Limited Visibility Gathering by a Set of
Autonomous Mobile Robots

Paola Flocchini* Giuseppe Prencipe! Nicola Santoro?

Peter Widmayer$

Keywords: Distributed Algorithms, Coordination and Control, Mobile
Robots.

Abstract

We consider a collection of robots which are identical (anonymous),
have limited visibility of the environment, and no memory of the past
(oblivious); furthermore, they are totally asynchronous in their actions,
computations, and movements. We show that, even in such a totally
asynchronous setting, it is possible for the robots to gather in the same
location in finite time, provided they have a compass.

1 Introduction

In current robotics research, both from engineering and behavioral view-
points, the trend has been to move away from the design and deployment of
few, rather complex, usually expensive, application-specific robots. Instead,
the interest has shifted towards the design and use of a large number of
“generic” robots which are very simple, with very limited capabilities and,
thus, relatively inexpensive.

In particular, each robot is only capable of sensing its immediate sur-
rounding, performing computations on the sensed data, and moving towards
the computed destination; its behavior is an (endless) cycle of sensing, com-
puting, moving and being inactive (e.g., see [2, 6, 7, 8]). On the other

*School of Information Technology and Engineering, University of Ottawa,
flocchin@site.uottawa.ca

tDipartimento di Informatica - Universitd di Pisa, Corso Italia, 40 - 56100 - Pisa,
e-mail: prencipe@di.unipi.it

1School of Computer Science, Carleton University, santoro@scs.carleton.ca

$Theoretische Informatik, ETH Ziirich, pw@inf.ethz.ch

hand, the robots should be able, together, of performing rather complex
tasks. Examples of typical basic tasks are gathering, leader election, pattern
formation, scattering, etc.

A very important set of questions refer to determining the robots capa-
bilities; that is, how “simple” the robots can be to perform the required task
[3]. In computational terms, this question is to identify the factors which
influence solvability of a given problem (the task).

These questions have been extensively studied both experimentally and
theoretically in the unlimited visibility setting, that is assuming that the
robots are capable to sense (“see”) the entire space (e.g., see [4, 5, 9, 11]).

In general and more realistically, robots can sense only a surrounding
with a radius of bounded size. This setting, called the limited visibility case,
is understandably more difficult, and only few algorithmic results are known
[1, 10].

In this paper we are interested in gathering: the basic task of having the
robots meet in a same location (the choice of the location is arbitrary). Since
the robots are modeled as points in the plane, the task of robots gathering
is also called the point formation problem.

Gathering (or point formation) has been investigated both experimen-
tally and theoretically. In particular, in the limited visibility setting, Ando
et al. [1] presented a gathering algorithm for indistinguishable robots which
are placed on a plane without any common coordinate system; their algo-
rithm does not require the robots to remember observations nor computa-
tions performed in the previous steps. Their result implies that gathering
can be performed with limited visibility by very simple robots: anonymous,
oblivious and disoriented.

Their solution, however, is based on a very strong “atemporal” assump-
tion on the duration of the robots’ actions: their robots must be capable
in every cycle to perform all the sensing, computing and moving instanta-
neously.

This assumption has many consequences crucial for its correctness. For
example, since movement is instantaneous, a robot can not be seen by the
others while moving (and its temporary position mistaken for a destination
location); since sensing and computing is instantaneous, a robot always has
available the correct current situation of its neighborhood.

Note that, since instantaneous movement is not physically realizable,
their solution is only of theoretical interest.

In this paper, we study the gathering problem in the most general case of
an asynchronous system of robots with limited visibility, where both their
computations and their movement requires a finite but otherwise unpre-

dictable amount of time.

The question motivating our investigation is whether point formation is
possible in such a system. Since in these systems gathering is unsolvable if
the robots are disoriented (i.e., have no common system of coordinates), we
shall restrict ourselves to systems with sense of direction (i.e., the robots
share the same coordinate system).

In this paper we show that indeed anonymous oblivious robots with lim-
ited visibility can gather within a finite number of moves even if they are
fully asynchronous. In fact, we describe a new algorithm for solving the
point formation problem in the asynchronous setting by anonymous, obliv-
1ous robots with limited visibility. We then prove its correctness showing
that the robots will gather in a point within a finite amount of time. This
result holds not only allowing each activity and inactivity of the robots to be
totally unpredictable (but finite) in duration, but also making their move-
ment towards a destination unpredictable in length (but not infinitesimally
small).

In other words, we show that gathering can be performed by simpler
robots with fewer restrictions than known before, provided they have a com-
mon coordinate system.

From a theoretical point of view, this result proves that, with respect
to the gathering problem, "sense of direction” has the same computational
power as ”instantaneous actions”.

