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Abstract. Consider a set of n �= 4 simple autonomous mobile robots
(decentralized, asynchronous, no common coordinate system, no iden-
tities, no central coordination, no direct communication, no memory of
the past, deterministic) initially in distinct locations, moving freely in the
plane and able to sense the positions of the other robots. We study the
primitive task of the robots arranging themselves equally spaced along a
circle not fixed in advance (Uniform Circle Formation). In the litera-
ture, the existing algorithmic contributions are limited to restricted sets
of initial configurations of the robots and to more powerful robots. The
question of whether such simple robots could deterministically form a
uniform circle has remained open. In this paper, we constructively prove
that indeed the Uniform Circle Formation problem is solvable for
any initial configuration of the robots without any additional assump-
tion. In addition to closing a long-standing problem, the result of this
paper also implies that, for pattern formation, asynchrony is not a com-
putational handicap, and that additional powers such as chirality and
rigidity are computationally irrelevant.

1 Introduction

Consider a set of punctiform computational entities, called robots, located in R
2

where they can freely move. Each entity is provided with a local coordinate sys-
tem and operates in Look-Compute-Move cycles. During a cycle, a robot obtains
a snapshot of the positions of the other robots, expressed in its own coordinate
system (Look); using the snapshot as an input, it executes an algorithm (the
same for all robots) to determine a destination (Compute); and it moves to-
wards the computed destination (Move). After a cycle, a robot may be inactive
for some time.

To understand the nature of the distributed universe of these mobile robots
and to discover its computational boundaries, the research efforts have focused
on the minimal capabilities the robots need to have to be able to solve a prob-
lem. Thus, the extensive literature on distributed computing by mobile robots
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has almost exclusively focused on very simple entities operating in strong adver-
sarial conditions. The robots we consider are anonymous (without ids or distin-
guishable features), autonomous (without central or external control), oblivious
(no recollection of computations and observations done in previous cycles), dis-
oriented (no agreement among the individual coordinate systems, nor on unit
distance and chirality). In particular, the choice of individual coordinate sys-
tems, the activation schedule, the duration of each operation during a cycle,
and the length traveled by a robot during its movement are determined by an
adversary; the only constraints on the adversary are fairness (i.e., for every time
t and each robot r there exists t′ > t when r is active), finiteness (i.e., the dura-
tion of each activity and inactivity is arbitrary but finite), and minimality (i.e.,
there exists δ > 0, unknown to the robots, such that if the destination is at
distance at most δ the robot will reach it, else it will move at least δ towards the
destination, and then it may be unpredictably stopped by the adversary). For
this type of robots, depending on the activation schedule and timing assump-
tions, three main models have been studied in the literature: the asynchronous
one (ASYNC), where no assumptions are made on synchronization among the
robots’ cycles nor their duration, and the semi-synchronous fully synchronous
models, denoted by SSYNC and FSYNC, respectively, where the robots, obliv-
ious and disoriented, however operate in synchronous rounds, and each round is
“atomic”: all robots active in that round terminate their cycle by the next round;
the only difference is whether all robots are activated in every round (FSYNC),
or, subject to some fairness condition, a possibly different subset is activated
in each round (SSYNC). All three models have been intensively studied (e.g.,
see [1,2,3,5,6,7,8,9,10,15,16,17,23,24]; for a detailed overview refer to the recent
monograph [13]).

The research on the computability aspects has focused almost exclusively on
the fundamental class of Geometric Pattern Formation problems. A geo-
metric pattern (or simply pattern) P is a set of points in the plane; the robots
form the pattern P at time t if the configuration of the robots (i.e., the set of
their positions) at time t is similar to P (i.e., coincident with P up to scaling,
rotation, translation, and reflection). A pattern P is formable if there exists an
algorithm that allows the robots to form P within finite time and no longer move,
regardless of the activation scheduling and delays (which, recall, are decided by
the adversary) and of the initial placement of the robots in distinct points. Given
a model, the research questions are: to determine if a given pattern P is formable
in that model; if so, to design an algorithm that will allow its formation; and,
more in general, to fully characterize the set of patterns formable in that model.
The research effort has focused on answering these questions for ASYNC and the
less restrictive models both in general (e.g., [5,15,16,22,23,24]) and for specific
classes of patterns (e.g., [1,7,8,10,11,12,19,20]).

