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Abstract

In this paper, we present parallel algorithms for the coarse grained multicomputer

(CGM) and bulk synchronous parallel computer (BSP) for solving two well known graph

problems: (1) determining whether a graph G is bipartite, and (2) determining whether

a bipartite graph G is convex.

Our algorithms require O(log p) and O(log2 p) communication rounds, respectively,

and linear sequential work per round on a CGMwith p processors andN=p local memory

per processor, N=jGj. The algorithms assume that N
p
� p� for some �xed � > 0, which

is true for all commercially available multiprocessors. Our results imply BSP algorithms

with O(log p) and O(log2 p) supersteps, respectively, O(g log(p)N
p
) communication time,

and O(log(p)N
p
) local computation time.

Our algorithm for determining whether a bipartite graph is convex includes a novel,

coarse grained parallel, version of the PQ tree data structure introduced by Booth and

Lueker. Hence, our algorithm also solves, with the same time complexity as indicated

above, the problem of testing the consecutive-ones property for (0; 1) matrices as well

as the chordal graph recognition problem. These, in turn, have numerous applications

in graph theory, DNA sequence assembly, database theory, and other areas.

1 Introduction

In this paper, we study the problem of detecting bipartite graphs and convex bipartite

graphs. That is, given an arbitrary graph G, determine whether G is a bipartite graph and,

given a bipartite graph G, determine whether G is a convex bipartite graph. Bipartite and

convex bipartite graphs are formally de�ned as follows.

De�nition 1 A graph G = (V;E) is a bipartite graph if V can be partitioned into two sets

A and B such that A\B = ;, A[B = V and E � ((A�B)[ (B�A)). A bipartite graph

G is also denoted as G = (A;B;E).

De�nition 2 A bipartite graph G = (A;B;E) is a convex bipartite graph if there exists an

ordering (b1; b2; � � � ; bjBj) of B such that, for all a 2 A and 1 � i < j � jBj, if (a; bi) 2 E

and (a; bj) 2 E then (a; bk) 2 E for all i � k � j.
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These, and closely related, problems has been extensively studied for the sequential

[1, 16] and the shared memory (PRAM) parallel [5, 6, 12, 13, 14, 15] domain. Unfortu-

nately, theoretical results from PRAM algorithms do not necessarily match the speedups

observed on real parallel machines. In this paper, we present parallel algorithms that are

more practical in that the assumptions and cost model used re
ects better the reality of

commercially available multiprocessors. More precisely, we will use a version of the BSP

model, referred to as the coarse grained multicomputer (CGM) model. In comparison to

the BSP model, the CGM [7, 8, 9, 10] allows only bulk messages in order to minimize mes-

sage overhead costs. A CGM is comprised of a set of p processors P1; : : : ; Pp with O(N=p)

local memory per processor and an arbitrary communication network (or shared memory).

All algorithms consist of alternating local computation and global communication rounds.

Each communication round consists of routing a single h-relation with h = O(N=p), i.e.

each processor sends O(N=p) data and receives O(N=p) data. We require that all infor-

mation sent from a given processor to another processor in one communication round is

packed into one long message, thereby minimizing the message overhead. A CGM compu-

tation/communication round corresponds to a BSP superstep with communication cost gN
p

(plus the above \packing requirement"). Finding an optimal algorithm in the coarse grained

multicomputer model is equivalent to minimizing the number of communication rounds as

well as the total local computation time. The CGM model has the advantage of produc-

ing results which correspond much better to the actual performance of implementations on

commercially available parallel machines. In addition to minimizing communication and

computation volume, it also minimizes important other costs like message overheads and

processor synchronization.

In this paper, we present parallel CGM algorithms for detecting bipartite graphs and

convex bipartite graphs. The algorithms require O(log p) and O(log2 p) communication

rounds, respectively, and linear sequential work per round. They assume that the local

memory per processor, N=p, is larger than p� for some �xed � > 0. This assumption is

true for all commercially available multiprocessors. Our results imply BSP algorithms with

O(log p) supersteps, O(g log(p)N
p ) communication time, and O(log(p)Np ) local computation

time.

