mobile units from this point of view), are highlighted, showing the
novelty of this approach.

1 Introduction

In a system consisting of a set of totally distributed agents the goal is generally to exploit
the multiplicity of the elements in the system so that the execution of a certain number
of predetermined tasks occurs in a coordinated and distributed way. Such a system is
preferable to one made up of just one powerful robot for several reasons: the advantages
that can arise from a distributed and parallel solution to the given problems, such as a
faster computation; the ability to perform tasks which are unable to be executed by a single
agent; increased fault tolerance; and, the decreased cost through simpler individual robot
design. On the other hand, the main concern in such a system is to find an efficient way to
coordinate and control the mobile units, in order to exploit to the utmost the presence of
many elements moving independently.

Leading research has been conducted in recent years in different fields. In the engineering
area we can cite the Cellular Robotic System (CEBOT) of Kawaguchi et al. [8], the Swarm

Intelligence of Beni et al. [3], and the Self-Assembly Machine (“fructum”) of Murata et al.
[10]. In the AI community there has been a number of remarkable studies: social interaction
leading to group behavior by Matari¢ [9]; selfish behavior of cooperative robots in animal
societies by Parker [11]; and primitive animal behavior in pattern formation by Balch and
Arkin [2].

The shared feature of all these approaches is that they do not deal with formal correct-
ness and they are only analyzed empirically. Algorithmic aspects were somehow implicitly
an issue, but clearly not a major concern - let alone the focus - of the study. In contrast, we
want to analyze an environment populated by a set of autonomous, mobile robots, aiming to
identify the algorithmic limitations of what they can do. In other words, we want to study
the problem from a computational point of view. Specifically, we present a model, CORDA
(Coordination and control of a set of Robots in a totally Distributed and Asynchronous
environment), that appeared for the first time! in [6], which has as its primary objective
to describe a set of simple mobile units, which have no central control, hence move inde-
pendently from each other, which are totally asynchronous, and which execute the same
deterministic algorithm in order to achieve some goal. The robots we model are quite weak
and simple, but this simplicity allows us to formally highlight by an algorithmic and com-
putational viewpoint the minimal capabilities they must have in order to accomplish basic
tasks and produce interesting interactions. Furthermore, it allows us to better understand
the power and limitations of the distributed control in an environment inhabited by mobile
agents, hence to formally prove what can be achieved under the “weakness” assumptions of
CORDA, that will be described later in more detail (see [7] for more detailed motivations).

An investigation with an algorithmic flavor has been undertaken within the AI com-
munity by Durfee [5], who argues in favor of limiting the knowledge that an intelligent
robot must possess in order to be able to coordinate its behavior with others. The work
of Suzuki and Yamashita [1, 13, 14], however, is the closest to our study (and, with this
focus, a rarity in the mobile robots literature). It gives a nice and systematic account on
the algorithmics of pattern formation for robots, operating under several assumptions on
the power of the individual robot. Although the model of Suzuki et al. (which we will refer
to as SYm) and CORDA share some features, they differ in some aspects —specifically in
the way the asynchronicity is modeled— that render the two models quite different. In this
paper we highlight these differences, proving that the algorithms designed on SYm do not
work on CORDA. Moreover, it will be shown that the features that render CORDA different
from SYm render it more realistic, that is, in our opinion, it better models how a set of
autonomous, mobile robots behave in a totally asynchronous environment.

In Section 2, SYm and CORDA are described, highlighting the features that render
the two models different. In Section 3, we show that the algorithms designed in SYm do
not work in CORDA, highlighting why some of the assumptions in CORDA better reflect a
totally asynchronous environment populated by a set of mobile units, hence the novelty of
this approach. Finally, in Section 4 we draw some conclusions and present suggestions for
further study.

2 SYm vs. CORDA

The two models discussed in this paper share some basic features. The robots are modeled
as units with computational capabilities, which are able to freely move in the plane. They

!This is the first time, however, that the model is baptized CORDA.

are viewed as points, and they are equipped with sensors that let them observe the positions
of the other robots in the plane. Depending on whether they can observe all the plane or just
a portion of it, two different models can arise: Unlimited and Limited Visibility model (each
robot can see only whatever is at most at distance V from it). The robots are anonymous,
meaning that they are a priori indistinguishable by their appearances, and they do not have
any kind of identifiers that can be used during the computation. They are asynchronous
and no central control is allowed. Each robot has its own local view of the world. This view
includes a local Cartesian coordinate system with origin, unit of length, and the directions
of two coordinate axes, identified as X axis and Y axis, together with their orientations,
identified as the positive and negative sides of the axes. The robots do not necessarily share
the same X —Y coordinate system, and do not necessarily agree on the location of the origin
(that we can assume, without loss of generality, to be placed in the current position of the
robot), or on the unit distance. They execute, however, the same deterministic algorithm,
which takes in input the positions of the robots in the plane observed at a time instant ¢,
and returns a destination point towards which the executing robot moves. The algorithm is
oblivious if the new position is determined only from the positions of the others at ¢, and not
on the positions observed in the past?; otherwise, it is called non oblivious. Moreover, there
are no explicit means of communication: the communication occurs in a totally implicit
manner. Specifically, it happens by means of observing the change of robots’ positions in
the plane while they execute the algorithm.

