Gathering Autonomous Mobile Robots in
Non Totally Symmetric Configurations

TECHNICAL REPORT no. 379
ETH Zurich, Department of Computer Science

Mark Cieliebak Giuseppe Prencipe
ETH Zurich, Switzerland Universita di Pisa, Italy
cieliebak@inf.ethz.ch prencipe@di.unipi.it

Abstract

We study the problem of coordinating a set of autonomous mobile robots
that can freely move in a two-dimensional plane; in particular, we want them to
gather at a point not fixed in advance (GATHERING PROBLEM). We introduce a
model of weak robots (decentralized, asynchronous, no common knowledge, no
identities, no central coordination, no direct communication, oblivious) which
can observe the set of all points in the plane that are occupied by other robots.
Based on this observation, a robot uses a deterministic algorithm to compute
a destination, and moves there. The problem is unsolvable if the robots have
no additional abilities. Therefore, we introduce the ability to detect how many
robots are at a specific point in the plane (multiplicity detection). For two
robots, the problem remains unsolvable. For 3 and 4 robots, we give algorithms
that solve the GATHERING PROBLEM. For more than 4 robots, we present
an algorithm that gathers the robots if they are not in a specific symmetric
configuration at the beginning (totally symmetric configuration). We show how
to solve such initial configurations separately. However, the general solution of
the GATHERING PROBLEM remains an open problem.

Keywords: Autonomous Mobile Robots, Gathering, Distributed Coordination, Sym-
metric Configurations.

1 Introduction

We counsider a distributed system whose entities are autonomous mobile robots mod-
eled as devices with computational capabilities that are able to freely move in a
two-dimensional plane. We study the problem of coordinating these robots. The
coordination mechanism is totally decentralized, i.e., the robots are completely au-
tonomous and no central control is used. The objective i1s to gather all robots at one
point. This point is not fixed in advance.

The GATHERING PROBLEM 1s one of the basic interaction primitives studied
in a system populated by a set of autonomous mobile robots [8]. The problem of
coordinating a collection of autonomous mobile robots has been studied in robotics
and in artificial intelligence [2, 7, 8]. Mostly, the problem is approached from an
experimental point of view: algorithms are designed using mainly heuristics, and then
tested either by means of computer simulations or with real robots. Neither proofs of
correctness of the algorithms, nor any analysis of the relationship between the problem
to be solved, the capabilities of the robots employed, and the robots’ knowledge of
the environment are given. Recently, concerns on computability and complexity of
the coordination problem have motivated algorithmic investigations, and the problem
has also been approached from a computational point of view [1, 5, 6, 10, 11, 13]. In
[1] and [13], any action of the robots, including moving, is instantaneous, while in
[5, 6, 10, 11], as well as in this paper, there is no such assumption. An extended
abstract of this paper has been published in [3].

We consider a very weak model of robots: the robots are anonymous, have no
common knowledge, no central coordination, and no means of direct communication.
Initially, they are in a waiting state. They wake up asynchronously, observe the other
robots’ positions, compute a point in the plane, move towards this points (but may
not reach it'), and become waiting again.

These robots cannot gather if they have no additional abilities: a necessary ability
that allows them to solve the GATHERING PROBLEM is to detect multiplicities, i.e.,
to be able to detect whether there is more than one robot at the same point. This
ability is used as follows: first let at least two robots meet at a point, so that there
is a point in the plane with multiplicity greater than one; then, all remaining robots
move to this point (thereby, they avoid to generate another point with multiplicity
greater than one).

For less than five robots, there exist simple algorithims to gather the robots at
a point. The problem becomes challenging for n > 5 robots: how can we gather a
large set of robots? Omne idea would be to gather the robots at the Weber point.
The Weber point of a set of distinct points is the unique point in the plane that
minimizes the sum of the distances between itself and all points in the given set of
points [14]. An interesting property of the Weber point is that it does not change
when moving any of the points straight towards it: hence, the robots could simply
gather at their Weber point. Unfortunately, there exist point sets such that the

!That is, a robot can stop before reaching its destination point, e.g. because of limits to the
robot’s motion energy.

@

Figure 1: (a) A totally symmetric configuration. (b) A biangular configuration.

Weber point is not computable [4]. Therefore, we need a different strategy. Assume
that the initial positions of the robots form a regular n-gon, i.e., all robots are on a
circle and the distances between each two adjacent robots are equal: we call this a
totally symmetric configuration (see Figure l.a). Regular n-gons are a special case
of biangular configurations: the robots are in biangular configuration with center c if
there exists an ordering of the robots and two angles « and 3 such that all angles
between two adjacent robots w.r.t. ¢ are either a or 3, and the angles alternate (see
Figure 1.b). Biangular configurations (hence, totally symmetric) can be identified in
finite time. If the robots are at the beginning in biangular configuration (this clearly
include also the configurations that are totally symmetric), we can use the following
simple strategy: all robots move straight towards ¢. The robots remain in biangular
configuration (or in a degenerated variant where one robot is at ¢) until at least two
of them have reached ¢. Then, we have multiplicity greater than 1 at ¢, and all robots
will gather there.

On the other hand, if the initial configuration is not totally symmetric, we can
design a different (and rather sophisticated) algorithm for the GATHERING PROBLEM:
first, we compute the smallest circle enclosing all robots; this circle is unique. Then
we elect a strict subset of the robots such that the smallest enclosing circle does not
change when we move these robots towards the center of the circle. As soon as two
robots have reached the center of the circle, we have a point with multiplicity greater
than one, and again all robots will gather there.

The remaining challenge is to combine these two cases, 1.e., to design an algorithm
that solves the GATHERING PROBLEM for any initial configuration.

The rest of the paper is organized as follows. In the next section, we define the
model of robots we are using, the problem to solve, and some notation. In Section 3,
we provide solutions for the GATHERING PROBLEM for n = 2,3, and 4 robots. In
Sections 4 and 5 we present the two algorithms for the GATHERING PROBLEM for ar-
bitrary n > 5, one for biangular initial configurations and one for initial configurations
that are not totally symmetric. Conclusions are drawn in Section 6.

2 Model and Definitions

2.1 Autonomous Mobile Robots

Each robot is viewed as a point, and it is equipped with sensors that let it observe
the set of all points in the plane that are occupied by at least one other robot, and
form its local view of the world. Note that a robot only knows whether there are other
robots at a specific point, but it has no knowledge about their number. The local
view of each robot includes a unit of length, an origin (which we assume w.l.o.g. to
be the position of the robot in its current observation), and a coordinate system (e.g.
Cartesian). We do not assume any kind of agreement among the robots on the unit
of length, the origin, or the local coordinate systems.

A robot is initially in a waiting state (Wait). Asynchronously and independently
from the other robots, it observes the environment (Look) by activating its sensors.
The sensors return a snapshot of the world, i.e., the set of all points that are occu-
pied by at least one other robot, with respect to the local coordinate system. The
robot then calculates its destination point (Compute) according to its deterministic
algorithm, based ounly on its local view of the world. Each robot executes the same
deterministic algorithm. It then moves towards the destination point (Move); if the
destination point is the current location, the robot stays still. After an unpredictable
time (during or after the move), the robot returns to the waiting state. Therefore, it
may or may not reach its destination point during the move. The sequence Wait -
Look - Compute - Move forms a cycle of a robot.

The robots are fully asynchronous, i.e., the amount of time spent in each phase
of a cycle 1s finite but otherwise unpredictable. In particular, the robots do not
have a common notion of time. As a result, robots can be seen by other robots
while moving, and thus computations can be made based on obsolete observations.
The robots are oblivious, meaning that they do not remember any observations nor
computations performed in any previous step. The robots are anonymous, meaning
that they are a priori indistinguishable by their appearance, and they do not have any
kind of identifiers that can be used during the computation. Finally, the robots have
no means of direct communication: any communication occurs in a totally implicit
manner, by observing the other robots’ positions.

There are two limiting assumptions concerning infinity: (A1) The amount of time
required by a robot to complete a cycle is not infinite, nor infinitesimally small. (A2)
The distance traveled by a robot in a cycle is not infinite, nor infinitesimally small
(unless it brings the robot to the destination point). As no other assumptions on
space exist, the distance traveled by a robot in a cycle is unpredictable.

2.2 The Gathering Problem
The GATHERING PROBLEM is defined as follows.

Given n robots ry,...,r,, arbitrarily placed in the plane, with no two
robots at the same position, make them gather at one point in a finite
number of cycles.

a N N q
b b
b. c. d.

a.

Figure 2: (a) Convex angle a = <((a,¢,b). (b) Arc (thick line) and (c¢) sector (grey
part) defined by <((a, ¢,b). (d) Two robots, r and 7', on the same radius.