The algorithm for detecting bipartite graphs is fairly simple and is essentially a com-

bination of tools developed in [3]. The larger part of this paper deals with the problem

of detecting convex bipartite graphs. This is clearly a much harder problem. It has been

extensively studied in the literature and is closely linked to the consecutive ones problem

for (0; 1)-matrices as well as chordal graph recognition [1, 5, 6, 12, 13, 14, 15, 16].

Our algorithm for determining whether a bipartite graph is convex includes a novel,

coarse grained parallel, version of the PQ tree data structure introduced by Booth and

Lueker [1]. Hence, our algorithm also solves, with the same time complexity as indicated

above, the problem of testing the consecutive-ones property for (0; 1)-matrices as well as the

chordal graph recognition problem. These, in turn, have numerous applications in graph

theory, DNA sequence assembly, database theory, and other areas. [1, 5, 6, 12, 13, 14, 15, 16]

2 Detecting Bipartite Graphs

In this section, we present a fairly simple CGM algorithm for detecting bipartite graphs. It

is essentially a combination of tools developed in [3].

Algorithm 1 Detection of Bipartite Graphs
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Input: A Graph G = (V;E) with vertex set V and edge set E, jGj = N , stored on a CGM with p
processors and O(N=p) memory per processor; N=p � p� for some �xed � > 0. V and E are arbitrarily

distributed over the memories of the CGM. Output: A Boolean indicating whether G is a bipartite

graph and, if it is, a partition of V into two disjoint set A and B such that E � ((A �B) [ (B �A)).
(1) Compute a spanning forest of G [3].

(2) For each tree in the forest, select one arbitrary node as the root. Apply the CGM Euler Tour

algorithm in [3] to determine the distance between each node and the root of its tree. Classify the

nodes into two groups: the nodes with an odd numbered distance to the root, and the nodes with

an even numbered distance to the root.

(3) Each processor examines the edges stored in its local memory. If any such edge has two vertices

that belong to the same group, the result for that processor is \failure"; otherwise, the result is

\success".

(4) By applying CGM sort [11] to all \failure"/\success" values, it is determined whether there was any

processor with a \failure" result. If there was any \failure", the graph G is not bipartite. Otherwise,

G is a bipartite graph, and the two groups of vertices identi�ed in Step 2 are the sets A and B.

Theorem 1 Algorithm 1 detects whether G = (V;E), jGj = N , is a bipartite graph and,

if so, partitions E into sets A and B such that E � ((A � B) [ (B � A)) in O(log p)

communication rounds and O(N
p ) local computation per round on a CGM with p processors

and O(N
p
) memory per processor, N

p
� p� for some �xed � > 0.

Proof. Omitted due to page restrictions; consult [4] for details. 2

3 Detecting Convex Bipartite Graphs

We now turn our attention to the problem of testing whether a given bipartite graph

is a convex bipartite graph. The sequential solution, presented by Booth and Lueker [1],

introduced a data structure called PQ-tree. Our coarse grained parallel solution will include

a coarse grained parallel version of the PQ-tree. We will �rst review Booth and Lueker's

PQ-tree de�nition.

3.1 PQ-Trees

A PQ-tree [1] is a tree data structure that represents a class of permissible permutations

over a universal set.

De�nition 3 A tree T is a PQ-tree if every internal node of T can be classi�ed as either

a P-node or a Q-node. A P-node is an internal node that has at least 2 children, and the

children can be permuted in any order. A Q-node is an internal node that has at least

3 children, and the children can only be permuted in two ways: the original order or the

reverse order. The leaves of the PQ-tree are elements of a universal set S = fa1; : : : ; ang,

usually called the ground set.

The order of the ground set in the PQ-tree, from left to right, is called its frontier.

The frontier of a PQ-tree is clearly a permutation of the ground set. Given a PQ-tree T

and using only permissible permutations of its internal nodes, we can generate a number of

permutations of S. We will denote with L(T ) the set of all these permissible permutations.

A PQ-tree T 0 is equivalent to T if T 0 can be transformed into T using only permissible

permutations of the internal nodes (if L(T 0) and L(T ) have the same elements).
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Given a set A � S, we say that � 2 L(T ) satis�es A if all elements of A appear

consecutively in �. The main operation on a PQ-tree T is called reduce: given a reduction

set A = fA1; : : : ; Akg of subsets of S and a PQ-tree T , we want obtain a PQ-tree T 0, if it

exists, such that each permutation in L(T 0) satis�es every Ai, 1 � i � k.