From a practical point of view, this result has fundamental consequences.
In fact, it allows to substitute a theoretically interesting but physically un-
realizable motorial and computing capability requirement (instantaneous
actions) with a property (sense of direction) which is both simple and inex-
pensive to provide (e.g., by a compass).

The paper is organized as follows. In Section 2 the model under study
is formally presented. In Section 3 the notations used in the paper and
some useful geometric lemmas are introduced. The gathering algorithm is
described in Section 4, and in Section 5 its correctness is proven.

2 The Model

We consider a system of autonomous mobile robots. Each robot is capa-
ble of sensing its immediate surrounding, performing computations on the
sensed data, and moving towards the computed destination; its behavior is
an (endless) cycle of sensing, computing, moving and being inactive.

The robots are modeled as units with computational capabilities, which

are able to freely move in the plane. They are equipped with sensors that
let each robot observe the positions of the others with respect to its local
coordinate system. Each robot is viewed as a point, and can see only a
portion of the plane; more precisely, it can observe whatever is at most at a
fixed distance V from it (limited visibility).

The robots are fully asynchronous. In particular, the amount of time
spent in observation, in computation, and in movement, is finite but other-
wise unpredictable.

Each robot has its own local view of the world. This view includes a local
Cartesian coordinate system with origin, unit of length, and the directions
of two coordinate axes, together with their orientations, identified as the
positive and negative sides of the axes. In this paper we assume that the
robots share the same coordinate system (sense of direction); however, they
do not necessarily agree on the location of the origin (that we can assume,
without loss of generality, to be placed in the view of a robot in its own
current position), nor on the unit distance.

The robots are oblivious, meaning that they do not remember any pre-
vious observation nor computations performed in the previous steps.

The robots are anonymous, meaning that they are a priori indistinguish-
able by their appearances, and they do not have any kind of identifiers that
can be used during the computation. Moreover, there are no explicit direct
means of communication.

Summarizing, the robots are asynchronous, oblivious, anonymous, and
with limited visibility; they do however have a common coordinate system.

They execute the same deterministic algorithm, which takes as input the
observed positions of the robots within the visibility radius, and returns a
destination point towards which the executing robot moves.

A robot is initially in a waiting state (Wait); at any point in time, asyn-
chronously and independently from the other robots, it observes the environ-
ment in its area of visibility (Look), it calculates its destination point based
only on the current locations of the observed robots (Compute), it then
moves towards that point (Move), and goes back to a waiting state. The
sequence: Wait (W) - Look (L) - Compute (C) - Move (M) will be called
a computation cycle (or briefly cycle) of a robot. The operations performed
by the robots in each state will be now described in more details.

1. Wait The robot is idle. A robot cannot stay infinitely idle (see Assump-
tion A1 below).

2. Look The robot observes the world by taking a snapshot of the positions
of all other robots with respect to its local coordinate system. Each

robot r is viewed as a point, and therefore its position in the plane is
given by its coordinates’.

3. Compute The robot performs a local computation according to its de-
terministic, oblivious algorithm. The result of the computation can be
a destination point or do_nothing().

4. Move If the result of the computation was do_nothing(), the robot
does not move; otherwise, it moves towards the computed destination
of an unpredictable amount of space, which is however assumed to be
neither infinite, nor infinitesimally small (see Assumption A2 below).
Hence, the robot can only go towards its goal along a curve, but it
cannot know how far it will go in the current cycle, because it can
stop anytime during its movement.

In the model there are two basic assumptions which ensure finitness:

Assumption A1(Cycle Time) The time for a robot to complete its cycle
is neither infinite nor infinitesimally small (i.e., is finite and bounded
from below).

Assumption A2(Minimal Distance) For each robot r, there exists an
arbitrary small constant d, > 0, representing the minimum distance it
travels in the Move state, when the result of the computation is not
domnothing(); if the computed destination point is closer than d,,
will reach it. Moreover, we define § = min, d,.

As a consequence, the (global) time that passes between two successive
movements of the same robot is finite; furthermore, there is no assumption
on the maximum distance a robot can travel before observing again (apart
from the bound given from the destination point that has to be reached).
The only assumption made is that there is a lower bound on such distance:
when a robot r moves, if it does not reach its destination, it moves at least
some positive, small constant §,.

Let us stress that this model with the above assumptions makes the en-
vironment totally asynchronous: there is no common notion of time; a robot
observes the environment at unpredictable time instants; no assumptions on
the cycle time of each robot, nor on the time each robot elapses to execute

'"We do not require the robots to be able to detect multiplicity (i.e. whether there
is more than one robot on any of the observed points, included the position where the
observing robot is).

each phase of a given cycle are made. Thus, each robot can take its own
time to compute, or to move towards some point in the plane: in this way,
it is possible to model different computational and motorial speeds of the
units.