Among specific patterns, a special research place is occupied by two classes:
Point and Uniform Circle. The class Point is the set consisting of a single
point; point formation corresponds to the important Gathering problem re-
quiring all robots to gather at a same location, not determined in advance
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(e.g., see [2,3,4,18,21]). The other important class of patterns is Uniform Circle:
the points of the pattern form the vertices of a regular n-gon, where n is the
number of robots (e.g., [1,6,7,8,10,11,12,20]).

In addition to their relevance as individual problems, the classes Point and
Uniform Circle play another important role. A crucial observation, by Suzuki
and Yamashita [23], is that formability of a pattern P from an initial configu-
ration Γ in model M depends on the relationship between ρM(P ) and ρM(Γ ),
where ρM(V ) is a special parameter, called symmetricity, of a multiset of points
V , interpreted as robots modeled by M. Based on this observation, it follows
that the only patterns that might be formable from any initial configuration in
FSYNC (and thus also in SSYNC and ASYNC) are single points and uniform
circles. It is rather easy to see that both points and uniform circles can be formed
in FSYNC, i.e. if the robots are fully synchronous. After a long quest by sev-
eral researchers, it has been shown that Gathering is solvable (and thus Point
is formable) in ASYNC (and thus also in SSYNC) [2], leaving open only the
question of whether Uniform Circle is formable in these models. In SSYNC,
it was known that the robots can converge towards a uniform circle without
ever forming it [7]. Some recent results indicate that the robots can actually
form a uniform circle in SSYNC. In fact, by concatenating the algorithm of [19],
for forming a biangular configuration, with the one of [11], for circle formation
from an equiangular starting configuration, it is possible to form a uniform circle
starting from any initial configuration in SSYNC; notice that the two algorithms
can be concatenated only if the robots are semi-synchronous. Hence, the only
outstanding question is whether it is possible to form a uniform circle in ASYNC.

In spite of the simplicity of its formulation and the repeated efforts by several
researchers, the existing algorithmic contributions are limited to restricted sets of
initial configurations of the robots and to more powerful robots. In particular, it
has been proven that, with the additional property of chirality (i.e., a common
notion of “clockwise”), the robots can form a uniform circle [12], and with a
very simple algorithm; the fact that Uniform Circle is formable in ASYNC
+chirality follows also from the recent general result of [16]. The difficulty of
the problem stems from the fact that the inherent difficulties of asynchrony,
obliviousness, and disorientation are amplified by their simultaneous presence.

In this paper we show that indeed the Uniform Circle Formation problem
is solvable for any initial configuration of n �= 4 robots without any additional
assumption, closing a problem open for over a decade. This result also implies
that, for Geometric Pattern Formation problems, asynchrony is not a com-
putational handicap, and that additional powers such as chirality and rigidity1

are computationally irrelevant.

2 Definitions

For a finite set S ⊂ R
2 of n > 2 points, we define the Smallest Enclosing Circle,

or SEC, to be the circle of smallest radius such that every point of S lies on the

1 A move is rigid if it is not interrupted before reaching the destination point.
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circle or in its interior. For any S, SEC is easily proven to exist and to be unique.
Three other circles will play a special role: these are concentric with SEC, and
have radiuses that are 1/2, 1/3, and 1/4 the radius of SEC. They are denoted
by SEC/2, SEC/3, and SEC/4, respectively.

The angular distance, with respect to point x, between two points p and q
(distinct from x) is the measure of the smallest angle between ∠pxq and ∠qxp,
and is denoted by θx(p, q). The sector defined by two points a and b is the locus
of points c such that θx(a, c) + θx(c, b) = θx(a, b). Whenever x is not specified,
it is assumed to be the center of the SEC of a well-understood set of points.

Given a finite set S, the positions of its points around some point x /∈ S,
taken clockwise, naturally induce a cyclic order on S. If several points of S lie on
the same ray emanating from x, their relative order is induced by their distance
from x, starting from the nearest point.