Let m = �k
i=1jAij and N = n + m. In order to store T and A, we require a coarse

grained multicomputer with p processors and N=p local memory per processor.

Two particular PQ-trees are the universal and the empty tree: the �rst one has only one

internal node (the root of T ) and that internal node is a P-node; the second one (also called

a null PQ-tree) is used to represent an impossible reduction, that is when it is impossible

to reduce a PQ-tree with respect to a given reduction set.

3.2 Multiple Disjoint Reduce Operations on a PQ-Tree (MDReduce)

In this section, we will present a coarse grained parallel algorithm for the special case of

performing multiple disjoint reductions on a PQ-tree. We will then use this solution to

develop the general algorithm in the subsequent section. More precisely, given a PQ-tree

T we will �rst study how to perform the reduce operation for a set A = fA1; : : : ; Akg of

subset of the universal set S where A1; : : : ; Ak are disjoint. We shall refer to our algorithm

as Algorithm MDReduce. For ease of discussion, each set Ai is assigned a unique color,

and we color the leaves of the PQ-tree accordingly. As shown in [13], MDReduce can

be partitioned into the following phases: (1) pre-process the PQ-Tree (Algorithm 2); (2)

process all the P-nodes (Algorithm 3); (3) process all the Q-nodes (Algorithm 4); (4) if T is

not a null tree, each processor examines its nodes and relabel each orientable node (de�ned

later) to become an R-node; (5) post-process the PQ-Tree (Algorithm 5). In the following

subsections of Section 3.2, we present coarse grained parallel algorithms for each phase.

The PQ-tree de�nitions used are from [1, 13, 14, 15].

3.2.1 Pre-Processing the PQ-Tree

The pre-processing phase extends the coloring � of the leaves to a coloring � of all nodes

of the PQ-tree T . For an internal node v of T , we say that a color is complete at v if all

the leaves with that color are descendants of v. We say a color is incomplete at v if some,

but not all, of the leaves of that color are descendants of v. We say that a color covers

v if all the leaves below v are of that color, and that v is uncovered if no color covers v.

Let LCA(c) be the lowest common ancestor of all leaves with color c. Let COLORS(v)

denote the set of colors assigned to leaves that are descendents of v. Let INC(v) be the

set of colors which are incomplete at v. Then INC(v) = COLORS(v) - fc: LCA(c) is a

descendent of vg.

Algorithm 2 Pre-Processing the PQ-Tree

Input: The original PQ-tree T .
Output: The original PQ-tree T in which each node is assigned a "coloring" �, or, if failure occurs, a

null tree.

(1) Apply the coarse grained parallel Lowest Common Ancestor (LCA) algorithm [3].

(2) Expand T into a binary tree B, as described in Klein [13].

(3) Perform tree contraction on B[3]. For each node vb in B, let vp be the node in T from which vb is
created. Let w1 and w2 be the children of vb. The operation for the tree contraction is INC(vb)
= INC(w1) [ INC(w2) - fc: LCA(c) is a descendent of vpg. If at any point the size of INC is

more than two, stop and return a null tree.
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(4) Let cv be a new color unique to node v. Each processor, for all its nodes, v, calculates �(v) =
< c1; c2 > as follows: If two colors are incomplete at v, then c1 and c2 are these colors. If only

one color c is incomplete at v but c does not cover v, then c1 = c and c2 = cv. If one color c is

incomplete at v and covers v, then c1 = c2 = c. If no color is incomplete at v, then c1 = c2 = cv.

Lemma 1 On a coarse grained multicomputer with p processors and O(N
p
) storage per

processor, Algorithm 2 can be completed in O(log p) communication rounds with O(Np ) local

computation per round.

Proof. Omitted due to page restrictions; consult [4] for details. 2

3.2.2 Processing P-Nodes

A node v in a PQ-tree is orientable if it is a Q-node and the two colors in its �(v) =< c1; c2 >

are di�erent, i.e. c1 6= c2.

For a color c, de�ne hv(c) =

(
c if c 2 INC(v)

cv if c =2 INC(v)

For a PQ-tree T where w1 and wk are the leftmost and rightmost elements, respectively,

of the frontier frT (v), let lT = hv(�(w1)) and rT = hv(�(wk)). If lrT [v] =< lT [v]; rT [v] >

then we use the following notation: < a; b >�< a0; b0 > if fa; bg = fa0; b0g.