The most important consequence is asynchronicity within a cycle [4]:
every robot can be seen by other robots while it is moving. This feature
renders more difficult the design of an algorithm to control and coordinate
the robots. An additional complication is due to the unpredictable delay
between an observation by a robot and the corresponding move. 1t is in fact
possible that, by the time the robot finally moves, the other robots have
in the meanwhile moved, making the environment not “coherent” with the
observed one.

3 Notations and Geometric Lemmas

We first define sets related to which state a robot is at a given time during
the computation.

W(t) and L(t) are the set of all the robots that are respectively in state W
and L at time .

C(t) = Cy(t) UC4 (¢) is the set of all the robots that at time ¢ are computing.
The set Cy contains those robots whose computation’s result is to stay
still (we say that they execute a null movement), while C; contains
those robots whose computation’s result is some destination point (we
say that they will execute a real movement).

M(¢) = My (t) UM, (¢) is the set of all the robots that at time ¢ are exe-
cuting a movement. The set M(¢) contains the robots executing a
null movement (they stay still); M, (¢) contains those executing a real
movement (they are effectively moving towards a destination).

We define circle of visibility C;(t) of a robot r; at time ¢ the circle of radius
V centered in ry, if r; € I(t). Otherwise C;(t) = C;(t'), where t' = max{t|r; €
L(¢)}. In other words, if a robot is Observing, its circle of visibility is the
circle of radius V' centered in itself; otherwise, it is the circle of radius V
centered in the location of its most recent Look phase. Where no ambiguity
arises, the parameter ¢ in C;(¢) will be omitted.

We now introduce some notations and geometrical lemmas which will
be needed later. Let A and B be two points; with AB we will indicate the

segment starting in A and terminating in B. When no ambiguity arises we
will also use the notation AB to denote the length of such a segment. Let
A and B be two points on a circle and not on a diameter; with arc(AB) we
indicate the smallest arc on the circle passing through A and B; moreover,
sector(AB) indicates the region limited by the segment AAB and arc(AB).
In general, r indicates a generic robot in the system (when no ambiguity
arises, r is used also to represent the point in the plane occupied by robot
r); capital greek letters will represent vertical axes; capital italic letters
indicate regions (e.g. £, R); given a region, we denote by |- | the number of
robots in that region. All other single letters indicate points in the plane.

Lemma 3.1. FEvery internal chord of a general triangle has length less or
equal to the longest side of the triangle.

Lemma 3.2. Let Q) be a convexr quadrilateral. If all the sides and the two
internal diagonals have length less or equal to V' then every internal chord
of Q is less or equal to V.

Lemma 3.3. Let OB be the radius of a circle centered in O and D be a
point on the circle such tiﬂBOD = B, with 0 < B < 90°. Then pC < BC,
Vp € arc(BD) and YC € OD (see figure 1.b).

Proof. Let p € arc(BD) and 3, the angle pOC. from the cosine theorem
we have:
pC° =0C" + OB’ — 20C - OB cos f,.
Since 0 < 8, < B <90°, we have that cos 8, > cos 8. Thus,
pC° =0C"+0B° ~2.0C-0Bcosp, < OC° + OB’ — 20C - OB cos f = BC",

and the theorem follows. O

4 The Algorithm

Let us call Universe (4l) the smallest isothetic rectangle containing the initial
configuration of the robots and let us call Right and Bottom respectively,
the rightmost and the bottom most side of Ll.

The idea of the algorithm is to make the robots move either towards the
bottom or towards the right of the Universe (a robot will never move up
or to its left), in such a way that, after a finite number of steps, they will
gather at the bottom most lower most corner of the Universe.

Figure 1: (a) The Notation used in Algorithm 1; (b) Lemma 3.3; (c) Lemma
5.4.

A robot r can move only if it does not see any robot neither to its left
nor above on its vertical axis. Several situations could arise depending on
the positions of the robots in its area of visibility:

e If r does not see any robot, it does not move;

e If r sees robots only below on its vertical axis, it moves down towards
the nearest robot;

e If r sees robots only to its right, it moves horizontally towards the
vertical axis of the nearest robot

e If r sees robots both below on its axis and on its right, it computes a
destination point and performs a diagonal move towards the right.

Recall that C; is the circle of visibility of robot r;. Let AA! be the vertical
diameter of such region; let R; and L; denote the regions to the right and
to the left of 7;, respectively (see Figure 1). Let Sp, = r; A’ and S, = r;A.

Algorithm 1 (General).

Extrem := (|L;| = 0A|Sp| = 0);

If I am —FEztrem Then
Do_nothing();
Else
If (|R;| =0A|Ss| =0) Then
Do_nothing();
If |R;| =0 Then
j := nearest visible robot on Sy;
Move ().
If (|Ri| #0A|Ss| =0) Then
P, := Nearest();
H; := HDestination(V;);
Move (H;).
If |R;| # 0 Then
U; := Nearest();
Diagonal Movement (¥;).