Let p0 ∈ S be any point, and let pi ∈ S be the (i + 1)-th point in the

cyclic order around x /∈ S, starting from p0. Let α
(i)
x = θx(pi, pi+1), where

the indices are taken modulo n. Then, (α
(i)
x )0�i<n is called the angle sequence

induced by p0. (Of course, depending on the choice of p0 ∈ S, there may be at

most n different angle sequences with respect to x.) Letting β
(i)
x = α

(n−i)
x , for

0 � i < n, we call (β
(i)
x )0�i<n the reverse angle sequence induced by p0. We

let α̃x and ˜βx be, respectively, the lexicographically smallest angle sequence and
the lexicographically smallest reverse angle sequence of S. Also, we denote by μx

the lexicographically smallest between α̃x and ˜βx, and by μ
(i)
x the i-th element

of μx. If p ∈ S is any point inducing μx as a clockwise or counterclockwise angle
sequence, we say that p is a lex-first point of S (with respect to x), and we denote
by L1 the set of all lex-first points. Let p be a lex-first point of S and suppose
that μx is the clockwise (resp. counterclockwise) angle sequence induced by p.
Let p′ be the first point after p in the clockwise (resp. counterclockwise) order
around x that is not collinear with x and p. Then, p′ is said to be a lex-second
point of S (with respect to x), and we denote by L2 the set of all lex-second
points. If x is not specified, it is assumed to be the center of the SEC of S.

The following definitions apply whenever the symbols used are well defined,
i.e., if and only if no point of S lies in the center of SEC. S is co-radial if μ(0) = 0.
In a co-radial set, every two points at angular distance 0 are said to be co-radial
with each other. The number of distinct clockwise angle sequences of S (with
respect to the center of its SEC) is called the period of S. It is easy to verify
that the period is always a divisor of n.

We will be distinguishing among different types of configurations, defined
below (see also Figure 3). S is said to be Equiangular if its period is 1, Biangular
if its period is 2, and Aperiodic if its period is n. In a Biangular set, any two
points at angular distance μ(0) are called neighbors, and any two points at angular
distance μ(1) are called quasi-neighbors. If a Biangular configuration is not co-
radial, it is called Simple biangular. An Aperiodic configuration can be Uni-
aperiodic if α̃ �= ˜β, and Bi-periodic if α̃ = ˜β. A set S that is not Aperiodic is said
to be Uni-periodic if α̃ �= ˜β, and Bi-periodic if α̃ = ˜β. S is Regular if its points
are the vertices of a regular n-gon.
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Algorithm Uniform Circle Formation

Find first match of observed configuration:

1. Regular: Do nothing;
2. Central: Execute Central;
3. Equiangular: Execute Equiangular;
4. Pre-regular: Execute Pre-regular;
5. Pre-equiangular: Execute Pre-equiangular;
6. Landmark-co-radial: Execute Landmark-co-radial;
7. Post-periodic: Execute Post-periodic;
8. Antipodal-referees: Execute Antipodal-referees;
9. Simple Biangular: Execute Simple biangular;
10. Periodic: Execute Periodic;
11. Post-aperiodic: Execute Post-aperiodic;
12. Aperiodic: Execute Aperiodic;

Fig. 1. The Uniform Circle Formation algorithm

We say that point p ∈ S is homologous to point q ∈ S if the angle sequence
induced by p is equal to the angle sequence induced by q, or to its reverse. In
particular, if it is equal to the angle sequence induced by q (and not necessarily
to its reverse), p and q are said to be analogous. Homology and analogy are
equivalence relations on S, and the equivalence classes that they induce on S
are called homology classes and analogy classes, respectively. In a Uni-periodic
set of period k, all homology classes are Equiangular sets of size n/k. In a Bi-
periodic set of period k, each homology class is either a Biangular set of size
2n/k, or an Equiangular set of size n/k or 2n/k. In a Uni-aperiodic set, the
homology classes consist of one point; in a Bi-aperiodic, they consist of either
one or two points.

S is said to be Double-biangular if it is Bi-periodic with period 4 and has
exactly two homology classes.

S is Pre-regular if there exists a regular n-gon (called the supporting polygon)
such that, for each pair of adjacent edges, one edge contains exactly two points
of S (possibly on its endpoints), and the other edge’s relative interior contains
no point of S [8]. There is a natural correspondence between points of S and
vertices of the supporting polygon: the matching vertex v of point p ∈ S is such
that v belongs to the edge containing p, and the segment vp contains no other
point of S. If two points of S lie on the same edge of the supporting polygon,
then they are said to be companions.