Algorithm 3 Processing P-Nodes

Input: The PQ-Tree output from Algorithm 2.

Output: The original PQ-tree T in which all the P-nodes have been processed, or, if failure occurs, a

null tree.

(1) If the input PQ-tree T is a null tree, return T .
(2) Each processor sets variable FAILURE to FALSE
(3) Each processor, for each P-node v, reorder the children of v such that for each color c all children

covered by c are consecutive.

(4) Each processor, for each P-node v and each color c, if there are at least two children covered by

c (and at least one child not covered by c) then insert a new P-node wc between these c-covered
children and v.

(5) Each processor, for each P-node v, constructs an auxiliary graph Gv whose nodes are the children

of v and where for each color c there is an edge between children vi and vj at which c is incomplete

if vi or vj is covered by c, or there is no child covered by c. If any node has more than 2 neighbors,

set FAILURE to TRUE to indicate a failure condition.

(6) Perform a multi-broadcast of the variable FAILURE. If any of the broadcast values is TRUE,

return a null tree.

(7) Each processor uses list-ranking to identify the connected components of each Gv and veri�es that

each of these connected components is a simple path. If any of these components is a cycle, set

FAILURE to TRUE to indicate a failure condition. We call these paths color chains.

(8) Perform a multi-broadcast of the variable FAILURE. If any of the broadcast values is TRUE,

return a null tree.

(9) Each processor, for each color chain � containing at least 2 nodes, chooses one of the 2 orientations

of � arbitrarily. Reorder the children of v so that the nodes of � are consecutive, and insert a new

Q-node between these nodes of v.
(10) Each processor, for each P-node v, let S = fvi : vi is a child of v, and INC(vi)=;g. If every child

of v is in S, then return. Otherwise, reorder the children of v to make S consecutive, insert a new

P-node v0 between v and the subset S (if jSj > 1), and rename v to be a Q-node.

Lemma 2 On a coarse grained multicomputer with p processors and O(Np ) storage per

processor, Algorithm 3 can be completed in O(log p) communication rounds with O(N
p
) local

computation per round.
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Proof. Omitted due to page restrictions; consult [4] for details. 2

3.2.3 Processing Q-Nodes

For each Q-node v, we de�ne an orientation LR(v) which is either �(vi) or �(vi)
R. Note

that if �(vi) =< c1; c2 > than �(vi)
R =< c2; c1 > For < a; b >�< a0; b0 > and a 6= b,

we de�ne < a; b > swap < a0; b0 > equals TRUE if < a; b >=< b0; a0 >, FALSE if

< a; b >=< a0; b0 >. For a Q-node v, flip is de�ned as the operation which re-orders all its

children in reverse order.

Algorithm 4 Processing Q-Nodes

Input: The PQ-tree output from Algorithm 3.

Output: The original PQ-tree T in which all the Q-nodes have been processed, or, if failure occurs, a

null tree.

(1) If the input PQ-tree T is a null tree, return T .
(2) Each processor sets variable FAILURE to FALSE
(3) Each processor, for each Q-node v and children be v1; : : : ; vs, assign to each LR[vi] either �(vi)

or �(vi)
R such that every color in the sequence LR[v1]; : : : ; LR[vs] occurs consecutively, and such

that hv(< L[v1]; R[vs >]) � �(v). If this is impossible, set FAILURE to TRUE to indicate a

failure condition, otherwise, set LR[v] to hv(< L[v1]; R[vs] >).
(4) Perform a multi-broadcast of the variable FAILURE. If any of the broadcast values is TRUE,

return a null tree.

(5) Each processor for each node v: if v is orientable, then set OPP [v] to LR[v] swap LR[v], otherwise,
set OPP [v] to FALSE.

(6) Each processor for each node v: set REV [v] to
L

u is an ancestor of v
OPP [u] (Note:

L
denotes

"exclusive-or").

(7) For each orientable node v, if REV [v] is TRUE, then 
ip v.

Lemma 3 On a coarse grained multicomputer with p processors and O(N
p ) storage per

processor, Algorithm 4 can be completed in O(log p) communication rounds with O(Np ) local

computation per round.