A relaxed variant of this problem would be to make the robots only move “very
close” to each other. This variant is rather easy to solve: each robot computes the
center of gravity? of all robots, and moves towards it. However, in the GATHERING
PROBLEM, we want the robots to meet ezactly at one point.

For our weak model of robots, the GATHERING PROBLEM 1s unsolvable, which is
shown in [12]:

Theorem 2.1 ([12]). There exists no deterministic oblivious algorithm that solves
the GATHERING PROBLEM wn a finite number of cycles for a set of n > 3 robots.

The proof of the previous theorem relies heavily on the fact that the robots do
only know at which points in the plane there is at least one other robot, but they do
not know how many robots there are. We say that the robots have the (additional)
ability of multiplicity detection if they can distinguish whether there is zero, one, or
more than one robot at a specific point in the plane. If the multiplicity at a point p
1s greater than one, we say that there is strict multiplicity at p.

Because of Theorem 2.1, in the following we assume that the robots have the
ability of multiplicity detection. We will heavily exploit multiplicity detection in our
algorithms by always gathering the robots at the only position where strict multiplic-
ity occurs.

2.3 Notation

In the rest of the paper, the following notation is used (refer to Figure 2). In general,
r indicates any robot in the system (when no ambiguity arises, r is used also to
represent the point in the plane occupied by that robot). A configuration of the
robots at a given time instant ¢ is the set of positions in the plane occupied by the
robots at t.

Given two distinct points @ and b in the plane, [a,b) denotes the half-line that
starts in @ and passes through b, and [a,b] denotes the line segment between a and
b. Given two half-lines [c, a) and [c, b), we denote by <((a,c,b) the convex angle (i.e.,
the angle which is at most 180°) centered in ¢ and with sides [¢,a) and [¢,b). The
intersection between the circumference of a circle C and an angle « at the center of

2For n points pi,...,p, in the plane, the center of gravity is ¢ = %Z?zl Di-

C is denoted by arc(a) (refer to Figure 2.b), and the intersection between o and C is
denoted by sector(a).

Given a circle C with center ¢ and radius Rad, and a robot r, we will say that r is
on C if dist(r¢) =Rad, where dist(ab) denotes the Euclidean distance between point
a and b (i.e., r is on the circumference of C); if dist(r¢) <Rad, we will say that r is
inside C. Given two distinct robots r and r/, with r inside C, let ¢ be the intersection
between the circumference of C and [¢, r). We say that r and r’ are on the same radius
if r' € [e, q].

Given points a, b and ¢, the triangle with these three points as vertices is denoted
by A(a,b,¢). We use p € A(a,b,c) to indicate that p is inside the triangle or on its
border.

Finally, given a set P, we denote the cardinality of P (i.e., the number of elements

in P) by |P|.

2.4 Weber Points

Given a set of points P = {p1,...,pn} and a point z in the plane, we define the
Weber distance between © and P by WD(z, P) := EpEP
the Weber point of point set P if it minimizes the Weber distance between P and
any point z in the plane, i.e., if WD(w, P) = min,eg: WD(z, P). Thus, a Weber

point minimizes the sumn of all distances to the points in P.

dist(p,x). A point w is

If the points in P are not on a line, then the Weber point always exists, and it
1s unique. If they are on a line, then the Weber point is unique only for an odd
number of points (actually, it is the median point) [14]. Computing the Weber point
is possible in many configurations; however, it is not computable in general [4].

3 Algorithms for n < 4 Robots

In the following, we provide solutions for the GATHERING PROBLEM separately for
n = 2,3, and 4 robots. The general idea of the three algorithms is to let the robots
reach a configuration where there is exactly one point ¢ in the plane with strict
multiplicity (recall that there is no strict multiplicity in the initial configuration, and
that the robots can detect multiplicities). When such a configuration is reached, all
robots move towards ¢, avoiding collisions (i.e., ¢ remains the only point with strict
multiplicity). This is accomplished by routine move_to(g) that moves the robot r
that calls the routine towards point ¢ in the plane as follows: if r is already at g,
it does not move at all; if no robot is on the segment [r, g|, then r moves towards ¢
(recall that a robot might not reach its destination point in one step, since it may
return to the waiting state before). Otherwise, let r’ be the robot on [r, ¢] closest to
r; then r moves towards a point at distance at most d > 0 from r’. In this way, no
collision occurs except at point g. In our algorithms, we will use do nothing() to
indicate that a robot does not want to move at all.

r
r 18] 4
e oo —e—o-—o— &
T T [] 73
d.

a. b. c.

Figure 3: Configurations of 4 points: (a) all on a line; (b) three points on a line; (¢)
one point inside the convex hull; (d) all on the convex hull.

3.1 Two Robots

The GATHERING PROBLEM is unsolvable for two robots if the robots have no addi-
tional abilities [13]. On the other hand, assume that the two robots can detect that
they “run into each other” while they are moving, i.e., they can stop immediately
when they move on the same line in opposite directions and they meet®. Then the
problem can be solved easily: each of the two robots simply starts moving towards
the other robot, and they stop when they meet.

Result 1. The GATHERING PROBLEM 1is unsolvable for two robots without additional
abilities [13]. If the robots can detect when they “run into each other”, there exists
an algorithm that solves the GATHERING PROBLEM.

3.2 Three Robots

For n = 3 points the Weber point is unique and can be computed [9]. Since it is
invariant under straight movement of any of the points towards it [14], we can use it
to gather n = 3 robots, as shown in the following algorithm.

Algorithm 1 Gathering for n =3
w := Weber Point of the Three Robots;

move_to (w).

Result 2. Three robots that can detect multiplicity can always gather at a point in
a finite number of cycles.

3.3 Four Robots

In this section, we present Algorithm 2 that solves the GATHERING PROBLEM for
n = 4 robots. In particular, the algorithm takes different actions according to the
possible initial configurations of the robots, depicted in Figure 3.a—d (these are the
only possible configurations for four distinct robots in the plane).

3Note that this ability differs from multiplicity detection, since here we assume that they recognize
the fact that they “run into each other” while they are moving, and that they stop immediately,
whereas multiplicity detection is only used during the computation step.

Algorithm 2 Gathering for n = 4
If There Is One Point ¢ With Multiplicity > 1 Then move_to(q).
If All Four Robots Are On A Line Then
r,r' := The Two Median Robots On The Line;
¢ := Median Point Of The Two Outer Robots On The Line;
5: If I Am r Or ' Then move to(c¢) Else do nothing().
If Three Robots Are On A Line Then
r := The Median Robot On The Line;
move_to(r).
CH := Convex Hull Of The Four Robots;
10: If One Robot Is Inside CH Then
r := Robot Inside C H;
move_to(r).
If No Robot Is Inside CH Then
q := Intersection Point Of The Two Diagonals Of CH;

15: move_to(q).

Observe that in the last case, if one robot reaches point ¢ (computed in Line 14
of the algorithm), we end up in the configuration depicted in Figure 3.b, with ¢ the
position of the median robot on the line.

For the correctness of Algorithm 2, let C'H be the convex hull of the positions of
the four robots at the beginning. If the configuration of the robot is such that

(SM) There is an unique point ¢ with strict multiplicity, then all robots move
towards ¢ (Line 1). By definition of move_to(), and by Assumptions Al and
A2, in a finite number of cycles the gathering is achieved.

Observe that (SM) cannot be an initial configuration, since all robots are at dis-
tinct positions at the beginning. In the following, we analyze the behavior of Algo-
rithm 2 in all possible initial configurations.

(A) The robots are all on the same line. In this case, only the two median
robots on the line, say r and r’, are allowed to move towards the median point
of the two outer robots on the line, call it ¢ (Lines 3-5). We distinguish the two
possible cases.

(a) Both r and r’ reach ¢ simultaneously: Case (SM) above applies.

(b) Only one robot reaches ¢, say r (the same argument applies if ' reaches ¢
first). Since the two outermost robots have not moved since the beginning,
their median point has not changed. Therefore, Case (A) applies again as
long as 1’ does not reach ¢. When this happens (by Assumptions Al and
A2, in a finite number of cycles), Case (SM) above applies.

(B) Three robots are on the same line. In this case, in Lines 6-8, the algorithm
allows to move all robots towards the median robot on the line, say r (therefore,

by definition of move_to(), r itself does not move). In a finite number of cycles
Case (SM) above applies and the strict multiplicity is at point r. All robots
keep moving towards r until the gathering is achieved.

(C) One robot is inside CH, say r. In this case, all robots move towards r (Lines
10-12). As in the previous case, in a finite number of cycles Case (SM) above
applies with the strict multiplicity at r.

(D) No robot is inside C H. In this case, all robots move towards the intersection
point of the two diagonals of CH, say ¢ (Lines 13-15). Note that this case
applies as long as no robot reaches q. By Assumptions Al and A2, in a finite
number of cycles one or more robots reach q. We distinguish the two possible
cases:

(a) One robot reaches ¢ first: Case (B) above applies, and all robots keep
moving towards q.