Clearly, these basic features render the modeled robots simple and rather “weak”, es-
pecially considering the current engineering technology. But, as already noted, the main
interest in the studies done in [6, 14], is to approach the problem of coordinating and con-
trolling a set of mobile units from a computational point of view. The robots are modeled
as “weak robots” because in this way it is possible to formally analyze the strengths and
weaknesses of the distributed control. Furthermore, this simplicity can also lead to some
advantages. For example, avoiding the ability to remember what has been computed in the
past gives the system the nice property of self-stabilization [7, 14].

During its life, each robot cyclically executes three phases: (i) it observes the positions
of the others in the world, (ii) it computes its next destination point, and (iii) it moves
towards the point it just computed. As already stated, the robots execute these phases
asynchronously, without any central control: in this feature the two models drastically differ.
In fact, in SYm phases (i) to (iii) are executed atomically, while this assumption is dropped
in CORDA. In the following we better describe how the asynchronicity is approached in the
two models.

2.1 The atomicity of a cycle of SYm

In this section we better describe how the movement of the robots is modeled in SYm
[1, 14]. The authors assume discrete time 0,1,2,.... At each time instant ¢, every robot
r; 1S either active or inactive. At least one robot is active at every time instant, and every
robot becomes active at infinitely many unpredictable time instants. A special case is when
every robot is active at every time instant; in this case the robots are synchronized, but this
case is not interesting for the purpose of this paper.

Let p;(t) indicate the position of robot r; at time instant ¢, and ¢ the algorithm every
robot uses. Since the robots are viewed as points, in SYm it is assumed that two robots

*We also refer to the robots as oblivious because of this feature of the algorithms they execute.

can occupy the same position simultaneously and never collide. v is a function that, given
the positions of the robots at time ¢ (or, in the non oblivious case, all the positions the
robots have occupied since the beginning of the computation®), returns a new destination
point p. For any ¢ > 0, if r; is inactive, then p;(t + 1) = p;(t); otherwise p;(t + 1) = p,
where p is the point returned by 1. The maximum distance that r; can move in one step is
bounded by a distance ¢; > 0 (this implies that every robot can travel at least a distance
e = min{ey,...,e,} > 0). The reason for such a constant is to simulate a continuous
monitoring of the world by the robots.

Thus, r; executes the three phases (i)-(iii) atomically, in the sense that a robot that is
active and observes at ¢, has already reached its destination point p at ¢ + 1. Therefore, we
have that a robot takes a certain amount of time to move (the time elapsed between ¢ and
t+ 1), but no fellow robot can see it while it is moving (or, alternatively, the movement
is instantaneous). If we call cycle the sequence of the phases (i), (ii) and (iii) described
before, we have what we can call atomicity of a cycle. In our opinion, these assumptions
poorly model the way a set of autonomous, mobile, and asynchronous robots interact and
coordinate in order to accomplish some given task.

2.2 The asynchronicity within a step of CORDA

The first (small) difference between the two models, is that in CORDA there is the possibility
that two robots, even if considered points, realize when they collide. That is, when a robot
bumps into another one, it simply stops on the same position of the other robot. This
feature, even if present in a model where the robots are seen as points, has been introduced
because it renders CORDA closer to a model where each robot has a dimension, hence to
the real world. The “bumping” assumption lets us easily solve a problem that Suzuki et
al. showed to be not solvable in an oblivious way in SYm: the gathering problem®*, when
we have only two robots [14]. In this problem, the two robots are asked to gather in a not-
prefixed point in the plane in a finite number of cycles. To solve this problem in CORDA,
it is sufficient that a robot, after having observed, simply moves towards the other robot it
sees.

Similarly to SYm, each robot repeatedly executes four phases. A robot is initially in
a waiting state (Wait); at any point in time, asynchronously and independently from the
other robots, it observes the environment in its area of visibility (Observe), it calculates its
destination point based only on the current locations of the observed robots (Compute), it
then moves towards that point (Move) and goes back to a waiting state. The phases are
described more formally in the following.

1. Wait The robot is idle. A robot cannot stay infinitely idle.

2. Observe The robot observes the world by taking a snapshot of the positions of all other
robots with respect to its local coordinate system. Each robot r is viewed as a point,
and therefore its position in the plane is given by its coordinates. In addition, the
robot cannot in general detect whether there is more than one fellow robot on any
of the observed points, included the position where the observing robot is. We say it
cannot detect multiplicity. If, on the other hand, a robot can recognize that there is

3Note that the non obliviousness feature does not imply the possibility for a robot to find out which
robot corresponds to which position it stored, since the robots are anonymous.
4This problem is called Point Formation Problem by Suzuki et al., [1, 14].

more than one fellow on the positions where it is, we say that it can detect a weak
multiplicity.

3. Compute The robot performs a local computation according to its deterministic, oblivi-
ous algorithm. The result of the computation can be a destination point or do_nothing().

4. Move If the result of the computation was do_nothing(), the robot does not move;
otherwise it moves, along any curve it likes, towards the point computed in the pre-
vious phase. The robot moves towards the computed destination of an unpredictable
amount of space, which is assumed neither infinite, nor infinitesimally small (see As-
sumption A2 below). Hence, the robot can only go towards its goal along a curve,
but it cannot know how far it will go in the current cycle, because it can stop anytime
during its movement.

A computational cycle is defined as the sequence of the Wait-Observe- Compute-Move
phases; the “life” of a robot is then a sequence of computational cycles.
In addition, we have the following assumptions on the behavior of a robot:

A1l (No Infinite Sleep) A robot can not Wait indefinitely.

A2 (Minimal Distance) For each robot r, an arbitrary small constant d, > 0 is fixed.
It represents the minimum distance the robot r travels in the Move phase, when the
result of the computation is not donothing(). If the computed destination point is
closer than §,, it will reach it. Clearly, each robot whose computation’s result is not
domnothing(), travels at least a distance § = min, d,.