Proof. Omitted due to page restrictions; consult [4] for details. 2

3.2.4 Post-Processing the PQ-Tree

Algorithm 5 Post-Processing the PQ-Tree

Input: The PQ-tree output from Algorithm 4, with all R-nodes renamed.

Output: Result of Algoithm MDReduce.

(1) If T is a null tree, return.

(2) Each processor temporarily cuts the links of its Q-nodes to their parents.

(3) Each processor performs pointer jumping for all its nodes that are children of R-nodes to determine

their lowest Q-node ancestor.

(4) Each processor restores the links cut in Step 2.

(5) Each processor eliminate its R-nodes by setting the parents of their children to their lowest Q-node

ancestors.

Lemma 4 On a coarse grained multicomputer with p processors and O(N
p
) storage per

processor, Algoritm 5 can be completed using in O(log p) communication rounds with O(N
p
)

local computation per round.

Proof. Omitted due to page restrictions; consult [4] for details. 2
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3.2.5 Analysis

Theorem 2 On a coarse grained multicomputer with p processors and O(Np ) storage per

processor, Algorithm MDReduce performs a multiple disjoint reduce for a PQ-tree T in

O(log p) communication rounds with O(Np ) local computation per round.

Proof. Omitted due to page restrictions; consult [4] for details. 2

3.3 Multiple General Reduce Operations on a PQ-Tree (MReduce)

Using the coarse grained parallel MDreduce algorithm presented in the previous section,

we will now develop coarse grained parallel algorithm for the general MReduce operation:

given a PQ-tree T over the ground set S with n elements, perform the reduce operation for

an arbitrary reduction sets A = fA1; : : : ; Akg

Our CGM algorithm for the general MReduce operation consists of two phases. In the

�rst phase, we execute 3 log p times an algorithm similar to the one proposed by Klein for

the PRAM [13, 14, 15]. We call this operation Klein-like-Mreduce(T; fA1; : : : ; Akg; 0).

Our contribution here is the coarse grained parallel implementation of the various steps

which is, in some cases, non trivial. After the �rst phase, we have reduced the problem to

one in which we are left with a set of smaller PQ-trees over ground sets whose size is at

most n=p. Hence, each tree can be stored in the local memory of one processor. However,

we can not guarantee that all the reduction sets of these PQ-trees do also �t in the local

memory of one processor. In the second part of our algorithm, we use a merging strategy

to complete the algorithm. We will refer to this phase as the Merging Phase.

An illustration of our general algorithm strategy is given in Figure 1.

3.3.1 First Phase: Klein-like-MReduce

For a node v of a PQ-tree, leavesT (v) denotes the set of pendant leaves of v, i.e. leaves

of T having v as ancestor. Let lcaT (A) denote the least common ancestor in T of the

leaves belonging to A. Suppose that v = lcaT (A) has children v1; : : : vs in order. We say

A is contiguous in T if either (1) v is a Q-node, and for some consecutive subsequence

vp; : : : ; vq of the children of v, A =
S
p�i�q leavesT (vi), or (2) v is a P-node or a leaf, and

A = leavesT (v).

Suppose that E is contiguous in T . T jE denotes the subtree consisting of lcaT (E) and

those children of lcaT (E) whose descendents are in E (it is still a PQ-tree whose ground

set is E). For a set A, de�ne

AijE =

(
Ai \E if Ai \E 6= E

; if Ai \E = E

Let ?E denote lcaT (E). T=E denotes the subtree of T obtained by omitting all the

proper descendents of lcaT (E) that are ancestors of elements of E (it is still a PQ-tree

whose ground set is S �E [ f?Eg). For a set A, de�ne

Ai=E =

(
Ai �E [ f?Eg if Ai � E

Ai �E otherwise

Algorithm 6 Klein-like-Mreduce(T; fA1; : : : ; Akg; i)[13, 14, 15]:
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(1) If i = 3 log p, return.
(2) Purge the collection of input sets Ai of empty sets. If no sets remain, return.

(3) Let n be the size of the ground set of T . If n � 4, carry out the reduction one by one. If the size

of the input is smaller than the size of the local memory of the processors, than solve the problem

sequentially using the Booth and Lueker's algorithm.