Nearest () returns the vertical axis on which the robot in R; with the
nearest axis to r; lies.

H Destination(¥;) returns the intersection between ¥; and a line par-
allel to the z direction and passing through r;.

Move (p) terminates the local computation of the calling robot and moves
it towards p.

In the last case of the Algorithm 1, r; sees somebody below it and some-
body to its right, therefore, to avoid losing some robots, it has to move
diagonally, as indicated by the following routine.

Algorithm 2 (Diagonal Movement (;)).

1: B := upper intersection between C; and V;;
2: A := point on S, at distance V from me;

3 26 = A’l/";B,

4: If B < 60° Then

5. B := Rotate(r;, B).

6: H; := D Destination(V,V;, A, B);

7: Move (H;).

Rotate (r;, B) rotates the segment r; B in such a way that 8 = 60° and
returns the new position of B.

With D Destination(V,¥,;, A, B), r; computes its destination in the
following way: the direction of its movement is given by the perpendicular
to the segment AB; H; = min{ V, the distance of ¥; according the direction
of movement }.

5 Correctness

In this Section we prove the correctness of the algorithm by first showing
that the robots which are mutually visible at any point of the computation,
will stay mutually visible until the end of the computation, and concluding
that at the end of the computation all robots will gather in one point. We
first introduce some lemmas.

From Assumptions Al and A2 it directly follows that:

Lemma 5.1. Let r; and r;j be two generic robots and let t and t' > t two
moment of the computation. If r; € L(t), r; € L(t'), 7; € M(t), rj € M(t'),
r; € Ci(t) and r; € C;(t'), then rj can not be in the same point in t and t'.

Moreover, from the algorithm it follows that:

Lemma 5.2. Let rj and r; two arbitrary robots, with r; to the right of r;
at time t. If r; € L(t) and 757; <V, then r; can not pass r; in one step.

Let us consider a generic robot r; executing the algorithm. Let § be
the angle between the vertical axis of r; and the direction of its movement
(Ar;H; in Figure 1.c).

Lemma 5.3. The segment r;H; is always smaller or equal to V.

Proof. It follows from the fact that r;H; = 2Vcosf and that g > 60 by
construction. O

Lemma 5.4. BH; = AH; =V and pH; <V, V p € 1;A.

Proof. By construction, we have that ;B = V (step 2 of Algorithm
2). Since the triangle A(A,r;, B) is isoscele and r;h is its height, then
Ar;h = 8. As a consequence, riH;B = Afih = B and, thus, also the triangle
A(r;, B, H;) is isoscele and BH; = ;B =V.

Moreover, we know that Ah = hB, since A(A,r;, B) is isoscele and r;h
is perpendicular to AB, hf{\iB = and BH; = V. So we can derive:

AHZ: h—-m2+m2:\/(BHZ"COSIB)2+WZ\/VQ-COSQIB_I_VQ.

The second part of the statement follows by Lemma 5.3 and Lemma 3.1
on A(’r‘i,A,HZ’). O

Thus, O(A, 14, B, H;) is a parallelogram. We now introduce the definition
of wvisibility graph.

10

sin? B = V.

The visibility graph G = (N, E) of the robots is a graph whose node set
N is the set of the input robots and, Vr;,7; € N, (r;,r;) € E iff r; and r;
are initially at distance smaller than the visibility radius V.

We first show that the visibility graph must be connected in order for
the algorithm to be correct.

Lemma 5.5. If the wvisibility graph G is disconnected, the problem is un-
solvable.

Proof. Let us assume, by contradiction, that there exists a deterministic
algorithm A that solve the problem even if G is disconnected. Let us assume
that: there are two robots in input, say r and r'; C, N C» = 0; the robots
move always in a synchronous way; the algorithm A allow them to gather
in a point d.

Since the algorithm is deterministic and both 7 and 7’ see the world in
the same way (namely no other robot is in their circle of visibility), they
will always move in the same direction and the distance between them will
never decrease. Therefore they can not gather in d, having a contradiction.

O

Thus, in the following we will always assume that G is connected.

5.1 Preserved Visibility

In this Section we prove that the visibility graph is preserved during the
entire execution of the algorithm. We prove so by introducing the notion
of mutual visibility and by showing that the robots which are connected in
the visibility graph (i.e., those which are initially within distance V) will
eventually become mutually visible, and that two robots that are mutually
visible at some point in the algorithm will stay mutually visible until the
end of the computation.