Another secondary difference we can point out, is related to the way a robot moves, and
to Assumption A2: in CORDA there is no assumption on the maximum distance a robot can
travel before observing again (apart from the bound given from the destination point that
has to be reached), while in SYm an active robot r; always travels at most a distance ¢; in
each step. The only assumption in CORDA is that there is a lower bound on such distance:
when a robot r moves, it moves at least some positive, small constant é,. The reason for
this constant is to better model reality: it is not realistic to allow the robots to move an
infinitesimally small distance.

The main difference between the two models is, as stated before, in the way the asyn-
chronicity is regarded. In CORDA the environment is totally asynchronous, in the sense that
there is no common notion of time, and a robot observes the environment at unpredictable
time instants. Moreover, no assumptions on the cycle time of each robot, and on the time
each robot elapses to execute each phase of a given cycle are made®. It is only assumed
that each cycle is completed in finite time, and that the distance traveled in a cycle is finite.
Thus, each robot can take its own time to compute, or to move towards some point in the
plane: in this way, it is possible to model different computational and motorial speeds of
the units. Moreover, every robot can be seen while it is moving by other robots that are
observing: we have asynchronicity within a cycle [6]. This feature renders more difficult the
design of an algorithm to control and coordinate the robots. For example, when a robot
starts a Move phase, it is possible that the movement it will perform will not be “coherent”
with what it observed, since, during the Compute phase, other robots can have moved. On

SFor the sake of uniformity, we assume that the Observe phase can also last an unpredictable, but finite,
amount of time, even if its result is a snapshot of the robots’ positions.

the other hand, we believe that, in this way, the asynchronicity of a system constituted by
a set of autonomous, mobile robots, is better modeled.

3 The Novelty of CORDA

In this section we show that the differences pointed out in the previous sections, in particular
the way in which the asynchronicity is modeled, render the two models really different, both
in the oblivious and non oblivious case.

3.1 The oblivious case

In the following we will analyze the oblivious case, showing that the algorithms in SYm do
not work in CORDA, in both the limited and unlimited setting. The problem we consider is
the gathering problem: the robots are asked to gather in a not-prefixed point in the plane
in a finite number of cycles. This is the only problem, to our knowledge, solved with an
oblivious algorithm in SYm([1, 14]. An algorithm is said to solve the problem if it lets the
robots gather in a point, given any initial configuration. An initial configuration is the set
of robots’ positions when the computation starts, one position per robot, with no position
occupied by more than one robot.

3.1.1 The unlimited visibility setting

An algorithm for solving the gathering problem in the unlimited visibility setting is pre-
sented in [14]. The idea is the following. Starting from distinct initial positions, the robots
are moved in such a way that eventually there will be exactly one position, say p, that
two or more robots occupy. Once such a situation has been reached, all the robots move
towards p. In the following we report the oblivious algorithm described in [14] to let the
robots achieve a situation where p is determined.

Algorithm 1 (Point Formation Algorithm in SYm, Unlimited Visibility setting [14]).

Case 1. n = 3; p1, p2, and p3 denote the positions of the three robots.

1.1. If n = 3 and p1, p2, and p3 are collinear with ps in the middle, then the robots
at p; and p3 move towards ps while the robot at p, remains stationary. Then
eventually two robots occupy ps.

1.2. If n = 3 and p1, po, and p3 form an isosceles triangle with [p1pz| = |P1p3| # [P2p3|,
then the robot at p; moves toward the foot of the perpendicular drop from its
current position to paps in such a way that the robots do not form an equilateral
triangle at any time, while the robots at ps and p3 remain stationary. Then
eventually the robots become collinear and the problem is reduced to part 1.1.

1.3. If n = 3 and the lengths of the three sides of triangle p1, po, ps are all different,
say |pipa| > |pips| > |p2p3|, then the robot at ps moves toward the foot of the
perpendicular drop from its current position to pyps while the robots at p; and po
remain stationary. Then eventually the robots become collinear and the problem
is reduced to part 1.1.

L T2
«®
p

Figure 1: Initial situation with three robots (n = 3) for the proof of Theorem 3.1.

1.4. If n = 3 and p1, p9, and p3 form an equilateral triangle, then every robot moves
towards the center of the triangle. Since all robots can move up to at least a
constant distance € > 0 in one step, if part 1.4. continues to hold then eventually
either the robots meet at the center, or the triangle they form becomes no longer
equilateral and the problem is reduced to part 1.2 or part 1.3.

Case 2. n > 4; C; denotes the smallest enclosing circle of the robots at time t.

2.1. If n > 4 and there is exactly one robot r in the interior of C}, then r moves toward
the position of any robot, say 7/, on the circumference of C; while all other robots
remain stationary. Then eventually r and 7’ occupy the same position.

2.2. If n > 4 and there are two or more robots in the interior of C}, then these robots
move toward the center of C; while all other robots remain stationary (so that
the center of C; remains unchanged). Then eventually at least two robots reach
the center.

2.3. If n > 4 and there are no robots in the interior of C;, then every robot moves
toward the center of C;. Since all robots can move up to at least a constant
distance € > 0 in one step, if part 2.3 continues to hold,then eventually the
radius of C} becomes at most €. Once this happens, then the next time some
robot moves, say, at t’, either (i) two or more robots occupy the center of C
or (ii) there is exactly one robot 7 at the center of C;, and therefore there is a
robot that is not on Cy (and the problem is reduced to part 2.1 or part 2.2) since
a cycle passing through r and a point on C} intersects with C} at most at two
points.