(4) Otherwise, let A be the family of (nonempty) sets Ai. Let S consist of the sets Ai such that

jAij � n=2. We call such sets "small". Let L be the remaining, "large", sets in A. Find the

connected components of the intersection graph of A, �nd a spanning forest of the intersection

graph of S, and �nd the intersection \L of the large sets.

(5) Proceed according to one of the following cases:

(a) The intersection graph of A is disconnected. In this case, let C1; : : : ; Cr be the connected

components of A. For i = 1; : : : ; r, let Ei be the union of sets in the connected component

Ci. Call MDreduce to reduce T with respect to the disjoint sets E1; : : : ; Er. Next, for each

i = 1; : : : ; r in parallel, recursively call Klein-like-Mreduce(T jEi; Ci; i+ 1).

(b) The union of sets in some connected component of S has cardinality at least n=4. In

this case, from the small sets making up this large connected component, select a sub-

set whose union has cardinality between n=4 and 3n=4. Let E be this union, and call

subreduce(T;E; fA1; : : : ; Akg; i).

(c) The cardinality of the intersection of the large sets is at most 3n=4. In this case, from the

large sets choose a subset whose intersection has cardinality between n=4 and 3n=4. Let E
be this intersection, and call subreduce(T;E; fA1; : : : ; Akg; i).

(d) The other case do not hold. In this case, let E be the intersection of the large sets, and call

subreduce(T;E; fA1; : : : ; Akg; i).

In the full version of this paper [4], we show how to implement the above on a coarse

grained multicomputer with p processors and O(n
p
) storage per processor in O(log p) com-

munication rounds. The non trivial parts are Step 4, Step 5b, the computation of E, T=E,

and T jE, as well as the subreduce operation. The latter involves another operation called

Glue. Due to page restrictions, we can not present this part of our result in the extended

abstract. Instead, we give one example which shows the coarse grained parallel computation

of the set E in Step 5(b) of Algorithm 6.

Algorithm 7 Computation of E.

Input: The set S and the spanning forest of its intersection graph.

(1) In order to �nd a connected component C in the spanning forest of S, such that the union of its

sets has cardinality at least n=4, order all the components according to the labeling given by the

coarse grained parallel spanning forest algorithm [3].

(2) Sort each component with respect to the values of its elements and mark as "valid" only one

element per distinct value.

(3) Sort again with respect to the components' labels. Compute the cardinality of the union of the

elements of each component (that is the size of each component), with a pre�x-sum computation,

counting only the "valid" elements. (Hence, we do not count twice the elements with same values

and compute correctly the cardinality of the union.)

(4) If a processor �nds a component whose size is � n=4, then it broadcasts the label of this component.

Otherwise it broadcast a "not-found" message.

(5) If everybody sent "not-found", go to step 4(c) of Mreduce algorithm. Otherwise, among all the

labels received in the previous step, choose as C the component with the smallest label.

(6) For each of the sets comprising C, compute the distance in the spanning tree (from the root) using

the coarse grained parallel Euler-tour technique [3].

(7) Sort the sets according to distance, and let B1; : : : ; Bs be the sorted sequence. Sort each sets with

respect to the values of its elements and mark as "valid" only one element per distinct value. Sort
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the sets again, according to distance, and let {̂ be the minimum i such that j
Si
j=1

Bj j � n=4. (̂{
can be found with a pre�x-sum computation on the "valid" elements.) Broadcast {̂.

(8) Mark all "valid" elements in B1; : : : ; B{̂ as elements of E.

3.3.2 Second Phase: The Merging Phase

Consider the tree R of recursive calls in Klein-like-Mreduce. We observe that, after

l = 3 log4=3 p levels of R (when the �rst part of our algorithm stops), the sizes of the ground

sets associated with the nodes in R at level l are at most n=p. This is due to the fact that the

descendants of a node u in R that are 3 levels below u are smaller than u by approximately

a factor 3=4. More precisely, if n(u) denotes the size of the ground set of T (u) (the subtree

rooted at u) then, for every node w three levels below u, n(u) � 3n(w)=4 + 1 [13, 14, 15].

Hence, each PQ-tree obtained at the end of the �rst phase �ts completely into the local

memory of one processor.