Finally, S is Central if one of its points lies at the center of SEC.

3 The Algorithm

3.1 High-Level Description

The general idea of the algorithm is that first some robots identify themselves as
referees (in spite of anonymity) and maintain their role until they are the only
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ones not in their final position. The referees univocally determine special points,
the landmarks, which, in turn, define a set of half-lines from the centre of SEC,
the targets, partitioning the plane in n equal sectors. Each robot is assigned a
different target. By positioning themselves on the targets, the robots reach an
Equiangular configuration, and they ultimately form a uniform circle.

Algorithm Uniform Circle Formation (see Figure 1) consists of an ordered
set of tests to determine the class of the current configuration; this determines
which action is going to be taken by a robot in order to implement the general
strategy described above. The universe of possible configurations is decomposed
by the algorithm into several classes. Some of the classes (i.e., Regular, Central,
Equiangular, Pre-regular, Simple biangular, Periodic, Aperiodic) have been de-
fined in Section 2; the others will be defined in the following, along with the
description of the corresponding actions. It is easy to see that all possible config-
urations are covered by these classes, simply because any configuration is either
Periodic or Aperiodic. Hence, if all other tests fail, one of these two necessarily
succeeds.

We stress that some configurations belong to more than one class, and so the
order in which such classes are tested by the algorithm matters. For instance,
a Pre-regular configuration may easily be also Aperiodic. The reason why Pre-
regular is tested before Aperiodic is that, when the robots execute procedure
Pre-regular and the configuration remains Pre-regular but it also acciden-
tally becomes Aperiodic, we want all robots to keep executing the same pro-
cedure, without letting some of them “erroneously” start executing procedure
Aperiodic. Of course, now the opposite problem may arise: when the robots
are executing procedure Aperiodic, they may accidentally form a Pre-regular
configuration. However, as it will be apparent in later sections, this event is
much less likely, and it is easier to predict and handle by the algorithm in such
a way that, if a Pre-regular configuration may be formed accidentally during the
execution, then all robots agree to stop in that configuration and consequently
start executing procedure Pre-regular in a synchronized fashion.

3.2 Basic Tools

The above high-level description gives an idea of the general intended behavior of
the robots. Asynchrony and special configurations can easily make the algorithm
deviate from this behavior. The rules and movements of the robots are carefully
designed so to handle any deviation, and they are quite complex. In particular,
two tools are employed: cautious moves and special circles.

Cautious Move. If a robot’s movement can potentially create some configu-
ration that would be treated by other observing robots in an inconsistent way
(i.e., a configuration of a class tested before the current one by the algorithm),
the rule will prescribe the robot to stop in the first point that might create it.
We call these points critical points. Thus in some procedures of the algorithm,
robots are specifically required to perform an operation called cautious move;
this method is invoked when there is a set of robots that need to move on disjoint
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paths, each of which contains finitely many critical points. It is assumed that,
as the robots move along their paths, the set of critical points does not change.

In a cautious move, first the set of critical points is expanded with a set of
“auxiliary” critical points: if a robot has a critical point on its path, located at
distance d from the endpoint of the path (where the distance is measured along
the path itself), then each other robot whose path is not shorter than d acquires
a new critical point at distance d from the end of its path. The last point along
each robot’s path is also taken as a critical point.

Then, each robot r whose remaining path is longest moves forward along its
path by the greatest possible amount, with the following constraints:

– r’s destination point must not be past the next critical point (auxiliary or
not);

– if r is currently lying on a critical point (auxiliary or not), its destination
point must be at most halfway toward the next critical point (auxiliary or
not) along its path;

– if the remaining path of r has length d, and there is another robot whose
remaining path has length d′ < d, then r’s destination point must be at most
d′ away from the endpoint of r’s path (in other words, robots do not “pass
each other” in one turn).

On the other hand, the robots whose remaining path is not longest wait.

Special Circles. In the algorithm we use specific concentric circles: SEC, SEC/2,
SEC/3, and SEC/4. This is done first of all to facilitate the recognition of the
current configuration and coordinate the operations of the robots. For example,
SEC/4 is used in Periodic while SEC/3 is used in Aperiodic. More importantly,
these circles are used to avoid the accidental formation of certain configurations.
In particular, as long as some robots are on or inside SEC/3, a Pre-regular con-
figuration may never be formed: this is crucial in the proof of correctness of the
algorithm. Note that we assume the robots can perform “circular movements”
when the destination point is along one of these circles, but, at the cost of slightly
modifying the algorithm, it is possible to let the robots move only along straight
lines.