It is clear that such a strategy works only if the robots in the system have the ability
to detect the multiplicity. In SYm this capability is never mentioned, but it is clearly used
implicitly. It is possible, however, to prove that such a capability is indeed necessary to
solve the problem. In fact, we have the following:

Theorem 3.1. In CORDA, there exists no deterministic oblivious algorithm that solves the
gathering problem in a finite number of cycles for a set of n robots that, given a point p in
the plane, can not distinguish the multiplicity of p (that is, if there is more than one robot

on p).

Proof. Let A be a deterministic oblivious algorithm that solves the gathering problem in
CORDA, and let us assume that, given a point p in the plane, the robots can not distinguish
the multiplicity of p. Moreover, let us suppose that at the beginning robots r1,...,7r,_1,
from now on the black robots, lie all together on a point p of the plane, and r,, the white
robot, lies on a point p' of the plane, with p # p’ (in figure 1 the case n = 3 is pictured.

The black and white coloring is used only for the sake of presentation, and this information
is not used by the robots during the computation).

Note that since the robots cannot distinguish the multiplicity, we have that at the
beginning each robot can see only one other robot in the system (we can even suppose
common knowledge on n). Therefore, we have that at the beginning all the robots have
the same view of the world, namely each of them sees exactly one other robot in the plane.
Moreover, let us suppose that the Observe, Compute and Move phases last the same amount
of time, say p.

In the following we will describe an adversary Adv that schedules the movements of the
robots in such a way that, whatever is the strategy of A, it will never let the robots to
gather in a point. The adversary chooses which robot to activate, that is, which one must
start an Observe phase, and when to activate it. We note that if a robot is activated at
time £, at time ¢4 3p it will be in the Wait phase again. Moreover, Adv decides the distance
a robot travels in the Move phase. In particular, the adversary follows the rules described
below.

Let p and p’ respectively be the points where the black robots lie and 7, lies. We have:

Adv1 If activating one black robot, it does not compute p’ as destination point by executing
A, then activate all the black robots, and move them a distance § (see Assumption
A2 in Section 2.2).

Adv2 Otherwise,

Adv2.1 activate n— 2 black robots, and move them until they reach the destination point
they compute;

Adv2.2 after the activated black robots reach the destination point (that is after 3p time),
activate r,,, and move it to the destination point it computes;

Adv2.3 after another 3p time, activate the last black robot, and move it to the destination
point it computes.

First, we note that if after choosing Adv1 none of the black robots move, not even the
white robot would move, since A is deterministic, and r, has the same view of the world
as the black robots; namely it sees only one other robot in the world. Hence A would not
solve the problem. Thus, as long as the adversary chooses Adv1, the black robots move all
together a distance 8, without reaching p', while the white one is still (note that while they
are moving, the white robot is in Wait, therefore it can not see the black ones while they
move). They move all together without reaching p' because (I) A is deterministic and they
are activated all at once; (II) there is a black robot that, if activated, would not reach the
position occupied by rp; (III) all the black robots share the same view of the world, since
they all lie on p and see only one other robot in the system, namely the white one; (IV) the
Observe, Compute, and Move phases each last p time.

Moreover, since A solves the problem by hypothesis, in a finite number of cycles the
rule Adv2 is chosen by the adversary, otherwise the black robots would never reach ry,.
Thus, when Adv2 is chosen for the first time, n — 2 black robots are activated all together.
Since this rule is chosen because there is a black robot that, if activated, would compute
the position occupied by 7, as destination point, and by (III) and (IV) above, we have
that, after 3p time, the n — 2 activated black robots will reach p' (while they are moving,
everybody else is in Wait, therefore they can not be seen while moving). After that, in
Adv2.2, the white robot is activated. 7, has the same view of the world that the black

robots that moved in Adv2.1 had. Specifically, the white robot sees only one robot, the
last black robot on p (while the black robots in Adv2.1 saw only the white one). Since A
is deterministic, r, must compute the same thing computed by the black robots in Adv2.1;
that is, it must decide to reach the other robot it sees, hence it computes p as destination
point. Therefore, by (IV), after 3p time the white robot reaches p. Finally, the last black
robot (still on p) is activated. Once again, it has the same view of the world that its fellow
robots had in Adv2.1, therefore it computes p’ as destination point, and reaches it in 3p
time.

In conclusion, if Adv2.1 is chosen at time ¢, at time ¢ + 9p we have that all the black
robots went where the white robot was at ¢, and the white robot went where the black
robots were at ¢. Hence the black and white robots simply switched positions, and are once
again in the same situation they were in at the beginning. Therefore, the adversary Adv
can choose a scheduling of the robots such that, when they should gather in one point by
executing A, they do not. This leads to a contradiction. O

We note that the proof makes use of the assumption that a robot is not even able to
recognize the multiplicity of the position where it is. However, even if we assume that a
robot can distinguish a weak multiplicity, that is if there is more than one robot on the
position where it is, Theorem 3.1 still holds. In fact, it is sufficient to assume to have two
white robots on p, and to change the second rule of the adversary as follows:

Adv'2 Otherwise,

Adv'2.1 activate n—3 black robots, and move them to the destination point they compute;

Adv'2.2 after the activated black robots reach the destination point (that is after 3p
time), activate the white robots, and move them to the destination point they
compute;

Adv'2.3 after other 3p time, activate the last black robot, and move it to the destination
point it computes.