Unfortunately, the same argument does not hold for the reduction sets. Recall that

m = �k
i=1jAij. Let u be an internal node of R, Au1 ; : : : ; Auj its reduction sets, and mu =

�
j
i=1jAui j. Since the sizes of the reduction sets of the children of u depend strictly on the Aui

and on how they intersect with the set E computed for u, it is possible that the Aui are split

in an unbalanced way. That is, we can have �
j
i=1jAui jEj = O(mu) and �

j
i=1jAui=Ej = O(1)

(or vice versa). If this continues up to level 3 log p of R, it is possible that for a recursive

call associated with a node v at level l, �
f
i=1jAvij > m=p.

Therefore, while the ground set of T (v), and hence T (v), can �t in one processor, the

reduction sets could possibly not. Thus, at this point of the computation, we can not simply

use the sequential algorithm of Booth and Lueker [1] for completing the reduction.

Our idea for solving this problem is the following. Let us consider a node v at level l in

R that has mu > m=p. Since, at any level of recursion, the sum of the sizes of all reduction

sets is at most 2m, we can create �v copies of T (v), with �v = b mv

m=p
c. We observe that

�v2l�v = �v2lb
mv

m=p
c � �v2l

mv

m=p
�

p

m
�v2lmv �

p

m
� 2m = 2p:

Hence, we require at most two copies per processor. The reduction problem of each node

v at level l of R will be solved by the �v processors that have copies of T (v). The next

step is the distribution of the reduction sets associated to v among these �v processors.

Each of these �v processors can solve locally the problem of reducing T (v) with respect

to the reduction sets that it has stored, using Booth and Lueker's algorithm [1]. For each

processor, let T 0(v) refer to this reduced tree. Now, we need to merge these �v trees, T
0(v).

More precisely, we need to compute a PQ-tree bT (v) such that L( bT (v)) = L(T (v)), where

T (v) is the PQ-tree that we would have obtained by reducing T (v) directly with respect

its reduction sets. For the construction of bT (v), we merge the T 0(v) trees in a binary tree

fashion as depicted in �gure 1.

Algorithm 8 Merging Phase

Input: h PQ-trees T (i), with jT (i)j � n=p and �ijT (i)j � n, and their reduction sets.

Output: The T (i) reduced with respect their reduction sets.

(1) Let mi be the sum of the sizes of the reduction sets of Ti. Make �i = b mi

m=p
c copies of each T (i).

Distribute the reduction sets of each Ti between the processors that have the copies of T (i).
(2) Each processor executes the sequential algorithm [1] for its PQ-trees with the reduction sets that

it has stored. Let T 0(i) refer to the trees obtained.
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(3) The �i processors associated with each T (i) merge the T 0(v) trees in a binary tree fashion, as

depicted in Figure 1. The details are discussed below.

We will now discuss the details of Step 3. The following Theorem 3 shows that the merge

operation in Step 3 of Algorithm 8 reduces to a tree intersection operation [13, 14, 15].

Theorem 3 Let T be a PQ-tree over the ground set S and let T 0 be a copy of T . Let T �

and T 0� be the result of the reduction of T with respect to fA1; : : : ; Arg and of T 0 with respect

to fB1; : : : ; Btg, respectively. Let T be the PQ-tree obtained by reducing T with respect to

fA1; : : : ; Ar; B1; : : : ; Btg. Then,

� 2 L(T ), � 2 L(T �) \ L(T 0�):

Proof. L(T ) is the intersection of the sets of all orderings that satisfy A1; : : : ; Ar,

B1; : : : ; Bt, and L(T ). L(T ) is always the same, independently of the order in which we

reduce T . If � 2 L(T ), then � must belong to the intersection between the set of all order-

ings that satisfy A1; : : : ; Ar and L(T) and it must also belong to the intersection between

the set of all orderings that satisfy B1; : : : ; Bt and L(T), that is � 2 L(T �), � 2 L(T 0�) and

� 2 L(T ). Hence � belongs to L(T �) \ L(T 0�). The reverse can be shown analogously. 2

Set E is called segregated in T if E = leaves(lcaT (E)). If E is contiguous in T , we can

modify T , obtaining T 0, so that E is segregated in T 0 and L(T ) = L(T 0). Namely, if E is not

already segregated, then v = lcaT (E) is a Q-node (from the de�nition of contiguous). Insert

an R-node z between the children vp; : : : ; vq and v. In the resulting tree T 0, z = lcatT 0(E)

and leaves(z) =
Sq
i=p leaves(vi) = E. Moreover, it follows from the de�nition of the R-node

that L(T 0) = L(T ).