3.3 The Initial Tests

The first four tests performed by the algorithm are the simplest ones. The al-
gorithm first checks if a uniform circle has been formed; if so, no further action
is taken. Otherwise, it checks if there is a robot at the centre of SEC. In this
case, that robot moves, avoiding collisions, to become co-radial with the robots
on one of the most populated radiuses, and stopping before SEC/4. This action
(procedure Central) transforms the configuration in one of class Aperiodic. In
the third test, the algorithm checks if the configuration is Equiangular; if so, all
robots move radially towards SEC eventually evolving into a Regular configu-
ration. In the fourth test, if the configuration is Pre-regular, each robot moves
towards its matching vertex in the supporting polygon. This action, called pro-
cedure Pre-regular is precisely the technique described in [8] to move from a
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Fig. 2. Examples of the possible evolutions of a Periodic configuration

Biangular configuration into a Regular one; during the action the configuration
remains Pre-regular and it eventually evolves into Regular.

3.4 The Intermediate Tests

Having failed the initial tests, the next sequence of tests is for the classes of
configurations defined below, which can occur as the initial configuration, or
as an evolution from a Periodic configuration. Along with the definitions, the
actions to perform in each configuration are given.

Pre-equiangular. There are robots both on SEC and on SEC/4, and nowhere
else. The robots on SEC are at least three, and those on SEC/4 are forming
an “almost” Regular configuration; that is, a Regular with one missing point
for each robot on SEC. The missing points may be arranged in two different
ways. They may form a “regular pairs” arrangement, in which there are pairs
of missing points in adjacent positions, in such a way that the pairs are equally
spaced around SEC/4; otherwise, they form a “regular pairs” arrangement in
which exactly one element of each pair has been removed. There is a bijection
between robots on SEC and missing points, determined by the minimum total
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distance the robots on SEC must travel to occupy them (Figure 2(a) shows an
arrangement on SEC/4 of the second type).

In this case, the robots on SEC rotate towards their targets, which are uniquely
determined by the positions of the robots on SEC/4. With this action, called
procedure Pre-equiangular, the robots eventually reach an Equiangular con-
figuration.

Landmark-co-radial. The robots on SEC form an Equiangular set, and these are
the referees, which also coincide with the landmarks. The landmarks define the
n target half-lines, in such a way that either all landmarks lie on some targets
(as in Figure 2(b)), or they lie on bisectors of adjacent targets. All the non-
referee robots are on or inside SEC/4: each robot on SEC/4 is on a target; the
only ones strictly inside are those co-radial with the referees, and at most one
robot (called walker) for each referee. The central targets of each sector defined
by two adjacent referees are all occupied by robots on SEC/4 in such a way
that, for each landmark, the open sector Γ defined by the nearest target in the
clockwise direction that is occupied by a robot on SEC/4 and the nearest one
in the counterclockwise direction contains as many robots as targets. Moreover,
Γ contains at most one walker, and the targets in Γ that lie to the left of
the landmark differ by at most one unit from those to the right. A co-radial
Biangular configuration falls in this class, too.

In this configuration, the intended behavior is to “resolve” all the robots that
are co-radial to the referees, and have them move to their targets, reaching an
Equiangular or a Pre-equiangular configuration (depending whether the referees
are already on their targets or not).

Note that in a Landmark-co-radial the only unoccupied targets correspond to
the groups of co-radial robots of the landmarks and to at most one robot per
landmark, the walker, which is moving towards a target. The co-radial robots
move in turns. If there is no walker in the sector Γ (as defined above) around
a landmark, the most internal non-referee that is co-radial with that landmark
rotates toward the farthest away target among those in Γ , becoming a walker.
When a walker reaches its target, it moves radially to reach SEC/4. If all the
non-referees are on their targets, they all lie on SEC/4, and the configuration
happens to be Antipodal-referees (see below), then the two non-referees closest
to the landmarks move toward SEC (thus “forcing” the configuration to tran-
sition into an Antipodal-referees configuration that is not a Landmark-co-radial
anymore, which is tested after Landmark-co-radial by the algorithm). Otherwise,
the configuration becomes either Equiangular or Pre-equiangular, as intended.