Moreover, the same result can be proven in SYm.

Corollary 3.1. In SYm, there exists no deterministic oblivious algorithm that solves the
gathering problem in finite time for a set of n > 3 robots® that, given a point p in the plane,
cannot distinguish the multiplicity of D, or that can distinguish the weak multiplicity.

Proof. Let us assume that the robots, given a point p in the plane, cannot distinguish the
multiplicity of p, and that there exists a deterministic oblivious algorithm A that solves the
gathering problem in SYm. The only difference with respect to the proof of Theorem 3.1 is
in the upper bound ¢; a robot r; can travel in each step (see Section 2.1). Let € = min; ¢,
and let us define the adversary in the following way:

Adv"1 If there exists no black robot that, if activated, would compute p’ as destination
point by executing A, then activate all the black robots, and move them a distance e.

Adv"2 If there exists at least one black robot that, if activated, would compute p’ as
destination point by executing A, but the distance between p and p’ following the
path given by A is > ¢, then activate all the black robots, and move them a distance
€.

5Tn [14], it is proven that there exists no oblivious algorithm that solves the problem when n = 2, under
the assumption that two robots never collide.

Adv"3 Otherwise,

Adv"3.1 activate n —2 black robots, and move them until they reach the destination point
they compute;

Adv"3.2 after the activated black robots reach the destination point (that is after one
time step), activate r,, and move it to the destination point it computes;

Adv"3.3 activate the last black robot, and move it to the destination point it computes.

Considering that in SYm a cycle is atomic (as explained in Section 2.1), and following
the proof of Theorem 3.1, the first part of the corollary follows.

To prove the second part of the corollary (the robots are supposed to distinguish a weak
multiplicity), it is sufficient to assume to have two white robots, and to change Adv”3 as
follows:

Adv™3 Otherwise,

Adv"'3.1 activate n — 3 black robots, and move them until they reach the destination point
they computed;

Adv™3.2 after the activated black robots reach the destination point (that is after one
time step), activate the white robots, and move them to the destination point
they compute;

Adv™3.3 activate the last black robot, and move it to the destination point it computes.

a

Finally, we are ready to state the main result of this section. In the following theorem
we prove that Algorithm 1 does not solve the gathering problem in CORDA. Specifically,
we give an initial configuration of the robots and describe a possible run of the algorithm
that leads to having two robots in the system on the same point.

Theorem 3.2. Algorithm 1 does not solve the gathering problem in CORDA, in the unlim-
ited visibility setting.

Proof. Let us suppose to have 4 robots that at the beginning are on a circle C, as pictured
in Figure 2, Step 1. The positions of the robots are indicated by p;, 1 = 1,2, 3, 4.

Executing Algorithm 1, but assuming the features of CORDA, a possible run is described
in the following.

Step 1 At the beginning the four robots are in distinct positions, on a circle C. r; and
ro enter the Observe phase, while the others are in Wait. After having observed,
both of them enter the Compute phase, and let us assume that the robot in po is
computationally very slow (or, alternatively, that p; is very fast). Therefore, 7 decides
to move towards the center of C' (part 2.3 of Algorithm 1), while ry is stuck in its
Compute phase. rq starts moving towards the center, while r9 is still in Compute,
and r3 and r4 are in Wait.

Step 2 r; is inside C, while the other robots are still on C. Now 71 observes again (already
in its second cycle) and, according to part 2.1 of the algorithm, decides to move toward
a robot that is on the circle, say 9. Moreover, 7y is still in the Compute phase of its
first cycle, and r3 and 74 are in Wait.

10

T2 r1 T2

T3 O T3
)
O O
Step 2 Step 3
Ty T2 T T3
.@. "3 O
Step 5 Step 6

® Observe @ Compute
@ Move O Wait

/ Direction of Movement

Figure 2: Proof of Theorem 3.2. The dotted circles indicate the robots in the Observe
phase; the grey ones the robots in the Compute phase; the circle with an arrow inside are
the robots that are moving; the white circles represent the robots in Wait. The arrows
indicate the direction of the movement computed in the Compute phase.

Step 3 r; reaches 7o and enters the Wait of its third cycle: at this point, there is one
position in the plane with two robots, namely p = p; = po. Now, r3 enters its first
Observe phase, looks at the situation and, according to the algorithm, decides to move
towards p, that is the only point in the plane with more than ore robots on it. ry is
still in its first Compute, and r4 in Wait.

Step 4 r3 reaches r; and 3 on p, hence it ends its execution, since the algorithm is assuming
that p is the gathering point. 71 is in Wait, 7o still in its first Compute phase, and r4
starts its first Observe phase, decides to move towards p, and starts moving.

Step 5 While r4 is on its way towards p, ro ends its first Compute phase. Since the
computation is done according to what it observed in its previous Observe phase
(Step 1), it decides to move towards the center of C' (part 2.3 of the algorithm). ro
starts moving towards the center of C after r4 passes over the center of C, and while

11

r4 is still moving towards p; 1 is in Wait.