(b) More than one robot reach ¢ simultaneously: Case (SM) above applies,
and all robots keep moving towards ¢ until the gathering is achieved.

Therefore, we can state the following

Result 3. Four robots that can detect multiplicity can always gather at a point in a
finite number of cycles.

4 Algorithm for n > 5 Robots in Biangular Con-
figurations

In this section we sketch an algorithm (Algorithm 3) that solves the GATHERING
PROBLEM for very specific initial configurations, namely biangular configurations. In
Section 5 we will present another algorithm for the GATHERING PROBLEM that works
for all initial configurations except totally symmetric ones. As already stated in Sec-
tion 1, totally symmetric configurations are special cases of biangular configurations,
and can thus be solved with the algorithm from this section. However, solving the
GATHERING PROBLEM for all initial configurations at once remains an open problem
that we will discuss in Section 6.

A set of n robots is in general biangular configuration if there exist a point ¢, the
center, an ordering of the robots, and two angles «, 3 > 0 such that each two adjacent
robots form an angle a or # w.r.t. ¢, and the angles alternate (refer to Figure 4.a).
The robots are in degenerated biangular configuration if there is a robot r, an ordering
of the other robots, and two angles «, 3 > 0 such that each two adjacent robots form
an angle a or # w.r.t. r, and the angles alternate, except for one “gap” where the
angle is a+ 3 (see Figure 4.b). A general biangular configuration becomes degenerated
if one of the robots, namely r, moves to the center c.

If a set of n > 3 points P is in general or degenerated biangular configuration,
then the center of biangularity ¢ is unique, can be computed in finite time, and is

Figure 4: (a) General biangular and (b) degenerated biangular configuration of 8
points.

invariant under straight movement of any of the points in its direction; that is, it does
not change if any of the points moves towards ¢. Moreover, ¢ is the Weber point of
the points in P.

Algorithm 3 Gathering for n > 5 robots in Biangular Configuration
If There Is One Point ¢ With Multiplicity > 1 Then move_to(q).
If The Robots Are In Degenerated Biangular Configuration Then
¢ := Center Of Degenerated Biangularity;

move_to(¢).

5: Else % The Robots Are In General Biangular Confignration 70
¢ := Center Of Biangularity;
move_to(c).

For the correctness of Algorithm 3, note that there are only two possible initial
configurations of the robots: either they are in general or in degenerated biangular
configuration.

In the first case, the algorithm moves all robots straight towards ¢ (Lines 5-7).
As long as none of the robots reaches ¢, the configuration remains general biangular;
hence the algorithm moves all of them towards ¢. By Assumptions Al and A2, in a
finite number of cycles, one or more robots reach ¢. We analyze separately the two

cases.

1. If more than one robot reach ¢ simultaneously, then ¢ is the unique point in the
plane with strict multiplicity. In this case, all the robots keep moving towards
¢ (Line 1), until gathering is achieved.

2. If only one robot reaches ¢ first, then the configuration becomes degenerated
with center ¢, and the algorithm runs into Lines 2-4, where all robots are still
allowed to move towards ¢. Therefore, in a finite number of cycles, at least two
robots are on ¢, and previous case applies.

4If a general biangular configuration with center ¢ turns into a degenerated biangular configura-
tion because one of the robots reaches ¢, then the center of the degenerated biangular configuration
is again c.

10

a.

Figure 5: Totally symmetric configurations.

If the robots are in degenerated biangular configuration at the beginning, the
algorithm moves the robots towards the center of biangularity. Again, after a fi-
nite number of cycles, one or more robots reach the center, and a point with strict
multiplicity 1s obtained. Therefore, we have the following

Result 4. More than four robots that can detect multiplicity can always gather at a
point in a finite number of cycles if the initial configuration is biangular.

5 Algorithm for n > 5 Robots in Non Totally Sym-
metric Configurations

We will now present an algorithm that solves the GATHERING PROBLEM for almost
all initial configurations of the robots except those that are totally symmetric. Here,
a configuration is totally symmetric if it is biangular with some center ¢, and all
robots are on a circle with center ¢ (see Figure 5). Totally symmetric configurations
are covered by the algorithm for biangular configurations that we presented in the
previous section.

If the robots are not in a totally symmetric configuration at the beginning, the
main idea of the algorithm is to let the robots reach a configuration where there is
only one point in the plane with strict multiplicity. Then, all robots will gather there.
More specifically, first the smallest circle enclosing all robots is computed. Such a
circle always exists and is unique (see Section 5.1 below). Then a subset of the robots
is chosen to move towards the center of this circle. As soon as two or more robots
reach the center, it is a point with strict multiplicity (the only one), and all robots
gather in this point. The algorithm guarantees the following invariants:

o the subset of the robots elected to move is chosen such that the smallest enclos-
ing circle of all robots does not change while these robots approach the center
of the circle;

o all movements of the robots are mainly straight towards the center of the circle
(except for one case), until a point with strict multiplicity occurs;

e there is at most one point with strict multiplicity.

11

a. b. ¢

Figure 6: (a) The smallest enclosing circle of 10 points on the plane. (b) Lemma 5.1,
with z, y, and ¢ on a line. The white points belong to S C P. (¢) Lemma 5.1, with
no two points in S on a line with c.

Before introducing the main algorithm, we first introduce more formally some
definitions that will be used in the following, namely the smallest circle enclosing n
points (smallest enclosing circle), and the string of angles.

5.1 Smallest Enclosing Circles

Given a set of n distinct points P in the plane, the Smallest Enclosing Circle of the
points 1s the smallest circle enclosing them; in other words, it 1s the circle with mini-
muin radius such that all points from P are inside or on the circle (see Figure 6.a). We
denote it by SEC(P), or SEC if set P is unambiguous from the context. The small-
est enclosing circle of a set of n points is unique and can be computed in O(nlogn)
time [15].

Obviously, the smallest enclosing circle of P remains invariant if we remove all or
some of the points from P that are inside SEC(P). The following lemma shows that
we can even remove some points from P that are on SEC(P) without changing the
smallest enclosing circle:

Lemma 5.1. Gwen a set of n points P and a subset S C P, let ¢ be the center of
SEC(P). If all points in S are on SEC(P) and c is inside the convez hull of the
points in S, then SEC(P) = SEC(S).

Proof. Let ¢ be the center and Rad be the radius of SEC(P), and let ¢’ be the center
of SEC(S), and Rad' be its radius. Since S C P, we have Rad' < Rad.

If there are two points z,y € S such that z, y, and ¢ are on a line, then dist(z,y) =
2- Rad (see Figure 6.b). This implies that the diameter of SEC(S) is at least 2 - Rad,
which yields Rad" > Rad; hence, Rad’ = Rad. Since SEC(P) encloses all points
from § and has radius Rad, and since the smallest enclosing circle is unique, we have

SEC(S) = SEC(P).

12

a. b. C.

Figure 7: Lemma 5.2. (a) All points in P that are on C are inside one of the two
half-circles delimited by Diam. (b) Distances dapove annd dpetow- (¢) The dotted circle
is the circle Cypifrea centered in ¢ and having radius Rad’ = maxp,ep dist(c, p).

If no two points from S are on a line with ¢, since ¢ is inside the convex hull of
the points in S, there exist three points z,y,z € S such that ¢ is inside® A(z,y,z)
(see Figure 6.c). Let D,,D, and D, be the disks with radius Rad and center z, y,
and z, respectively. Since x, y, and z have distance Rad from c, these three disks
intersect in exactly one point, namely ¢. On the other hand, each of the three points
z, y and z has at most distance Rad’ from ¢, the center of SEC(S). Thus, since
Rad < Rad, ¢ has to be in the intersection of all the three disks. Therefore, ¢’ = ¢,
and SEC(S) = SEC(P). O

Let Diam be a diameter of SEC(P). We call the sides of Diam the two half-circles
delimited by Diam. Moreover, we say that a point is strictly on one side of Diam if
it is not on Diarn. The following lemma locates the possible areas on SEC(P) where
the points in P can be.

Lemma 5.2. Given a set of n points P and their smallest enclosing circle SEC(P),
there ezists no diameter Diam of SEC(P) such that all points in P are strictly on
one side of Diam.

Proof. Let ¢ be the center and Rad be the radius of C = SEC(P). By contradiction,
let us assume that there exists a diameter Diam of C such that all points in P that
are on C are all strictly inside one side of Diam; moreover, let us assume without loss
of generality that Diamn is horizontal (see Figure 7.a). We will show how to find a
point ¢’ # ¢ and a radius Rad < Rad such that all points in P are inside the circle
with center ¢’ and radius Rad’, having a contradiction since C was assumed to be the
smallest enclosing circle of the points in P.