Informally speaking, we say that two robots are mutually visible if each
robot includes the other one in its computation, namely each of them had
seen the other one during its observation phase. Formally, two robots r;
and ro are mutually visible at time ¢ iff

-1 € (]L(t) U(C@(t) UM@('LL)) ATy € Cl(t) ATy € (W(t) U]L(t)), or
~ 1o € (L(£) UCy () UMy (£) A1 € Calt) Ay € (W(E) UL(E)).

Since all the robots at the beginning are in W, from the above definition
we have that the robots that at the beginning are within distance V will
become mutually visible in finite time. That is, the following lemma holds:

11

Lemma 5.6. Let r; and r; be two robots that at the beginning are within
distance V. Robots r; and r; will become mutually visible in a finite number
of steps.

Proof. Let us assume that r; enters its first look phase before r;, that is
r; € L(t) and ; € W(t), for some ¢ > 0. Since they are within distance V/,
the lemma follows. The same argument applies if r; enters its look phase
before r; or if they look the first time at the same moment. O

We now introduce a couple of Lemmas which will be useful to prove
that mutually visible robots will stay so until the end of the algorithm. Let
r; be a generic robot on an axis I'. Let IV and T be two vertical axes to
the right of I'. We will denote by I'T” and I'T” the distances between the
corresponding axis.

Then we have:

Lemma 5.7. TT' < TT” & B > Bro, where Brv and Pro are respectively
the angles computed by the routines Diagonal Movement (I'') and Diagonal Movement (I'"')
(refer to Figure 2.a).

Proof. Let A be apoint on I' at distance V below ;. Note that upper inter-
section between C; and I, say B’, is higher than the intersection between C;
and I, say B”, thus AB" is always to the right of AB’. The lemma follows
from the way the final destinations respectively on IV and I'" are computed
by the routine D Destination(-) called by Diagonal Movement (). O

Lemma 5.8. Let us consider the situation depicted in Figure 2.b), where
T 45 a generic robot, F is a point at distance < V from r; on its azis
(with F # r;), H; is the destination point of r;. Let ps be a segment in
A(F,M,K), with s to the right of p, and s' the projection of s over r;H;.
Then we have

n<v, VI eps VI €sH,.
Proof. We distinguish three cases.

Case i (Figure 2.b): both p and s are below their projections on r;H;

By Lemma 5.3, we have
s'Hy <riH; < V. (1)
Moreover, let s” be the projection of s on FM. Since

12

7 F"*'""p‘.;‘;;," K
? :

(c)

Figure 2: (a) Lemma 5.7; (b) and (c) Lemma 5.8.

13

&
=

<V (by Lemma 5.4),
- HZM = ’I‘Z'F < V, and
- FM =r;H; <V (by Lemma 5.3),

by Lemma 3.1 on A(F, H;, M), we can conclude that
s"H; <V, (2)
PH; <V, (3)

and that FK < V. By applying again Lemma 3.1 on A(F, K, M), we
have that

ps" < V. (4)

Moreover, from Lemma, 5.3 it follows that:

s's" < F < V. (5)

Let p’ the projection of p on r;H;. Since p'p < r;F <V, by (3) and
Lemma 3.1 on A(p', p, H;), we have

ps' < V. (6)

By (1), (2), (3), (4), (5), (6), and Lemma 3.2 on <(s',p,s”, H;) the
proof follows.

Case ii (Figure 2.c): s is above s'

Since r; H; is parallel to and above F'M, and r; # F, we clearly have
that both s’ and H; are inside A(F, K, M). Since by construction also
p is inside this triangle, the lemma follows by Lemma 3.1.

Case i (Figure 2.c): p is above p'

Since p’ must be inside A(F, K, M), we have that also s’ and H; must
be inside it, and the Lemma follows by Lemma 3.1 on A(F, K, M).

O

We are now ready to show that, as soon as two robots becomes mutually

visible, they will stay mutually visible. We first prove that this property

14

Figure 3: Case ii of Lemma 5.9.

15

holds when two mutually visible robots lie on the same vertical axis; and
then we prove that it holds for two robots lying on different vertical axes.

In the next lemma we will refer to the notation introduced in Figure 1.a
and Lemma 5.8.

Lemma 5.9. Let r; and r; be robots which are mutually visible at time t.
Moreover, let they lie, at time t, on the same vertical axis with r; being below
;. There is a time t' > ¢t when r; and r; are mutually visible. Moreover,
between t and t' Tr; < V.

Proof. Let us first consider the case when R; is empty. In such a case, r;
would clearly move towards r; (shortening their distance), while r; would
not move. Since by Algorithm 1 r; can not pass r;, the first time r; stops
while it is moving towards r; the mutual visibility definition holds, and the
lemma, follows.

Let us now consider the more interesting case when R; is not empty. In
the following we shall consider several situations:

Case i: r; does not look until r; reaches its destination H;.