Step 6 ro and r4 are moving in opposite directions on the same diameter of C, and they
stop exactly on the same point p' (in CORDA a robot can stop before reaching its final
destination). There are two points in the plane, namely p and p' with p # p’, with
two robots on each. Therefore, the invariant proven for Algorithm 1, that “eventually
there will be exactly one position that two or more robots occupy” [14], is violated.

a

Remark 1. We note that in Step 6 we made use of the possibility that a robot stops before
reaching the destination point it computed. The proof, however, works even if we do not
assume this; that is, if 7o and r4 do not stop before reaching their respective destination
points. In fact, if we assume that the robots stop because they bump, the proof is still
valid. Otherwise, if we assume, as in SYm, that the robots simply cross each other without
stopping, if (i) the crossing happens in a point p’ # p, and (ii) r; enters its Observe phase
exactly when the crossing happens, we have that r; sees two points in the plane with two
robots on each, namely p and p’, and does not know what to do, since this possibility is not
mentioned in SYm'’s algorithm. Therefore, Theorem 3.2 still holds.

Finally, it is easy to see that the theorem is still valid even if we simulate a continue
monitoring of the world by the robots, as in SYm, by introducing a maximum distance each
robot can travel in a Move phase.

It follows from the proof of the previous theorem, and from Remark 1, that the real
difference between the two models is in the way the asynchronicity is modeled: in SYm each
cycle is atomic, while in CORDA each phase in a given cycle can last an unpredictable, but
finite, amount of time; that is, we have asynchronicity within a cycle. Such a hypothesis
clearly renders the analysis and design of algorithms more difficult, but in our opinion it
better models a totally asynchronous environment populated by a set of mobile units.

3.1.2 The limited visibility setting

In [1], an algorithm to solve the gathering problem in the limited visibility setting is pre-
sented. In the following we shortly describe it”.

Let us denote by r;(t) the position of robot r; at time instant ¢. The set P(t) =
{r1(t),...,rn(t)} then denotes the set of the robots’ positions at ¢. Define G(t) = (R, E(t)),
called the Prozimity Graph at time t, by (r;,r;) € E(t) <> dist(r;(t),r;(t)) < V, where
dist(p,q) denotes the Euclidean distance between points p and ¢. It can be proven that, if
the proximity graph is not connected at the beginning, the robots can not gather in a point
[1] (form a point, in SYm language).

Let S;(t) denote the set of robots that are within distance V' from r; at time ¢; that is,
the set of robots that are visible from r; (note that r; € S;(¢)). Ci(t) denotes the smallest
enclosing circle of the set {r;(t)|r; € S;(t)} of the positions of the robots in S;(t) at t. The
center of C;(t) is denoted ¢;(#).

Every time a robot r; becomes active, the algorithm moves r; toward ¢;(¢), but only
over a certain distance MOV E. Specifically, if r; does not see any robot other than itself,

"The notation used in [1], is slightly different from that used in [14]. We will use in the following the
notation used in the original paper.

12

then r; does not move. Otherwise, the algorithm chooses x to be the point on the segment
ri(t)c;(t) that is closest to ¢;(t) and that satisfies the following conditions:

1. dist(ri(t),xz) < o, where dist(a,b) indicates the distance between two points. This
condition follows from the restriction on the maximum distance a robot can move in
one phase®.

2. For every robot r; € S;(t), = lies in the disk D; whose center is the midpoint m; of
ri(t) and r;(t), and whose radius is V/2. This condition ensures that r; and r; will
still be visible after the movement of r; (and possibly of r;, see Figure 3.a).

Figure 3: The algorithm for the gathering problem in SYm, limited visibility setting.

The algorithm is described more formally in the following (refer to Figure 3.b).

Algorithm 2 (Point Formation Algorithm in SYm, Limited Visibility setting [1]).

1. If S;i(t) = {ri}, then z = r;(¢).
2. Vr; € Si(t) — {r:},
2.1. dj = dist(ri(t),r;(t)),

2.2. 05 = ¢i(t)ri(t)r;(t),
2.3. lj = (d]/2) COS 9]' + \/(V/2)2 - ((dJ/Q) Singj)Q,

3. LIMIT = min,.jesi(t)_{”}{l]‘},
4. GOAL = dist(r;(t), c;(t)),

8¢ is the name used in [1] for both the ¢ described in Section 2.1 and used in [14].

13

Step 1

71) 73 T4 Ts
O ® ® | ® O
1 V—r “ v l 14
Step 2
71 T9 73 T4 Ts
O =Y ® I~ ! o)
v voz | v-r “ 4
2 2
Step 3
1 T2 T3 T4 T5
0 o & ® O
v V-1 “ R
3 V-1 1
Step 4
T1 ro 3 T4 5
0 | ® @) e
C2 3 ? 3 €4 T
V V — gT V — gT V —
Step 5
1 T2 T3 T4 75
o o o o)
5 5
V-3 V+3 V— 57 V— 5T

Figure 4: Proof of Theorem 3.3. The symbols used for the robots are the same as in Figure
2. The vertical arrows mean that a robot decided not to move (Move = 0). A robot r;
moves always towards the center c¢; of the smallest enclosing circle of all the robots it can
see.

5. MOVE = min{GOAL, LIMIT},

6. = = point on 7;(t)c;(t) at distance MOV E from r;(t).

In [1] it is proven that, executing Algorithm 2, two robots that are connected in G(t),
will be connected in G(t + 1). In the following theorem we prove that it does not solve
the gathering problem in CORDA, in the limited visibility setting. Specifically, we give an
initial configuration of the robots and describe a possible run of the algorithm that leads to
partitioning the proximity graph: two robots that were visible until time %, are not visible
any more at ¢ + 1, contradicting the result proven in [1].

Theorem 3.3. Algorithm 2 does not solve the gathering problem in CORDA, in the limited
visibility setting.