Let dapove be the minimal vertical distance from diameter Diam to any point from
P that is strictly above Diam, dpejon, be the minimal vertical distance from the circum-
ference C to any point from P that is below or on Diamn, and ¢ = min{dapoves Obetow };

5In fact, connecting one vertex of the convex hull to all other vertices, c is clearly inside one of
the triangles determined in this way.

13

hence, § > 0 (see Figure 7.b). Let ¢ be the point on the vertical line through ¢, and
above ¢ such that dist(c, ') = g (see Figure 7.c). Then, by definition of 4, all points
in P are all inside the circle Cypifreq that has center in ¢ and radius Rad. Moreover,
observe that (I) no point from P is on Cshfted-

Let Rad = maxpep dist(c’,p). Then, all points in P are inside or on the circle
C' with center ¢’ and radius Rad'; furthermore, by above observation (I), Rad <
Rad. Thus, circle C is not the smallest enclosing circle for the points in P, having a

contradiction. O

In the following lemma, we show how to construct a subset S of P such that

SEC(S) = SEC(P).

Lemma 5.3. Given a set P of n points, there exists a subset S C P such that |S| < 3
and SEC(S) = SEC(P).

Proof. If |P| < 3, the lemma trivially follows. Otherwise, let ¢ be the center of
SEC(P). First, observe that ¢ is inside or on the convex hull of the points in P
that are on SEC(P); otherwise, all these points would lie all on one half of the
circumference of SEC(P) (see Figure 7.a), and, by Lemma 5.2, SEC(P) would not
be the smallest circle that encloses the points in P.

If there exist two distinct points z,y € P that are on SEC(P) such that z, y and ¢
are on a line, then, by Lemma 5.1, the lemma follows with S = {z,y}. Otherwise, by
above observation, there exist three points x,y,z € P that are on SEC(P) such that
¢ is inside A(z,y, z). Then, by Lemma 5.1, the lemma follows with S = {z,y,z}. O

5.2 String of Angles

Given n distinct points py,...,p, 1n the plane, let SEC be the smallest enclosing
circle of the points, and ¢ be its center. For an arbitrary point pp, 1 < k < n, we
define the string of angles SA(pg) by the following algorithm (refer to Figure 8):
Compute SA(px)
Pi=pr,ti=1;
While : #n + 1 Do
p := Succ(p);
SA[] = <(p, e, p);
p:i=pii:i=1+1;
End While
Return SA.

Here, all angles are oriented clockwise (note that the robots do not have a com-
mon knowledge on orientations; however, each single robot can distinguish between
a "local” clockwise and counterclockwise orientation). The successor of p, computed
by Succ(p), is (refer to Figure 9)

- either the point p; # p on [¢, p), such that dist(c, p;) is minimal among all points
p; # p on [¢,p) with dist(c,p;) > dist(c, p), if such a point exists; or

14

revSA[l] revSA[S]

revSA[4] revSA[5]

Figure 8: Example of the string of angles computed by Compute SA(r), with
a clockwise orientation of SEC. With @ = 25°,8 = 60° and v = 70°,
we have SA(r1) = (a,0,7,0,0,8,7,a) = (25°,60°, 70°,25° 25° 60°,70°,25°);
LexMinString = (o, a, 8,7, a, a, 3,7); StartSet = {4,8}, and revStartSet = ().

o
&

5

Figure 9: Routine Succ(p) in Compute SA(). Orientation is clockwise. The points
are numbered according to routine Succ(); that is Succ(p)=2, Succ(2)=3, and so
on.

- the point p; # p such that there is no other point inside sector(<t(p, ¢, p;)), and
there is no other point on the line segment [c, p;].

Instead of SA(py), we write SA if we do not consider a specific point p;. Given
pr, procedure Succ() defines a unique successor, and thus a unique string of angles.
Given two starting points py and py, then SA(pg) is a cyclic shift of SA(p,). Given an
angle o in SA, then we can associate it with its defining point; i.e., if @ = <(p, ¢, p'),
then we say that « is associated to p: we will write p = t(a). Alternatively, since « is
stored in S A, say at position 7 (i.e., SA[] =), we will denote the point associated
to a also by t(i), saying that t(z) is the point associated to position ¢ in SA. In the
example depicted in Figure 8, t(SA[3]) = t(y) = t(3) = rs.

We say that SA is general if it does not contain any zeros; otherwise, at least
two points are on a line starting in ¢ (a radius), and we call the string of angles
degenerated.

We define the reverse string of angles rev'SA in an analogous way: it is the string
of angles according to a counterclockwise orientation (i.e., revSA is the reverse of

15

SA).

Given two strings s = s1,...,8, and t = t1,...,t,, we say that s is lexicograph-
ically smaller than t if there exists an index k € {1,...,n} such that s, = ¢, for
all 1 <@ < k, and s < tp. We write s <je, t. Let LexMinString be the lexi-
cographically minimal string among all strings of angles (in both orientations), i.e.,
LexMinString = min({SA(p;) | 1 <@ < n}pU{revSA(pi) | 1 <1 < n}). Let
StartSet be the set of all indices in S A where Lex MinString starts, i.e., StartSet =
{i 1< i< nSAp) = LexMinString}, and let revStartSet be the set of all
indices in revSA where Lex MinString starts.

5.3 The Main Algorithm

In Algorithm 4, we present the main part of the algorithm that solves the GATHERING
PROBLEM for n > 5 robots if the initial configuration is not totally symmetric. The
algorithm guarantees that the smallest enclosing circle SEC' of the robots does not
change as long as there 1s no point with strict multiplicity. Moreover, the string
of angles SA does not change until a point with strict multiplicity occurs, or SA
becomes degenerated (note that, if a single robot reaches the center of SEC, then
S A is degenerated). Since the initial configuration is not totally symmetric, a strict
subset of the robots can be elected to move inside SEC. During the movement,
the occurrence of any totally symmetric configuration is avoided by the algorithm.
The three subroutines in Lines 17-19 are presented and discussed separately in the
following sections. Recall that move to(p) means that a robot moves towards p, but
only if no other robot bars the way (cf. Section 3).

We will now proof the correctness of Algorithm 4. If the configuration of the
robots is such that

(SM) There is an unique point ¢ with strict multiplicity, then all robots move
towards ¢ (Line 1). By definition of routine move_to (), any collision is avoided,
and in a finite number of cycles the gathering is achieved in g.

Observe that (SM) cannot be an initial configuration, since the robots are at
distinct positions at the beginning. In the following, we consider the run of the
algorithm for all possible initial configurations of the robots (refer to Figure 10). In
particular, the following scenarios can occur at the beginning.

(A) All robots are on SEC. Lines 15-17 are executed. The corresponding sub

cases are discussed in the following sections.

(B) All robots except one, say 7, are on SEC, 7 is not at ¢, and 7 is on
the same radius as some robot s. In this case, SA is degenerated, and the
algorithm performs Line 21, with r’ = s, where only 7 is allowed to move towards
s. If it does not reach s in one cycle, then 7 moves closer to s and remains on
the same radius; hence, the same case applies again. By Assumptions Al and
A2, in a finite number of cycles r reaches s, and a configuration with a (unique)
point with strict multiplicity is reached, and Case (SM) above applies.

16

Algorithm 4 Gathering for n > 5 (initial configuration not totally symmetric)

If There Is One Point ¢ With Multiplicity > 1 Then move_to(q).
SEC := Smallest Enclosing Circle Of All Robots;
¢ := Center Of SEC,
If One Robot r Is At Point ¢ Then
5: If No Other Robot Is Inside SEC' Then
q := Position Of An Arbitrary Robot On SEC,
If I Am r Then move_to(g) Else do_nothing().
Else % At Least On Other Robot Is Inside SEC Besides r %
If I Am Inside SEC' Then move_to(c) Else donothing().
10: Else % No Rovot 15 At « %
r := An Arbitrary Robot;
SA := Compute SA(r); %string of Angles w.r.t. »%0
If SA Is General Then
StartSet,revStartSet := Indices Where Lex. Minimal String Starts;
15: If |StartSet U revStartSet| =1 Then OneStartingIndex().
If |StartSet U revStartSet| = 2 Then TwoStartingIndices().
If |StartSet U revStartSet| > 2 Then ManyStartingIndices().
Else %SA Is Degenerated%
If Only One Robot 7 Is Inside SEC Then
20: r’ := Robot On SEC On Same Radius as 7;
If I Am 7 Then move_to(r’) Else donothing().
Else % More Than One Robot Ts Inside SEC %
If T Am Inside SEC Then move_to(c).
Else do_nothing().