Post-periodic. The robots on SEC form an Equiangular or a Simple biangular
set, and they are the referees. All other robots lie on SEC/4 or inside of it. If
the referees are Equiangular, the landmarks coincide with the referees and they
all have the same number of co-radial robots, which lie strictly inside SEC/4.
If the referees are Biangular, the landmarks are the midpoints of neighboring
referees, and no robot is co-radial with any landmark. The robots that are not
co-radial with the landmarks are equidistributed among the sectors defined by
the landmarks.
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In this configuration, the targets are calculated with respect to the landmarks,
depending on the parity of the robots that are co-radial with each landmark (in-
cluding the referees): if they are odd, then the landmarks lie on some targets
(Figure 2(d)); if they are even (which includes zero), the landmarks lie on bi-
sectors of adjacent targets (Figures 2(e) and 2(f)). Note that, if such co-radials
are odd, the referees must be Equiangular. Each robot may be associated with
a unique target, or to two possible targets (in case of left-right symmetry of its
view).

The intended behavior in a Post-periodic configuration is to have all robots
move onto SEC/4 on their respective targets, except for the robots that are co-
radial with some landmark, thus reaching a Landmark-co-radial configuration.
To do so, the non-referees that are not co-radial with the landmarks and that can
reach SEC/4 without colliding with other robots, move radially toward it. If none
can do it and there are co-radial robots that are not co-radial with any landmark,
the most internal of these co-radials rotates in an arbitrary direction of 1/4 of the
minimum non-zero element in μ. If all the non-referees that are not co-radial with
the landmarks are already on SEC/4, they orderly rotate on SEC/4 until they
reach their targets (which are now uniquely determined). This is done in such
a way that only the robots that can reach their target without colliding with
other robots move. Each move is cautious, with critical points corresponding
to Landmark-co-radial and Pre-equiangular configurations. At this point, the
configuration becomes: Landmark-co-radial if the referees are Equiangular and
have co-radial robots; Pre-equiangular if the referees are Biangular and they are
not on their targets; or Equiangular if the referees are Equiangular and there are
not co-radial robots, or if they are Biangular and already on their targets.

Antipodal-referees. There are two antipodal robots on SEC, which are the refer-
ees. On SEC/4 there are (possibly among others) n− 4 robots that are forming
a Regular configuration with some missing points. More precisely there are two
antipodal pairs of adjacent missing points, such that each referee is equidis-
tant to two adjacent missing points. Furthermore, there are two other robots
co-radial with two non-adjacent missing points, which lie between SEC/4 and
SEC (possibly on SEC/4 or on SEC). Note that this configuration is uniquely
identifiable and has period either n or n/2 (see Figure 2(c)). In this configura-
tion, the robots closest to the referees (one for each referee) move towards SEC,
eventually reaching a Pre-equiangular configuration.

Simple biangular. In this case, the intended behavior of the robots is to reach
a Pre-regular configuration by moving toward SEC according to the cautious
move protocol, with critical points on SEC/4 (where a Landmark-co-radial or a
Pre-equiangular may be formed), and additional critical points where Pre-regular
configurations may be formed (see Theorem 2). If the robots already on SEC
belong to the same analogy class, the other robots in the same class move first.

3.5 The Periodic Test

Periodic. If the procedure Periodic is executed, it means that the configuration
is Periodic, and additionally it does not belong to any of the classes described
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above. In this case, the intended behavior is to elect the referees, define the
landmarks, have the referees move onto SEC and the non-referees move into
SEC/4, reaching a Post-periodic configuration. In trying to do this, the robots
can find themselves in a variety of different configurations, and the algorithm
might switch to several different cases.

Let k be the period. If there exist robots with exactly n/k homologous robots,
then the lex-first among these robots are chosen to be the referees, as well as the
landmarks. If this is not the case, all homology classes must have size exactly
2n/k. If the robots in L1 are not Equiangular (and therefore they are strictly
Biangular), they are chosen to be the referees; otherwise the referees are the
robots in L2. Note that in both cases the referees form a Simple biangular set;
the landmarks are selected to be the midpoints of neighboring referees. Hence,
by construction, the landmarks are always n/k points forming an Equiangular
set (with respect to the center of the SEC of all robots), and they define n/k
sectors, each containing the same number of robots in its interior.