Proof. Let us suppose to have at the beginning 5 robots on a straight line, as shown
in Figure 4. Moreover, let 7 be a constant such that 6 = 7/16, where § is the constant
introduced in Section 2.2. At the beginning, we have the following wvisibility situation: rq
can see 19 (7173 = V), 79 can see 11 and r3 (7273 = V — 7), 73 can see ro and r4 (7373 = V),
r4 can see 13 and r5 (F475 = V'), r5 can see r4. We recall that a robot r; always move towards
the center ¢; of the smallest circle enclosing all the robots it can see. Executing Algorithm
2, but assuming the features of CORDA, a possible run is described in the following.

14

Step 1 All the robots, except r; and r5 (that we assume in Wait), execute their first
Observe, and start the Compute phase. Let us suppose that 3 and r4 are faster than

r9 in computing. The values they compute are:

r3:

Limit = min{— Y57 + 7,V} =3

Goal =0 = Move=0

{ Goal = dist(r3,c3) = | V= T+V V+T‘ T2 = Move = T
2

Try4:
Moreover, r3 and r4 also start moving while ro is still computing; 1 and r5 are in

Wait.

Step 2 After r3 and r4 move, the visibility situation is the same as it was in the beginning

r3 and r4 Observe and Compute again, as follows:

r3: Goal =0 = Move=0

INE

_V+% —

Goal = d’LSt(’I‘4,C4 = ‘ T
=>M = -
ove = o

Tr4:

Limit = 2 ,

r3 and r4 move again, while ro is still in its first Compute phase, and r; and 75 in

their first Wait.

Step 3 After the movement of the previous step, the visibility situation is still unchanged
that is, the proximity graph is still connected. r3 and 74 enter their third Observe

and Compute phases.

V-I4+V-T
— 2 4 T
2 V+2

Goal = dz'st(r3,03)
SERIR

r3:
2772

Limit =
T4t Goal =0 :>Move=0
r3 and r4 move again. The other robots are in the same phases as in the previous

step.
Step 4 The proximity graph is still connected. r3 and r4 Observe and Compute again (this

is their fourth cycle).

r3: Goal =0 = Move=0
V;Si V+ 7'
Limit = min{— +¥r=2r
rg and r4 enter the Move phase. Meanwhile, ro finishes its first Compute. The values
it computes refer to what was the situation when it observed, in Step 1.

Goal = dist(ry,c =LT
(ray ca) = 16 :>Move:17——6

T4:
V+ T
+

V—|—V tau V‘

V}__ ¢Moue:%

T9:

Goal = dist(rs, 02)
Limit = min{V, —

r9 starts moving according to the destination point it just computed (it enters it first
Move phase).

15

Step 5 The distance between r3 and 73 is V +7/8 > V; so ry and r3 can not see each other
anymore, breaking the proximity graph connectivity that we had at the beginning of
the step. So, the invariant that “robots that are mutually visible at ¢ remain within
distance V of each other thereafter” asserted in [1] is violated. Therefore, the theorem
follows.

a

Once again, we note that what renders the algorithm useless in CORDA is the substantial
difference of how the asynchronicity is modeled.

Remark 2. In [1], Step 5 of Algorithm 2 takes into account the maximum distance o a
robot can travel in each cycle®, namely:

5. MOVE = min{GOAL,LIMIT,o}.

We did not mention it in the proof of the previous theorem because there is no similar
upper bound in CORDA. Theorem 3.3, however, is still valid even if we assume such a
constant. In fact, it is sufficient to define 7 such that 7 < o, and that § = 7/16.

3.2 The non oblivious case

In [14], the problem of characterizing “the class of geometric patterns that the robots can
form” is analyzed. The authors present a non oblivious algorithm to solve the problem,
leaving as an open problem the existence of an oblivious algorithm. We reiterate that an
oblivious algorithm takes in input all the positions of all the robots since the beginning of
the computation; that is, each robot has the capability to remember where its fellows have
been since the beginning.

The solution they propose is based on one basic operation, the broadcast: each robot
r; wants to communicate (broadcast) to all the others the direction of a line /; it privately
chooses, that passes through its initial position. In order to do so, each robot r; keeps
moving along /; in the established direction, until it observes that every r;, j # ¢ has
changed positions at least twice (i.e., until r; sees r; at three or more distinct positions).
When this happens, every r;, j # i, can compute the direction of /; from the (at least
two) distinct positions in which it must have observed r;. Moreover, they introduced a
technique, that will not be described here, that allows the robots to determine which robots
is broadcasting which direction (remember that the robots are anonymous, see Footnote 3).

The authors use the broadcast twice to let each r; communicate to everyone else its
initial position; that is, to discover the initial configuration (called “distribution” in [14])
of the robots in the system. In order to do so, each r; broadcasts the positive direction of
its X axis; it returns straight to its initial position; it broadcasts the positive direction of
its Y axis; and finally it returns straight to its initial position. After this, every robot can
easily discover the initial positions of all the other robots.

In the following, we show that the technique adopted to broadcast the initial configura-
tion does not work in the asynchronicity-within-a-step assumption of CORDA.

Theorem 3.4. The non oblivious broadcast-technique, adopted in [14] to discover the initial
distribution of the robots, does not work in CORDA.