(C) All robots except one, say r, are on SEC, and r is at c¢. The algorithm

runs into Lines 5-7, where only r is allowed to move towards an arbitrary robot

q that is on SEC. It either reaches ¢ in one cycle, obtaining a (unique) point

with strict multiplicity, and case (SM) above applies; or r stops during the

movement towards ¢. In the second case, r is the only robot inside SEC, and

it is on the same radius as robot ¢; hence, SA becomes degenerated and the

argument follows as in previous Case (B).

(D) All robots except one, say , are on SEC, 7 is not at ¢, and 7 is not on

the same radius as any other robot. In this case SA is general, and the

algorithm runs into Lines 15-17. These cases are discussed below.

(E) More than one robot is inside SEC, and one robot r is at ¢. The
algorithm executes Lines 8-9. All robots that are inside SEC will move towards

¢, while r, already at ¢, does not move at all. The robots inside SEC' move

according to routine move to(), avoiding collisions. If no robot reaches ¢ in

one cycle, then the robots inside SEC' move closer towards ¢, and the same

case applies again. By Assumptions Al and A2, in a finite number of cycles

at least one robot reaches ¢, and a configuration where ¢ is the (unique) point

17

RN OIONG
DO

Figure 10: Algorithm 4: (SM) special case with one point with strict multiplicity;
(A)—(G) the possible initial configuration of the robots.

with strict multiplicity is reached; hence, and Case (SM) above applies.

(F) More than one robot is inside SEC, no robot r is at ¢, and no two
robots are on the same radius. Again, the algorithm runs into Lines 15-17,
which are discussed below.

(G) More than one robot is inside SEC, no robot r is at ¢, and at least two
robots are on the same radius. SA is degenerated, and the algorithm runs
into Lines 22-24: all robots that are inside SEC will move towards ¢ by calling
routine move_to(¢), hence avoiding collisions. By Assumptions Al and A2, in
a finite number of cycles one or more robots reach ¢. If only one robot reaches ¢
first, then the algorithm runs into Lines 8-9, and case (E) above applies. If more
than one robot reach ¢ at the same time, we get a (unique) strict multiplicity
in ¢, and Case (SM) above applies.

Therefore, we can state the following

Theorem 5.1. If the initial configuration of the robots is such that Cases (B), (C),
(E), or (G) above apply, then in a finite number of cycles the robots gather at a point.

In the following sections, we analyze what happens in Cases (A), (D), and (F); in
these cases, the initial configuration is such that either subroutine OneStartingIndex (),
or TwoStartingIndices(), or ManyStartingIndices() is called in Lines 15-17 of
the main algorithm.

18

5.4 Subroutine OneStartingIndex

In this section, we describe subroutine OneStartingIndices() (see SubRoutine 1),
called in Line 15 of the main algorithm. This case is executed when at the beginning
S A is general and |StartSet U revStartSet| = 1.

Let StartSet U revStartSet = {z} and SA(z) = o,...,a,; then revSA(z) =
Qp, ... 1. The following lemma shows that either SA(z) or revSA(x) can be lexi-
cographically minimal, but not both of them.

Lemma 5.4. If StartSet UrevStartSet = {z}, then either SA(x) = Lex MinString
or revSA(x) = LexMinString.

Proof. By contradiction, let us assume that SA(z) = revSA(z) = Lex MinString.
Then a, = a;. Since z is the only starting position of LexMinString, we have
SA(z) = a1,...,0 <jex O, 04, ..., 0. Furthermore, since a,, = o, it follows that
Qzyeeoy O <pew O1y...,0n_1, and thus ag, ..., 00, 01 <jey Q1,..., 01,0, = SA(z),
in contradiction to the assumption that SA(z) is lexicographically minimal. O

In the following, we will assume that SA(z) = Lex MinString (the case revSA(z) =
LexMinString can be handled similarly). This gives us an unique ordering of the
robots, starting in z. For the case when all robots are on SEC, we define a routine
Elect () that elects a unique robot as follows: 1t chooses the first robot r — according
to the ordering defined before — such that the smallest enclosing circle does not change
by removing r from the set of robots. Such a robot exists due to Lemma 5.3, since
n > 5. Using this routine, Subroutine OneStartingIndex() is defined as follows:

SubRoutine 1 OneStartingIndex

If All Robots Are On SEC Then
r:= Elect();
If] Am r Then move to(c) Else do nothing().

If Only One Robot ' Is Inside SEC' Then

5: If I Am ' Then move_to(c) Else do nothing().

If More Than One Robot Is Inside SEC Then

If I Am Inside SEC Then move_to(c) Else donothing().

To prove that gathering is achieved when at the beginning the configuration of
the robots is such that this subroutine is called (i.e., in cases (A), (D), and (F) of
Section 5.3), first note that,

Note 1. Aslong as Subroutine 1 is executed, then S A remains general. In particular,
all movements of the robots are straight towards ¢; thus, the string of angles does not
change and SEC remains invariant during the movements, until some robot reaches
c.

In the following, we analyze the possible initial configurations that make Subrou-
tine 1 to be called.

19

(1) All robots are on SEC. A unique robot r is elected by routine Elect (), and
1t moves towards c¢; all other robots are not allowed to move, and SEC remains
invariant. If r stops on [rc| before reaching ¢, then Case (2) applies (Lines 5 of
the subroutine is performed), and r keeps moving towards ¢. By Assumptions
Al and A2, in a finite number of cycles, r reaches ¢. As soon as this happens,
Lines 5-7 of the main algorithm are executed, and case (C) applies.

(2) Only one robot ' is inside SEC. Since SA is general when Subroutine 1 is
called, r’ is not on the same radius as any other robot. Then r’ moves towards
¢ (Line 5 of the subroutine). If r* does not reach ¢ in one cycle, then this case
applies again. By Assumptions Al and A2, robot ' reaches ¢ in a finite number
of cycles. At this point, Lines 5-7 of the main algorithm are executed, and case
(C) of the main algorithm applies. We note that this case holds if, in the initial
configuration, r was either inside SEC, or on SEC and elected in the initial
configuration due to routine Elect ().

(3) More than one robot is inside SEC. All robots that are inside SEC will
move towards c¢. Since SA is general, there are no two robots on the same
radius, and Lines 6-7 of Subroutine 1 are executed. If no robot reaches ¢, then
this case applies again. By Assumptions Al and A2, at least one robot will
reach ¢ in a finite number of cycles. If only one robot reaches ¢ first, Lines 8-9
of the main algorithm are executed, and Case (E) applies. Otherwise (more
than one robot reaches ¢ simultaneously), ¢ is the (unique) point with strict
multiplicity, and Case (SM) of the main algorithm applies.

Therefore, we can state the following

Theorem 5.2. If the initial configuration of the robots is such that Subroutine 1 is
executed, then in a finite number of cycles the robots gather at a point.

5.5 Subroutine TwoStartingIndices

In this section, we describe subroutine TwoStartingIndices() (see SubRoutine 2),
called in Line 16 of the main algorithm. This case is executed when at the beginning
S A is general and StartSet UrevStartSet = {z,y}.

In the following lemma we show that, if there are two different starting positions
x,y of LexMinString, then LexMinString starts in each of the positions in only
one direction, either clockwise or counterclockwise.

Lemma 5.5. If StartSetUrevStartSet = {x,y}, then it is not possible that SA(x) =
revSA(x) = LexMinString or SA(y) = revSA(y) = LexMinString.

Proof. Similarly to the proof of Lemma 5.4, let us assume by contradiction that
SA(z) = revSA(z) = LexMinString, and let SA(z) = o,...,a,. We have
revSA(z) = ap, ..., a1, and o, = a;. This yields SA(z) = a1, ..., ap <jew Qpy a1,y Q.
Since a, = ay, then ay,...,a, <z a1,...,0,_1, and thus ay,...,0an, 01 <jep
A1y ooy Oy, 0 = SA(z). Since SA(x) is lexicographically minimal, as, ..., oy, ay

20

must be lexicographically minimal as well, and we have SA(z) = ay,...,0, =
Q2,...,0n,aq. This implies immediately o; = a;41, for all 1 <7 < n — 1. Therefore,
a; = aq for all 2 < ¢ < nj that is, SA(z) = a1, 04,...,01. Thus, LexMinString
starts in SA in every position ¢ € {1,...,n}, in contradiction to the assumption that
there are at most two starting positions of Lex MinString in SA. O

Since LexMinString can not start at the same position in opposite directions,
there are only two cases: either z and y are in the same set (StartSet or revStartSet),
or they are in different sets. Recall that t(z) is the robot associated with index .

Lemma 5.6. If v and y are both in StartSet or both in revStartSet, then <(t(z), ¢, t(y)) =
180°.