If the configuration is Double-biangular, no referee is on SEC, and some non-
referees are not on SEC, then all the non-referees move radially to reach SEC.
Otherwise, if there are referees not on SEC, they move radially to reach SEC.
If all the referees are on SEC, the other robots move radially inward until they
reach SEC/4 or its interior. All non-referee robots that are co-radial with some
landmark move strictly inside SEC/4. The non-referee robots move in turns, in
such a way that only homologous robots can move together. Specifically, the
non-referees that belong to homology classes of size n/k move first.

In all cases, all movements are cautious, with critical points on SEC/4 (which
may yield a transition into Landmark-co-radial, Antipodal-referees, or
Pre-equiangular), and those determined by Pre-regular configurations.

When this is done, the configuration becomes Post-periodic, with some excep-
tions: if the robots not co-radial with the referees are already on their targets on
SEC/4, except at most one per landmark, the configuration becomes Landmark-
co-radial; if the only robots not on their targets are the referees, and the referees
are more than two, the configuration becomes Pre-equiangular; if the only robots
not on their targets are the referees, and the referees are only two, the configu-
ration becomes Antipodal-referees.

3.6 The Aperiodic Tests

In this last set of tests, Post-aperiodic and Aperiodic configurations are ad-
dressed. Similarly to the previous cases, the intended behavior of the actions is
to elect the referees and to identify landmarks and targets. From the Aperiodic
configuration, the intended behavior is to reach a Post-aperiodic configuration
and, from there, an Equiangular configuration.

Post-aperiodic. There are either one or two robots on SEC/3, which are the
referees. All other robots are found between SEC/2 and SEC. If there are two
referees, they are not antipodal (i.e., their midpoint is not the center of SEC).

In this configuration, the actions taken by the robots (procedure Post-
Aperiodic) are as follows. If there are two referees, and all the non-referees
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are on SEC forming a Regular set with two adjacent missing points, the two
referees rotate on SEC/3 until they become co-radial with the missing points,
and the configuration becomes Equiangular. Otherwise, the targets are identified
by the referees on SEC/3, and a unique target is assigned to each robot. The
non-referees that can move radially to SEC without colliding, do so. If there are
non-referees that cannot radially move to SEC (because other robots are in their
way), then the most internal non-referees rotate of 1/4 of the minimum non-zero
element of μ to remove the co-radiality. If all the non-referees are on SEC and
there is only one referee, the non-referees cautiously rotate to their respective
targets, in such a way that SEC never changes and no two robots collide, and
using Simple biangular and Periodic configurations as critical points. If the tar-
gets are reached, the configuration becomes Equiangular. Finally, if there are
two referees, and all non-referees are on SEC, not forming a Regular set with
two adjacent missing points, the non-referees rotate on SEC with a cautious
move as in the previous case, with additional critical points given by the con-
figurations in which the robots on SEC form a Regular set with two adjacent
missing points. In this last case, the configuration may become Simple biangular,
Periodic, Equiangular, or remain Post-aperiodic.

Aperiodic. The procedure Aperiodic is executed if the current configuration
fails all previous tests. If the configuration is co-radial uni-aperiodic, then the
lex-first is unique, and must have co-radial robots. In this case the referee is
the most internal among the robots that are co-radial with the lex-first. If the
configuration is non-co-radial uni-aperiodic, the lex-first is still unique, but it
may be necessary to keep SEC intact. If this is not the case, the lex-first is the
referee, otherwise the referee is the lex-second (it is easy to see that, if n � 5,
one of these two robots can be removed without altering SEC).

If the configuration is co-radial bi-aperiodic, let r and r′ be, among the robots
that are co-radial with the lex-first robots, the most internal ones, respectively.
If r and r′ are not aligned with the center of SEC, then they are chosen to be the
referees. Otherwise, the referees are the first two robots in the lexicographically
minimum order (which are homologous) that can be safely removed without
altering SEC (assuming that all robots that can reach SEC radially are already
on SEC), and such that they are the most internal robots among their co-radials.
(Note that, in some configurations, these referees happen to be the same robot.
In these cases, the referee is unique.)