We have that r; € W while r; is moving towards H;. Since AH; =V
(Lemma 5.4) and r;H; < V (Lemma 5.3), we have that, by Lemma
3.1 on A(r;AH;), the distance between r; and r; is always <V while
r; is moving. Therefore, the first time r; stops along its path (at most
on H;), the mutual visibility definition applies and the lemma follows.

Case #i: r; looks while r; is moving towards its destination H;. Since r;
is on 7;’s right, r; can not perform a Vertical Move. Hence, 7; can
either decide not to move (because it sees some robots above) or to
move. In the first case the proof reduces to the one of Case 7. On the
other hand, r; can decide to move after having looked. From Case i
we know that r; can see r; on its right. Moreover, it might also see
some other robots below it, that can be either on the same axis (r;
perform a Diagonal Move) or not (r; performs an Horizontal Move).
The following applies to both situations.

Let us call ¥7 the w'? axis, counting from T', from where rj looks
while r; is still on its way towards H;, and p,, the points on this axis
from where r; performs the look phases. Clearly ‘I’? =T and F = pg
coincides with the position of r; on I'. In the following we will prove
by induction that

a. UY is to the left of T¥*',

16

b. The destination point dy+1 that 7; computes when it is on ¥} is
inside A(F, K, M),

C. Dur17; <V, and \IJ;’H is to the left of r;.

Basis Let d; be the first destination point r; computes. Since r; is
on its right, r; can only decide to perform a Diagonal Movement,
therefore d; must be to the right of ‘112, and as a consequence
\Il? is to the left of \IJJ1 Moreover, by Lemma 5.7 we know that
r;d; must lie above 7;M, hence p; (that is on r;d;) must be
whithin A(F, K, M). Finally, r; can see r; by hypothesis and at
the beginning \I/;? is to the left of r;, and the basis of the induction
follows.

Inductive Step Let us assume that all the statements are true for
1,...,w. Since by inductive hypothesis U7 is to the left of r; and
rj can see r; from U/, r; can only decide to perform a Diagonal
Movement, therefore dy,11 must be to the right of ¥% and can
not be after r; (because of how Diagonal Movement (-) works),
and, as a consequence, \IJ;” is to the left of \I';‘-”H, and a. follows.

Moreover, since \I/;”\IJZ < T'V; and , by Lemma 5.7, we have that

dwpqr1 must be above FM but cannot be above FK (because
the algorithm does not allow ”up” movements). Therefore the
point b. follows.

Furthermore, since b. holds and ‘If}“'l can not be after dy,41, by
Lemma, 5.8 c. follows, and the induction is proved.

Now we know that all the stop 7; does while r; is moving towards H;
are inside A(F, K, M), hence, by Lemma 5.8, whithin distance V' from
ri. Thus we have that, when r; reaches H;, it can see r; on its left,
therefore, it can not move further. It follows that, until r; is before it,
r; can be only in I(+), Cy(+), or My (:). Therefore, the first time that r;
stops after r; reached H;, say at time ¢’ > ¢, 7; and r; will be mutual
visible. Moreover, between ¢t and ¢/, by Lemma 5.8 7;7; < V, and the
lemma follows. O

In the following lemma we show that if a robot sees some robots on its
right, then it will never lose them during the computations. Let R be a set
of robots which are mutually visible with r; at time ¢ and that are located
to the right of ¥;, and r; a robot in R ((refer to Figure 4). Moreover, let B

17

Figure 4: Lemma 5.10.

and C be respectively the upper and lower intersection between ¥; and C;,
and H] be the intersection between C; and the line passing through r; H;.

Lemma 5.10. There exists a time t' > t after which r; will be always mu-
tually visible with the robots in R. Moreover, rir* <V, V r* € R.

Proof. From Algorithm 1, we know that robots in R cannot perform any
movement while 7; is on their left. Let ¢* the time when r; enters its Look
phase and p be the destination point it computes. Clearly, p can not be to
the right of any robot in R. In the following, we first prove that Ir* < V,
Vr* e R and VI € 7;p.

From Lemma 3.3, it follows that:

Vp € arc(BH;), pH; < BH; =V. (7)
Moreover, H;C = BC — BH; < 2V —V =V and from Lemma 3.2 we have:

Vp € arc(H]C), pH; < H,C <V. (8)
Plugging (7) and (8) we obtain:

Vp € arc(BC), pH; <V. (9)

18

Let us now consider a robot r; € sector(BCB) (that is in the area to
the right of ¥; and in C;) and let s’ be the intersection between arc(BC)
and the line passing through H; and r;. We have that Hyry < Hs' <V
(from (9)), 77 < V, and r;H; < V. Therefore, applying Lemma 3.1 to
A(r, i, H;) we have that gry < V, Vq € r;H;. In conclusion, when r; stops
in p, say at time ¢ > ¢, it will see all the robots in R, that can only be in
L(t"), Cy(t"), or My(t'), and the lemma follows. O

By Lemma 5.6, 5.9 and 5.10 we can conclude that:

Theorem 5.1. The visibility graph G is preserved during the execution of
the algorithm.