Proof. Without loss of generality, let us assume that z,y € StartSet. Let SA(z) =
ai,...,on. Then SA(y) = agqr,. .5 Qn, a1, ..., 04 for some k € {2,...,n — 1}, and
we have SA(z) = SA(y) = LexMinString. We say that the starting positions of
LexMinString are 0 and k. Then, for all 1 <17 < n we have

O = Oy (1)

(here, we abuse notation and identify any index ¢ > n with index { — n; e.g. anys =
as). If k < [Z], then there would be a third starting point of LexMinString at po-
sition 2k < n, which contradicts the hypothesis that |StartSet| = 2. Thus, [5] <k <

n. Let us assume k > |_%-|, and let us consider the string s = g1y« Qny A1y e ooy Qg
By Equation (1), it follows

On—k+1 = COn-k+1)+k = 1
On—k+2 = On-k4+2)+k = Q2
Qp = PN = O
[04] = PN = Og41
Ok = [P == (8790

hence s = LexMinString. Since by hypothesis k > [n/2], we have n —k 4+ 1 <
L%J + 1, hence
n—k+1§{g]. (2)
Equation (2) and [3] < k < n imply that n —k # k and n — k # 0. Therefore, n — k
is a (distinct) third starting position for Lex MinString, having a contradiction.
Thus, & = 7, and 0 and 7 are the starting positions of LexMinString. Then

929
3600 = Z?:lai = Zf_:] (074 —|— Z?Zg-l-lai = 212_:1 Q, + 212_:1 Atk — 2. 212_:1 o; =
2<4(t(z),c,t(y)). Thus, the angle between t(z) and t(y) w.r.t. ¢ is 180°. O

21

5

a. b. C.

Figure 11: (a) The line £ that runs through ¢ and bisects § = <t(¢(z), ¢, t(y)) = 2a+2y
1s a syminetry axis for the angles that the robots form w.r.t. ¢. In the depicted ex-
ample, x € StartSet, y € revStartSet, and SA(z) = revSA(y) = LexMinString =
(o, 7,7,0,0,7,€€7,0). (b) One robot r opposite to t(z) and t(y). (c) Two robots
v and v opposite to t(x) and t(y).

It follows by Lemma 5.6 that, since k = 7, there can only be two starting positions
with the same orientation if n 1s even. Moreover, the above lemma suggests us which
robot to move when z,y € StartSet (or x,y € revStartSet) and all robots are on
SEC': since n > 5, it is sufficient to not move t(z) and t(y), while all other robots can
move towards ¢. In this way, in fact, SEC remains invariant, since <(t(z),c,t(y)) =
180° (by Lemma 5.1).

Assume now that = and y do not belong to the same set (StartSet or revStartSet).
Without loss of generality, let us assume that x € StartSet and y € revStartSet, and
let 8 = <(¥(z),c,t(y)). Moreover, let all robots be on SEC. If 3 = 180°, similarly
to what observed for Lemma 5.6, we can move all robots except z and y without
changing SEC.

For the case # < 180°, we define the opposite robots of x and y as follows (see
Figure 11): let £ be the line that runs through ¢ and that bisects 3. Since z € StartSet
and y € revStartSet, and SA(x) = revSA(y) = LexMinString, { is a symmetry
axis for the angles that the robots form w.r.t. ¢ (as long as all robots are on SEC,
{ is a symmetry axis for the robots’ positions as well; see the example depicted in
Figure 11.a). We choose one or two robots that are not inside the sector defined by
(3 as follows: let /' be the half-line of £ that starts in ¢ and that does not bisect 3. If
there is a robot r on ', then r is the opposite robot of t(z) and t(y) (see Figure 11.b).
Otherwise, we choose as opposite robots the two robots u and v such that ¢ bisects
<(u, ¢,v) and such that <(u, ¢, v) is minimal (see Figure 11.c; note that, if 5 = 180°,
there are no opposite robots). Observe that the construction of the opposite robots
guarantees that ¢ is inside the convex hull of t(z), t(y), and their opposite robot(s). In
the algorithm, we will move all robots except these three (resp. four) robots towards
c. This guarantees that SEC does not change (by Lemma 5.1).

In the following Subroutine 2, we use a function move_into SEC() that works as
follows: if a robot 1s on SEC, then it slightly moves to the inside of SEC', say half of

22

its distance to ¢. If the robot is already inside SEC, it does not move at all. Using
this, we can ensure that a robot does not reach ¢ (and thus switch case in the main
algorithm) unless at least one other robot is already inside SEC. Furthermore, note
that we handle the cases StartSet = () and revStartSet =) simultaneously, since
they are totally equivalent.

To prove that gathering is achieved when at the beginning the configuration of
the robots is such that this subroutine is called (i.e., in cases (A), (D), and (F) of
Section 5.3), we first observe that

SubRoutine 2 TwoStartingIndices
{z,y} := StartSet U revStartSet;
If All Robots Are On SEC Then
If revStartSet = () (resp. StartSet = () Then
If I Am Not v(z) And I Am Not t(y) Then move_into SEC()
5: Else do nothing().
Else %|Start5'et| = |revStartSet| = 1%
Opposite = {Robot(s) Opposite To t(z) And t(y) };
Stationary = {v(x),t(y)} U Opposite;
If I Am Not In Stationary Then move into SEC()
10: Else do nothing().
If Ounly One Robot r Is Inside SEC Then
If revStartSet =) (resp. StartSet = () Then
If r =¢(z) Or r = t(y) Then
If] Am r Then move to(c) Else do nothing().
15: Else %»r #v@) ar=10%
If I Am Not t(z) And I Am Not t(y) Then move_into SEC()
Else do nothing().
Else %|Scan55t| = |revStartSet| = 1%
Opposite = {Robot(s) Opposite To t(z) And t(y) };
20: Stationary = {v(x),t(y)} U Opposite;
If r € Stationary Then
If I Am r Then move_to(c). Else do_nothing().
Else %r Z Stationary%
If n —|Stationary| =1 Then
25: If T Am Not in Stationary Then move_to(c)
Else do nothing().
Else %n — |Stationary| # 1%
If T Am Not In Stationary Then move_into SEC()
Else do nothing().
30: If More Than One Robot Is Inside SEC' Then
If I Am Inside SEC Then move to(¢) Else do nothing().

Note 2. Aslong as Subroutine 2 is executed, SA is general. In particular, all move-
ments of the robots are straight towards ¢; thus, the string of angles does not change,
and SEC remains invariant during the movements, until some robot reaches c.

23

In addition, note that Lines 13-14 as well as Lines 21-22 are only performed if
the initial configuration runs into Lines 13-14 or Lines 21-22, respectively, since the
algorithm does not create the corresponding configurations from any other initial
configuration. In the following, we analyze all possible initial configurations that
make the main algorithm call this subroutine.

(1) All robots are on SEC, and |StartSet| = 2. Then, |revStartSet| = 0 (by
Lemma 5.5), and <((t(z),¢,t(y)) = 180° (by Lemma 5.6). In this case, the
subroutine runs into Lines 3-5, where t(z) and t(y) do not move, ensuring that
the SEC remains invariant. All other robots are allowed to move inside SEC,
but — due to function move_into_SEC()-— no robot will reach ¢ in one cycle; thus,
S A remains general. Let Allowed be the set of robots that are allowed to move
inside SEC; since n > 5, |Allowed| > 3. Two cases can apply.

a. In finite time, two or more robots from Allowed move inside SEC. The
subroutine runs Lines 30-31, where all robots inside SEC' move towards
c¢. By Note 2, these lines are executed until one ore more robots reach ¢
(by Assumptions Al and A2, this happens in a finite number of cycles).
If only one robot reaches ¢ first, Lines 89 of the main algorithm are
performed, and Case (E) applies. Otherwise (more than one robot reaches
¢ simultaneously), the robots reach a configuration where c is the (unique)
point with strict multiplicity, and Case (SM) applies.

b. In finite time, only one robot from Allowed, say r, moves inside SEC.
Since, by construction, r # t(z) and r # t(y), then Lines 15-17 of the
subroutine are executed. By move_into_SEC(), r does not reach ¢ in one
cycle. Furthermore, after the first movement inside SEC, it cannot move
any more until at least another robot from Allowed enters SEC. In finite
time, this eventually happens, and previous case applies.

(2) All robots are on SEC, and |revStartSet| = 2. Then, |StartSet| = 0
(by Lemma 5.5), and, <((t(z),¢,t(y)) = 180° (by Lemma 5.6). The argument

follows similarly to previous Case (1).