16

Proof. Let us suppose to have n robots, and that all of them enter the Observe phase.
Therefore, every r; sees the initial positions of r;, 1 < j # 4 < n. After the Observe phase,
all the robots enter the Compute phase and the Move phase. Let us suppose, however, that
r1 is really slow, therefore all the others execute two cycles while r; is still in its first Move.
This implies that, since in CORDA a robot can be seen while it is moving, ro,..., 7, see rq
in two different positions, therefore they start broadcasting their respective Y axes. When
r1 enters its second Observe phase, it sees all the other robots already broadcasting their
Y axes, while it thinks that they are still broadcasting their X axes (since r; has not yet
seen all the others change positions at least twice). Hence, 71 computes the wrong initial
configuration of the robots in the system. O

4 Conclusions

In this paper we presented a model introduced for the first time in [6, 7], CORDA, consisting
of a set of autonomous, anonymous, memoryless, mobile robots - features that render the
robots rather “weak”. Moreover, we analyzed the main differences with SYm [1, 14], the
only other model, to our knowledge, that focuses on the problem of studying the algorithmic
problems that arise in an asynchronous environment populated by a set of autonomous,
anonymous, mobile units that are requested to accomplish some given task. In particular, we
showed that the different way in which the asynchronicity is modeled in SYm and CORDA, is
the key feature that renders the two models different. We feel that the asynchronicity within
a cycle modeled in CORDA better describes the way a set of independently-moving units
operate in a totally asynchronous environment; hence the motivation to further investigate
coordination problems in a distributed, asynchronous environment using CORDA.

The purpose of our study is to gain a better understanding of the power of the distributed
control from an algorithmic point of view. Specifically, we want to understand what kind
of goals such a set of robots can achieve, and what are the minimal requirements and
capabilities that they must have in order to do so.

Until now, the pattern formation problem is the only problem that has been extensively
studied using CORDA [6, 7, 12]: the robots are required to form some pattern they are given
in input. Other interesting problems that are usually studied in robotics and that could be
analyzed in CORDA are, for example, the flocking problem (given an initial formation of the
robots, they have to keep it while moving towards some destination); the following problem
(a robot must follow another one); the intruder problem (all the robots in the environment
must chase and “catch” a robot that is “different” from all the others).

Other issues which merit further research, regard the operating capabilities of the robots
modeled in CORDA. In fact, it would be interesting to look at models where robots have
different capabilities. For instance, we could use a totally non-oblivious model, that is, one
with an unlimited amount of memory that each robot could use. Alternatively, we could
equip the robots with just a bounded amount of memory (semi-obliviousness), and see if
this added “power” can be useful in solving problems otherwise unsolvable; if it could be
used to design faster algorithms; or how it would affect the self-stability property of the
oblivious algorithms [7].

Other features we could add to our model which would inspire further study include
giving a dimension to the robots and adding stationary obstacles to the environment, thus
adding the possibility of collision between robots or between moving robots and obstacles.
Furthermore, we could also study how the robots can use some kind of direct communication,

17

and we could introduce different kinds of robots that move in the environment (as in the
intruder problem described above).

Limited range of visibility, obstacles that limit the visibility and that moving robots must

avoid or push aside, as well as robots that appear and disappear from the scene clearly sug-
gest that the algorithmic nature of distributed coordination of autonomous, mobile robots
merits further investigation.

Acknowledgment

I would like to thank Paola Flocchini and Nicola Santoro for the discussions and comments
that helped with the writing of this paper.

References

[1]

H. Ando, Y. Oasa, I. Suzuki, and M. Yamashita. A Distributed Memoryless Point
Convergence Algorithm for Mobile Robots with Limited Visibility. IEEE Trans. on
Robotics and Automation, 15(5):818-828, 1999.

T. Balch and R. C. Arkin. Behavior-based Formation Control for Multi-robot Teams.
IEEE Trans. on Robotics and Automation, 14(6), December 1998.

G. Beni and S. Hackwood. Coherent Swarm Motion Under Distributed Control. In
Proc. DARS’92, pages 39-52, 1992.

Y. U. Cao, A. S. Fukunaga, A. B. Kahng, and F. Meng. Cooperative Mobile Robotics:
Antecedents and Directions. In Int. Conf. on Intel. Robots and Sys., pages 226—234,
1995.

E. H. Durfee. Blissful Ignorance: Knowing Just Enough to Coordinate Well. In ICMAS,
pages 406—413, 1995.

P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Hard Tasks for Weak Robots:
The Role of Common Knowledge in Pattern Formation by Autonomous Mobile Robots.
In ISAAC 99, pages 93-102, 1999.

P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Distributed Coordination of
a Set of Autonomous Mobile Robots. In IV, 2000.

Y. Kawauchi and M. Inaba and. T. Fukuda. A Principle of Decision Making of Cellular
Robotic System (CEBOT). In Proc. IEEE Conf. on Robotics and Autom., pages 833—
838, 1993.

M. J Matarié. Interaction and Intelligent Behavior. PhD thesis, MIT, May 1994.

S. Murata, H. Kurokawa, and S. Kokaji. Self-Assembling Machine. In Proc. IEEE
Conf. on Robotics and Autom., pages 441-448, 1994.

L. E. Parker. On the Design of Behavior-Based Multi-Robot Teams. Journal of Ad-
vanced Robotics, 10(6), 1996.

18

[12] G. Prencipe. Achievable Patterns by an Even Number of Autonomous Mobile Robots.
Technical Report TR-00-11, Universita di Pisa, August 2000.

[13] K. Sugihara and I. Suzuki. Distributed Algorithms for Formation of Geometric Patterns
with Many Mobile Robots. Journal of Robotics Systems, 13:127-139, 1996.

[14] I. Suzuki and M. Yamashita. Distributed Anonymous Mobile Robots: Formation of
Geometric Patterns. Siam J. Comput., 28(4):1347-1363, 1999.

19