For a given tree T of n nodes, a node v of T with s children determines a separation of

T into s + 1 subtrees: T1; : : : Ts, the subtree of T rooted at the children of v, and T0, the

subtree obtained from T by deleting T1; : : : ; Ts. We say v is a good separator of T if each

subtree T0; T1; : : : ; Ts has no more than n=2 nodes. Every tree with at least 2 nodes has a

good separator, that can be found by computing size(v), that is the number of descendants

of v, for each node v of T . (This can be easily computed using the Euler tour technique [3].

We recall the following PRAM algorithm from [13, 14, 15]:

Algorithm 9 Intersect(T,T')

Input: 2 PQ-trees T; T 0 over the same ground set.

(1) If T has only one node, return.

(2) Find a good separator v of T with children v1; : : : ; vs. Set A = leavesT (v) and Ai = leavesT (vi)
for i = 1; : : : ; s. Let T0 = T=A and Ti = T jAi for i = 1; : : : ; s.

(3) Reduce T 0 with respect to A and then with respect to the disjoint sets A1; : : : ; As. If v is a Q-node,

also reduce T 0 with respect to the disjoint sets A1[A2; A3[A4; : : : and with respect to the disjoint

sets A2 [ A3; A4 [ A5; : : :
(4) Segregate T 0 with respect to A, and let T 0

0
= T 0=A.

(5) For i = 1; : : : ; s, segregate T 0 with respect to Ai, and let T 0

i = T 0jAi.

(6) Identify a node v with lcaT 0(A). The corresponding subtrees Ti and T
0

i have identical ground set.

Recursively intersect the corresponding subtrees.

We will now outline a coarse grained parallel implementation of Algorithm 9. We observe

that, for a coarse grained parallel implementation, the recursion depth reduces to O(log p)

because at that level, subproblems �t into a single processor and can be handled sequentially.

Finding a good separator (Step 2) can be done using the Euler tour technique. Since the
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two PQ-trees to intersect �t in the local memory of one processor, this computation can be

done sequentially in O(n) time and O(1) communication rounds. The same bounds hold

for the computation of T0 and Ti. The reduction of T 0 required in Step 3 can be done

using Booth and Lueker's sequential algorithm. Since T 0 is on the same ground set as T ,

jT 0j � 2n. Therefore, we can perform this step in O(1) communication rounds and O(n)

time. With a similar argument, segregating T 0 with respect to A and all the Ai (Step 4),

can be performed sequentially in linear time. The same bounds hold for computing T 0
0
and

all T 0
i .

3.3.3 Summary

Theorem 4 On a coarse grained multicomputer with p processors and O(N
p
) storage per

processor, Algorithm MReduce performs a reduce operation for a PQ-tree T in O(log2 p)

communication rounds with O(Np ) local computation per round.

3.4 Convex Bipartite Graphs

Recall the de�nition of convex bipartite graphs (De�nition 2). Given a bipartite graph

G = (A;B;E) with A = fa1; a2; � � � ; akg and B = fb1; b2; � � � ; bng. Let A = fA1; : : : ; Akg

where Ai = fb 2 B : (ai; b) 2 Eg, and let T be a PQ-tree over the ground set B consisting

of a root with children b1; b2; � � � ; bn. The problem of determining whether G is convex and,

if this is the case, computing the correct ordering of the elements in B is equivalent to the

MReduce operation on T with respect to A.

Theorem 5 On a coarse grained multicomputer with p processors and O(N
p ) storage per

processor, the problem of determining whether G is convex (and computing the correct or-

dering of the elements in B) can be solved in O(log2 p) communication rounds with O(Np )

local computation per round.
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The Recursion Tree R

log p

1 32 hv

Processor 1 pα  + 11

T(1) T(1) T(1) T(2)T(2) T(2)

..... .....

T(h)T(1) T(2)

Each T(i) at level log p in R is copied α  timesi

Each processor runs Booth and Lueker locally

Processor 1 p

T'(1) T'(1) T'(1) T'(2)T'(2) T'(2)

..... ..... .....

T'(h)T'(1) T'(2)

1α

1α α  + 11

.....1 2α   + α

1 2α   + α

Figure 1: Illustration of the Main Algorithm.
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