(3) All robots are on SEC, and |StartSet| = |revStartSet| = 1. The subroutine
performs Lines 6-9. The robots in Stationary do not move, and SEC remains
invariant since ¢, by construction, is inside the convex hull of these robots (by
Lemma 5.1). Furthermore, there are at most 2 opposite robots for t(z) and
t(y); thus, |Stationary| < 4. Since n > 5, at least one robot is allowed to move,
and 1t moves into the inside of SEC. Two cases can apply.

a. In finite time, two or more robots not in Stationary move inside SEC.
The subroutine runs Lines 30-31, and the same argument used in previous
Case (1).a applies.

b. In finite time, only one robot, say r, moves inside SEC. Since, by construc-
tion, r # Stationary, then Lines 23-29 of the subroutine are executed. By

24

move_into SEC(), r does not reach ¢ in one cycle. We distinguish the two
possible cases.

i. If n — |Stationary| = 1, then note that, since |Stationary| < 4, this
case can only occur if n = 5, and if there are two robots opposite
to t(z) and t(y). In this case, the subroutine executes Lines 24-26,
where r, the only robot not in Stationary, moves towards ¢ (r does not
have to wait for any other robot to enter SEC', and all other robot do
not move). Since SA stays general while r approaches ¢ (by Note 2),
Lines 24-26 are executed until, in a finite number of cycles, r reaches
c. When this happens, Lines 8-9 of the main algorithm are performed,
and Case (E) applies.

ii. If n—|Stationary| # 1, then note that, since n > 5 and |Stationary| <
4, then n — |Stationary| > 2. In this case, the subroutine executes
Lines 27-29, where all robots not in Stationary are allowed to move
towards ¢. By move_into SEC(), r (by construction already inside
SEC') does not move until, in finite time, at least one other robot
from Stationary enters SEC'. As soon as this happens, the subroutine
runs Lines 30-31, and the same argument used in previous Case (1).a
applies.

(4) All robots except one, say r, are on SEC, |StartSet| = 2 (thus, |revStartSet| =
0), and r = t(z) or r = t(y). The subroutine performs Lines 11-14: only r is
allowed to move, and it moves towards ¢. By Note 1, this case applies until, in
a finite number of cycles, r reaches ¢. Then, Lines 5-7 of the main algorithm
are executed, and Case (C) applies.

(5) All robots except one, say r, are on SEC, |revStartSet| =2 (|StartSet| =
0), and r = t(z) or r = t(y). The subroutine performs Lines 11-14. The
argument follows as in previous Case (4).

(6) All robots except one, say r, are on SEC, |StartSet| =2 (|revStartSet| =
0), r # t(z), and r # t(y). The subroutine performs Lines 15-17: an argument
similar to the one used in previous Case (1).b applies.

(7) All robots except one, say r, are on SEC, |revStartSet| =2 (|StartSet| =
0), r # t(z), and r # t(y). The subroutine performs Lines 15-17. The

argument follows as in previous Case (6).

(8) All robots except one, say r, are on SEC, |StartSet| = |revStartSet| =1,
and r € Stationary. The subroutine runs into Lines 21-22: r is allowed to
move towards ¢, while all other robots do not move. By Note 1, this case
applies until, in a finite number of cycles, r reaches ¢. Then, Lines 5-7 of the
main algorithm are executed, and Case (C) applies.

(9) All robots except one, say r, are on SEC, |StartSet| = |revStartSet| =1,
r & Stationary, and n — |Stationary| = 1. The subroutine runs into Lines
24-26, and a similar argument to the one used in previous Case (3).b.1 applies.

25

(10) All robots except one, say r, are on SEC, |StartSet| = |revStartSet| =1,
r & Stationary, and n — |Stationary| # 1. The subroutine performs Lines
27-29, and a similar argument to the one used in previous Case (3).b.ii applies.

(11) More than one robot is inside SEC. The subroutine runs into Lines 30-31,
and a similar argument to the one used in previous Case (1).a applies.

Therefore, we can state the following

Theorem 5.3. If the wnitial configuration of the robots is such that Subroutine 2 is
executed, then in a finite number of cycles the robots gather at a point.

5.6 Subroutine ManyStartingIndices

In this section, we describe subroutine ManyStartingIndices() (SubRoutine 3),
called in Line 17 of the main algorithm. This case is executed when at the be-
ginning SA is general and |StartSet U revStartSet| > 3. Therefore, there are more
than two starting positions of Lex MinString in SA and revSA; hence, at least one
of the two sets StartSet and revStartSet has cardinality strictly greater than one:
let us assume, without loss of generality, that

|StartSet| > 2. (3)

Moreover, let StartSet = {x1,..., 2}, with 1 > 2 and z; < 2,41, for all 1 < <
[—1 (ie., StartSet is sorted), and SA(z;) = oq,...,a, = LexMinString (refer to
Figure 12). Then, by definition of StartSet, SA(z;) = SA(z1) = LexMinString, for
all 1 < <[. In particular, we have that

SA(x3) = Qgg1y---sQn,Q1,. .., O, (4)

with & > 1 the smallest integer such that Equation (4) holds. Then, SA(z3) =
Qokgls ooy On, O, ..., Qop, and, in general, SA(2;) = Q(i—1)k41, -+ Ony Q14 - -0, Q(im1)ks
for all 1 < ¢+ < I. That is, positions j - k in SA(z1), with 0 < j < 7 = [are
all starting positions of LexzMinString (in the clockwise direction, according to the

local orientation), and |StartSet| = 3. We say that SA(x,) is periodic with minimum

period length k, and o, ..., ay is a period of SA(z). Furthermore, recalling that the
characters in S A are angles, we observe that

Observation 5.1. SA(x1) can be divided into 3 equal periods, and the angles in each
360°

period sum up to 3 = .
k

We say that two robots r and r’ are equivalent (modulo periodic shift) if <(r,c,r’)
is a multiple of 3. From the definition of period of SA, the following observation
holds (refer to Figure 12):
Observation 5.2. Let all robots be on SEC, and r be a robot. Then, r has T — 1
equivalent robots. Moreover, r and the robots equivalent to r form a regular Z-gon,
and c is inside this 3 -gon.

26

Figure 12: Example with |StartSet|=4, SA(z1) = SA(z;) = LexMinString =
o1,...,012, and the period of SA(z1) is (a1, a2, as). There are # = 2 = 4 peri-
ods, and 3 = ay + oy + a5 = 360°/7 = 360°/%2 = 90°. The thick lines represent the
starting points of each of the four periods. Robots r, v/, ", and r" are equivalent, as

well as v(zq), t(zy), t(zs), v(z4), and s, s, s and s™.

Obviously, revSA is periodic with minimum period length & as well. Moreover,
if revStartSet # 0, we have |StartSet| = |revStartSet| = 7. Based on the above
definitions, we state the following

Lemma 5.7. Assume that StartSet # 0, that all robots are on SEC, and that the
minimum period length of SA is k > 3. Then SEC remains invariant if all robots
t(z), with x € {StartSet UrevStartSet}, move inside SEC.

Proof. 1t follows from the definition of the minimum period length, that all robots
t(z) such that = € StartSet are equivalent; similarly, all robots t(z) such that = €
revStartSet are equivalent.

Since k > 3, and LexMinString starts in S A every k positions, there is at least
one position z’ in §A that is not StartSet; let r the robot associated to z’. It follows
that neither r nor any of its equivalent robots are associated to positions that are
in StartSet U revStartSet. Moreover, since by hypothesis all robots are on SEC,
by Observation 5.2, r and its equivalent robots form a regular 7-gon, and c is inside
this 7-gon. Thus, by Lemma 5.1, SEC' does not change if all robots associated to
positions in StartSet U revStartSet move inside SEC. O

Next, we show that the configuration of the robots is totally symmetric if the
period lenght 1s less than three.

Lemma 5.8. If all robots are on SEC, |StartSet UrevStartSet| > 3, and the mini-
mum period length k is strictly smaller than 3, then the robots are in a totally sym-
metric configuration.

27

Proof. Let zy € StartSet and SA(zy) = ay, .. k=2 thena; =a3=...=

Qg1 = «, and ag = a4 = ... = ay; = 3, for all 1 <1< n/2 and n even. That 18,
SA(z1) = o, 3,0, 3, ... hence, it is totally symmetric.
Similarly, if k = 1, then oy = a2 = ... = a,, and the lemma follows. O

In the following we show that gathering is achieved when at the beginning the
configuration of the robots is such that this subroutine is called (i.e., in cases (A),

(D), and (F) of Section 5.3). First, observe that

Note 3. As long as Subroutine 3 is executed, SA 1s general. In particular, all move-
ments of the robots are straight towards ¢; thus, the string of angles does not change
and SEC remains invariant during the movements, until some robot reaches c.

SubRoutine 3 ManyStartingIndices
k :=Minimum Period Length of SA.
If All Robots Are On SEC Then
If T Am Associated To A Position In {StartSet UrevStartSet} Then
move_into SEC().
5: Else donothing().
If Ouly One Robot r Is Inside SEC Then
If K <2 Then
If I Am r Then move_to(c) Else do_nothing().
Else %k >:%
10: If r =¢(z)|r € {StartSet UrevStartSet} Then
If I Am Assoc. To A Pos. In StartSet U revStartSet Then
move_into SEC().
Else do nothing().
Else %r is not associated to any of the positions in StartSet U revStartSet%
15: If I Am r Then move to(c) Else do nothing().
If More Than One Robot Is Inside SEC' Then
If I Am Inside SEC Then move to(c) Else do nothing().