5.2 Finiteness

In this Section we prove that, after a finite number of steps, the robots will
gather in a point.

We know from Assumption A2 that the distance travelled by a robot r is
bounded from below by §; thus, a robot always performs a move of at least
length §, unless the destination point computed by the algorithm is closer
than that.

Lemma 5.11. Let us suppose to have several robots on a vertical axis A
and no robots to the left of A. If r is the topmost robot on A that can see a
robot to the right of A, then, in a finite number of steps, either all the robots
above r on A will reach r, or one of them will leave A.

Proof. Let r be the topmost robot on A that can see a robot 7’ to the
right of A. Let us suppose, by contradiction, that no robot above r leaves A
and that there is some robot above r that do not reach r in a finite number
of steps. Let p be the topmost point on A (clearly above 7) such that there
exists a set of robots R above it that do not pass p in a finite number of
steps. Since the cycle time of any robot is finite (Assumption Al), at any
stage of the algorithm the topmost robot on A must perform a movement
in finite time; its move must be vertical because the robot is not allowed
to leave A by hypothesis. It follows that all robots in R will get closer and
closer to p. After a finite number of steps, all the robots in R will be at
distance smaller than § from p since p is the topmost point on A that robots
in R do not pass. Let us now consider another point p’ above p and below
the bottom most robot in R. We know that all robots in R must pass p’
(otherwise p wouldn’t be the topmost point not passed by the robots in R);
let = be the first robot that does it. The move that causes z to pass p/,

19

must be caused by some robots z’ below p’ that z could see; since there are
no robots between p’ and p, =’ must be also below p. Moreover, since the
distance between z and p is smaller than ¢, the robot z will pass p moving
towards z’ (Assumption A2) leading to a contradiction. Thus, in a finite
number of steps, either all the robots in R reach r or at least one of them
leaves A. m|

The next Lemma shows that all robots in the system converge to the
Right axis of the universe .

Lemma 5.12. For any given vertical axis ¥ before Right which is at any
distance d > 0 from it, all the robots that are on the left of U at the beginning
of the algorithm, will pass ¥ in a finite number of steps.

Proof. Let us assume, by the sake of contradiction, that the robots do
not converge to Right. Therefore, there exists at least one vertical axis in
i1 before Right such that a subset R of the robots that are before it at the
beginning of the algorithm, will not pass it in a finite number of steps. Let
U be the leftmost of these axis. Let R, be the subset of robots in R that
reach (but do not pass) ¥ in a finite number of steps, and R; be the subset
of robots that will not reach ¥ in a finite number of steps (R =R, URy).

First of all, we note that ¥ cannot be the first vertical axis of the system.
In fact, let us suppose that ¥ is such a first axis and let r be the topmost
robot of R on this first axis that sees some robots to its right (such a robot
must exist since G is connected). By Lemma 5.11 either one of the robot
above it will leave the axis, or r» will be reached by all the robots above it
and then it will be allowed to move to its right passing W.

Since, by hypothesis, W is the first axis which is not passed by robots in
R, the robots in R, must pass, in a finite number of steps, any vertical axis
before U getting infinitely closer to ¥. We now consider two cases:

1. Ry, = 0.
In this case, after a finite number of steps, all robots in R reach .
Since G is connected, we have that, unless ¥ is already Right, at least
one robot r in R must see some robot after ¥. Let r be the topmost
robot with such a property.

a. If r cannot see any robot above it on ¥, it can move either horizon-
tally or diagonally, thus passing ¥ and leading to a contradiction.

b. Otherwise, by Lemma, 5.11, we have that, in a finite number of
steps, either one of the robots above r on ¥ will leave it or r
will be reached by all the robots above it on ¥ and now will be

20

allowed to move either horizontally or diagonally. In both cases,
we have a contradiction.

2. Ry #0.
In this case the robots in R, reach ¥ in a finite number of steps, while
the robots in R, just converge to it. Let us fix an arbitrary axis I’
before ¥ and at a distance smaller than §' < @5 from ¥. We know
that, in a finite number of steps, the robots in R, will pass I’ and
we can also assume that they they must have stopped at least once
after I’, otherwise they would have passed ¥. Let us now consider the
computation after the robots in R, have reached ¥ and the robots in
R, have passed I' stopping at least once after it. We now consider
another arbitrary axis I"”, which is after the rightmost robots in R,
and before ¥ at a distance smaller than §' < @5 from it. Since the
robots in R, converges to ¥, we know that they will pass I"”. Let r
be the first robot in R, that passes I"”. According to the algorithm, if
r has passed I" it must have seen a robot r’ on its right and, since r
had stopped after I’, it must have seen r’ when r was between I’ and
I". Since r is the first robot passing I”, there are no robots between
I" and ¥. Therefore ' must be on ¥ or on its right. If ' were on ¥,
then 7 would reach ¥ in one step since the longest distance between 7’
and ¥ is less or equal to sifLIGO (by Assumption A2) and since it started
to move after I'. This is a contradiction since 7 € Ry and it cannot
reach ¥ by hypothesis. Therefore, ' must be to the right of ¥ and,
for the same reasons as above, r can reach it in one step, passing ¥
and creating a contradiction. O

We now prove that all robots in the system actually reach the Right axis
of 4.