Finally, if the configuration is non-co-radial bi-aperiodic, the referees are the
first two (just one, in some special cases) homologous robots that are not aligned
with the center of SEC, and such that, when all robots are on SEC, they can be
removed without changing SEC.

The non-referees that are inside or on SEC/2 move out of SEC/2. Those that
can reach SEC without colliding, do so. They take turns in such a way that
only homologous robots can move together (hence at most two), and they move
radially outward, performing a cautious move with critical points on SEC/4,
SEC/3, SEC/2, SEC, and those determined by the Pre-regular configurations
(see Theorem 3). During these movements, the configuration may become
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(a) Equiangular (b) Pre-regular (c) Aperiodic
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Fig. 3. Some examples of configurations

either Post-periodic, Landmark-co-radial, Antipodal-referees, or Pre-equiangular
(when they pass through SEC/4 or when they reach SEC), or Post-aperiodic
(when they pass through SEC/3), or Pre-regular. Otherwise, the configuration
stays Aperiodic. If all the non-referees are outside SEC/2 and none of them
can move to SEC without colliding, the referees move and reach SEC/3. They
use a cautious move with SEC/4 as a critical point, and those determined by
the Pre-regular configurations (see Theorem 3). The configuration may become
Post-periodic, Landmark-co-radial, Antipodal-referees, or Pre-equiangular (when
the robots reach SEC/4), or Pre-regular. Otherwise it becomes Post-aperiodic,
as intended.

4 Correctness

The correctness proof is quite lengthy and can be found in [14]. We give here
only an intuition of the main ingredients.
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Pre-regular

Equiangular

Pre-equiangular

Periodic

Post-periodic

Aperiodic

Post-aperiodic

Landmark-co-radial

Simple biangular

Antipodal-referees

Fig. 4. Configurations, with their intended transitions (thick arrows) and incidental
transitions (dashed arrows)

To prove correctness, we need to analyze all possible transitions between con-
figurations. Some transitions come as a result of the “intended” behavior of the
robots executing the algorithm; other transitions come as “accidental” byprod-
ucts of the execution. The proof is then a detailed examination of all the possible
executions of the algorithm in the space of robots’ configurations, paying special
attention to the transitions that may arise as critical points of cautious moves.
In the following, let R = {r1, · · · , rn} denote a swarm of n > 4 robots. let ri(t)
denote the location of robot ri at time t � 0, and R(t) = {r1(t), · · · , rn(t)}.

We first prove that robots executing the cautious move protocol indeed be-
haves as intended.

Theorem 1. Let a swarm of n robots execute a cautious move with critical point
set

⋃k
i=1 Ci, with |Ci| = n for 1 � i � k, from an initial configuration in which

no robot is moving. Then, during the cautious move, whenever the robots are
found in a configuration Ci, they all stop in that configuration.
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We then analyze the behaviour of the algorithms with respect to the critical
points; in particular, to the Pre-regular case, which turns out to be the hardest
to treat.

Lemma 1. If S is Pre-regular, then it is not Central, Post-periodic, Landmark-
co-radial, Antipodal-referees, Pre-equiangular, nor Post-aperiodic.

Theorem 2. Let R(0) be a Simple biangular configuration, n > 4, and let the
robots execute procedure Simple Biangular with suitable critical points. Then,
the robots eventually reach a Pre-regular configuration, and they stop as soon as
they reach it.

Theorem 3. Let R(0) be an Aperiodic configuration, n > 4, and let the robots
execute procedure Aperiodic. Then, as soon as they reach a Pre-regular or a
Simple biangular or a Aperiodic configuration, they all stop in that configuration.

The previous set of Theorems guarantees the correct execution of cautious
moves. We conclude showing that the directed graph of configurations and their
transitions (depicted in Figure 4) contains no cycles, and the only sink is the
Regular configuration.

Lemma 2. If n > 4, no transition is possible other than those illustrated in
Figure 4.

Theorem 4. The Uniform Circle Formation problem is solvable by n �= 4
robots in ASYNC.

The case n = 4 is still open.
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10. Dieudonné, Y., Petit, F.: Swing words to make circle formation quiescent. In:
Prencipe, G., Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 166–179.
Springer, Heidelberg (2007)
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