Note that Lines 7-8 as well as Lines 14-15 are only performed if the initial con-
figuration runs into Lines 7-8 or Lines 14-15, respectively, since the algorithm does
not create the corresponding configurations from any other initial configuration.

In the following, like in the case of one and two starting indices of LexMinString,
we consider all possible initial configurations that make the main algorithm call this
subroutine. Without loss of generality, we assume that StartSet # ().

(1) All robots are on SEC. The subroutine performs Lines 2-4, where all robots
associated to a position in StartSet U revStartSet are allowed to move inside
SEC, while all other robots remain on SEC: let Allowed be the set of robots
allowed to move at this time (note that, by Equation (3), |Allowed| > 2). By
Lemma 5.8, k > 3; therefore, by Lemma 5.7, SEC remains invariant if we move
robots in Allowed inside SEC'. By definition of move_into_SEC(), none of the

28

robots allowed to move will reach ¢ (in one cycle). Moreover, in finite time,
either one or more than one robot enter inside SEC. We distinguish the two
cases.

a. In finite time, two or more robots from Allowed move inside SEC. The
subroutine runs Lines 16-17, where all robots inside SEC' move towards
c. By Note 3, this case applies until one ore more robots reach ¢ (by As-
sumptions Al and A2, this happens in a finite number of cycles). If only
one robot reaches c first, Lines 8-9 of the main algorithm are performed,
and Case (E) applies. Otherwise (more than one robot reaches ¢ simulta-
neously), there is a (unique) point with strict multiplicity at ¢, and Case
(SM) of the main algorithm applies.

b. If only one robot in Allowed leaves the circumference of SEC, say r, then
the subroutine runs into Lines 10-13 (by Note 3, r is still associated to a
position in StartSet U revStartSet). By definition of move_into SEC(),
r does not move until at least another robot associated to a position in
StartSetUrevStartSet enters SEC. By Assumptions Al and A2, this even-
tually happens in finite time, and, by Lemma 5.7, SEC does not change.
According to the subroutine, at this time Lines 16-17 are executed, and
the argument follows as in previous case.

(2) All robots except one, say r, are on SEC, and k < 2. The subroutine runs
into Lines 7-8, where robot r moves towards ¢. By Note 3, this case applies
until, in a finite number of cycles, r reaches c. When this happens, Lines 5-7
of the main algorithm are executed, and case (C) applies.

(3) All robots except one, say r, are on SEC, k > 3, and r is associated to
a position in StartSet U revStartSet. The subroutine executes Lines 10-13:
all robots associated in StartSet UrevStartSet are allowed to move inside SEC
(by definition of move_into SEC(), r does not move). The argument follows as
in previous Case (1).b.

(4) All robots except one, say r, are on SEC, k > 3, and r is not associated
to any of the positions in StartSet UrevStartSet. The subroutine executes
Lines 14-15: r moves straight towards ¢. By Note 3, this case applies until,
in a finite number of cycles, r reaches ¢. At this point, Lines 5-7 of the main
algorithm are executed, and Case (C) applies.

(5) More than one robot is inside SEC. The subroutine runs into Lines 16-17,
and a similar argument to the one used in previous Case (1).a applies.

Therefore, we can state the following

Theorem 5.4. If the initial configuration of the robots is such that Subroutine 3 is
executed, then in a finite number of cycles the robots gather at a point.

By Theorems 5.1-5.4, we can finally state the following

29

Result 5. Five or more robots that can detect multiplicity and that are not in a
totally symmetric configuration at the beginning can always gather at a point in a
finite number of cycles.

6 Conclusion

In this paper, we studied the GATHERING PROBLEM for a set of autonomous mobile
robots. This problem is unsolvable for robots that cannot detect multiplicities. For
n = 2 the problem is still unsolvable, unless they can detect collisions. For n = 3 we
observed that the robots can choose as gathering point the Weber point of their initial
positions. For n = 4 we presented an ad-hoc algorithm, that, in the general case,
gather the robots in the intersection of the two diagonals of the quadrilater having
as vertices the position of the robots at the beginning.

For more than four robots, we briefly outlined the solution for the GATHERING
PROBLEM when the robots are at the beginning in a biangular configuration; this
algorithm covers also the case when the robots are in a totally symmetric configuration
at the beginning. In the more general case when the robots are not in a totally
symmetric configuration at the beginning, we presented Algorithm 4, that solves the
problem in finite time. This algorithm gathers the robots either at the center of the
smallest circle enclosing the starting positions of the robots, or at a point on the
circumnference of the SEC.

Hence, we presented two different algorithms, which together cover all possible
initial configurations. However, these two algorithms cannot be simply combined
to solve the entire GATHERING PROBLEM: let the robots’ initial configuration be
non—biangular. Hence, they start executing Algorithmn 4. During the run of the
algorithm, it may happen that the robots form a biangular configuration. Since
the robots act completely asynchronously, some of them may observe this biangular
configuration, while others do not. Thus, some of the robots move to the center of
biangularity, while others still perform Algorithm 4. Hence, they might not gather at
a point. Therefore, the remaining challenge is to design an algorithm that solves the
GATHERING PROBLEM with n > 5 robots for any initial configuration.

In Theorem 2.1, we stated that the GATHERING PROBLEM 1is solvable only if the
robots can detect multiplicities. Obviously, instead of multiplicity detection, other
abilities may be considered in future work. For instance, it would be interesting to
explore the relationship between memory and solvability of the assigned tasks, or to
study the presence of some kind of communication among the robots.

Acknowledgements

We would like to thank Paola Flocchini and Nicola Santoro for the intersting discus-
sions, and Stephan Eidenbenz, Vincenzo Gervasi, Zsuzsanna Liptak, Konrad Schlude,
and Peter Widmayer for the helpful comments.

30

References

1]

H. Ando, Y. Oasa, I. Suzuki, and M. Yamashita. A Distributed Memoryless
Point Convergence Algorithm for Mobile Robots with Limited Visibility. IEEE
Transaction on Robotics and Automation, 15(5):818-828, 1999.

T. Balch and R. C. Arkin. Behavior-based Formation Control for Multi-robot
Teams. IEEE Transaction on Robotics and Automation, 14(6), December 1998.

M. Cieliebak and G. Prencipe. Gathering Autonomous Mobile Robots. In
Proceedings of the 9" International Colloguium On Structural Information And
Communication Complezity (SIROCCO 9), pages 57-72, June 2002.

E. J. Cockayne and Z. A. Melzak. FEuclidean Counstructibility in Graph-
minimization Problems. Mathematical Magazine, 42:206-208, 1969.

P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Hard Tasks for Weak
Robots: The Role of Common Knowledge in Pattern Formation by Autonomous
Mobile Robots. In Proceedings of the 10" Annual International Symposium on
Algorithms and Computation (ISAAC ’99), volume 1741 of LNCS, pages 93-102,
1999.

P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Gathering of Au-
tonomous Mobile Robots With Limited Visibility. In Proceedings of the 18

International Symposium on Theoretical Aspects of Computer Science (STACS
2001), volume LNCS 2010, pages 247-258, 2001.

D. Jung, G. Cheng, and A. Zelinsky. Experiments in Realising Cooperation
between Autonomous Mobile Robots. In ISER, 1997.

M. J. Matari¢. Designing Emergent Behaviors: From Local Interactions to Col-
lective Intelligence. In From Animals to Animats 2: Int. Conf. on Simulation of

Adaptive Behavior, pages 423-441, 1993.

Z. A. Melzak. On the Problem of Steiner. Canadian Mathematical Bulletin,
4(2):143-148, May 1961.

G. Prencipe. CORDA: Distributed Coordination of a Set of Autonomous Mobile
Robots. In ERSADS 2001, pages 185-190, 2001.

G. Prencipe. Distributed Coordination of a Set of Autonomous Mobile Robots.
PhD thesis, Universita di Pisa, 2002. http://sbrinz.di.unipi.it/ peppe/tesi.ps.

G. Prencipe. On the Effect of Synchronicity on the Behavior of Autonomous
Mobile Robots. Submitted to Theory of Computing Systems, 2002.

. Suzuki and M. Yamashita. Distributed Anonymous Mobile Robots: Formation
of Geometric Patterns. Siam Journal of Computing, 28(4):1347-1363, 1999.

31

[14] E. Weiszfeld. Sur le Point Pour Lequel la Somme Des Distances de n Points
Donnés Est Minimum. Tohoku Mathematical, 43:355-386, 1936.

[15] E. Welzl. Smallest Enclosing Disks (Balls and Ellipsoids). LNCS, 555:359-370,
1991.

32