Lemma 5.13. After a finite number of steps, all the robots in the system
reach Right.

Proof. Let us assume that there is a subset R of robots that will converge
to Right never reaching it. Thus, in a finite number of steps, the only robots
which do not reach Right are the robots in R. Let ¥ be a vertical axis before
Right at distance smaller or equal to §' < @5 from it. Since the robots
converge to Right, they will pass ¥ in a finite number of steps. Let as call
r the first robot that does it. Applying a similar argument to the one of the

previous lemma, we have that r must reach Right leading to a contradiction.
Od

21

The following lemma shows that if all robots lie on the same axis, they
will reach the bottom most robot in a finite number of steps.

Lemma 5.14. If all the robots of the system lie on the same vertical azis
A, then in a finite number of steps all the robots will reach the bottom most
robot on A.

Proof. Let us assume, for sake of contradiction, that there exists points on
A which are not passed by some of the above robots. Let p be the topmost
such point and let R be the set of robots above p which will never pass it.
Clearly the topmost robot in A cannot lie on p because in such a case it
would pass it (since G is connected, it would do a vertical move). Moreover,
notice that a robot can move only if it is the topmost on A and, since G is
connected and the cycle is finite (Assumption A1), the topmost robot will
move. Therefore, after a finite number of steps, all the robot in R will be at
distance smaller than § from p and now the same argument of the previous
two lemmas can be applied to derive the contradiction. O

We can finally conclude that:

Theorem 5.2. In a finite number of steps, all the robots in the system
gather in a point; the rightmost and bottom most corner of the universe.

Proof. From Lemma 5.13, all the robots in the system reach the rightmost
axis 4. Since the robots that are on Bottom at the beginning of the algo-
rithm could have moved only horizontally, there will be at least one robot
on the rightmost and bottom most corner of {{. The robots will now gather
in such a corner by Lemma 5.14. O

References

[1] H. Ando, Y. Oasa, 1. Suzuki, and M. Yamashita. A Distributed Mem-
oryless Point Convergence Algorithm for Mobile Robots with Limited
Visibility. IEEE Trans. on Robotics and Automation, 15(5):818-828,
1999.

[2] G. Beni and S. Hackwood. Coherent Swarm Motion Under Distributed
Control. In Proc. DARS’92, pages 39-52, 1992.

[3] E. H. Durfee. Blissful Ignorance: Knowing Just Enough to Coordinate
Well. In ICMAS, pages 406-413, 1995.

22

[4] P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Hard Tasks for
Weak Robots: The Role of Common Knowledge in Pattern Formation
by Autonomous Mobile Robots. In 10th International Symposium on
Algorithm and Computation (ISAAC ’99), pages 93-102, 1999.

[5] D. Jung, G. Cheng, and A. Zelinsky. Experiments in Realising Co-
operation between Autonomous Mobile Robots. In 5th International
Symposium on Ezperimental Robotics (ISER), June 1997. Barcelona,
Catalonia.

[6] Y. Kawauchi and M. Inaba and. T. Fukuda. A Principle of Decision
Making of Cellular Robotic System (CEBOT). In Proc. IEEE Conf. on
Robotics and Automation, pages 833838, 1993.

[7] M. J Matarié. Interaction and Intelligent Behavior. PhD thesis, MIT,
May 1994.

[8] S. Murata, H. Kurokawa, and S. Kokaji. Self-Assembling Machine. In
Proc. IEEE Conf. on Robotics and Automation, pages 441-448, 1994.

[9] K. Sugihara and I. Suzuki. Distributed Algorithms for Formation of
Geometric Patterns with Many Mobile Robots. Journal of Robotics
Systems, 13:127-139, 1996.

[10] I. Suzuki and M. Yamashita. Distributed anonymous mobile robots. In
Proc. of 8rd International Colloquium on Structural Information and
Communication Complezity, pages 313-330, Siena, 1996.

[11] I. Suzuki and M. Yamashita. Distributed Anonymous Mobile Robots:
Formation of Geometric Patterns. STAM J. Comput., 28(4):1347-1363,
1999.

23

