
Getting Close without Touching�

Linda Pagli, Giuseppe Prencipe, and Giovanni Viglietta

Dipartimento di Informatica, Università di Pisa
{pagli,prencipe,viglietta}@di.unipi.it

Abstract. In this paper we study the Near-Gathering problem for
a set of asynchronous, anonymous, oblivious and autonomous mobile
robots with limited visibility moving in Look-Compute-Move (LCM) cy-
cles: In this problem, the robots have to get close enough to each other, so
that every robot can see all the others, without touching (i.e., colliding)
with any other robot. The importance of this problem might not be clear
at a first sight: Solving the Near-Gathering problem, it is possible to
overcome the limitations of having robots with limited visibility, and it is
therefore possible to exploit all the studies (the majority, actually) done
on this topic, in the unlimited visibility setting. In fact, after the robots
get close enough, they are able to see all the robots in the system, a sce-
nario similar to the one where the robots have unlimited visibility. Here,
we present a collision-free algorithm for the Near-Gathering problem,
the first to our knowledge, that allows a set of autonomous mobile robots
to nearly gather within finite time. The collision-free feature of our solu-
tion is crucial in order to combine it with an unlimited visibility protocol.
In fact, the majority of the algorithms that can be found on the topic
assume that all robots occupy distinct positions at the beginning. Hence,
only providing a collision-free Near-Gathering algorithm, as the one
presented here, is it possible to successfully combine it with an unlim-
ited visibility protocol, hence overcoming the natural limitations of the
limited visibility scenario. In our model, distances are induced by the
infinity norm. A discussion on how to extend our algorithm to models
with different distance functions, including the usual Euclidean distance,
is also presented.

1 Introduction

Consider a distributed system whose entities are a set of robots or agents that
can freely move on a two-dimensional plane, operating in Look-Compute-Move
(LCM) cycles. During a cycle, a robot takes the snapshot of the position of
the other robots (Look); executes the protocol, the same for all robots, using
the snapshot as an input (Compute); and moves towards the computed desti-
nation, if any (Move). After each cycle, a robot may be inactive for some time.
With respect to the LCM cycles, the most common models used in these stud-
ies are the fully synchronous (FSYNC), the semi-synchronous (SSYNC), and

� This work has been partially supported by MIUR of Italy under projects MadWeb
and AlgoDEEP prot. 2008TFBWL4.

G. Even and M.M. Halldórsson (Eds.): SIROCCO 2012, LNCS 7355, pp. 315–326, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

316 L. Pagli, G. Prencipe, and G. Viglietta

the asynchronous (ASYNC). In the asynchronous (ASYNC) model, each robot
acts independently from the others and the duration of each cycle is finite but
unpredictable; thus, there is no common notion of time, and robots can compute
and move based on obsolete observations. In contrast, in the fully synchronous
(FSYNC) model, there is a common notion of time, and robots execute their cy-
cles synchronously. In particular, time is assumed to be discrete, and at each time
instant all robots are activated, obtain the same snapshot, compute and move
towards the computed destination; thus, no computation or move can be made
based on obsolete observations. The last model, the semi-synchronous (SSYNC),
is like FSYNC where, however, not all robots are necessarily activated at each
time instant.

In the last few years, the study of the computational capabilities of such a
system has gained much attention, and the main goal of the research efforts
has been to understand the relationships between the capabilities of the robots
and their power to solve common tasks. The main capabilities of the robots
that, to our knowledge, have been studied so far in this distributed setting are
visibility, memory, orientation, and direct communication. With respect to vis-
ibility, the robots can either have unlimited visibility, by sensing the positions
of all other robots, or have limited visibility, by sensing just a portion of the
plane, in particular up to a given distance V [1,8]. With respect to memory, the
robots can either be oblivious, by having access only to the information sensed
or computed during the current cycle (e.g., [14]), or non-oblivious, by having
the capability of storing the information sensed or computed since the begin-
ning of the computation (e.g., [2,15,16]). With respect to orientation, the two
extreme settings studied are the one where the robots have total agreement, and
agree on the orientation and direction of their local coordinate systems (i.e., they
agree on a compass), e.g., [9], and the one where the robots have no agreement
on their local coordinate axes, e.g., [15,16]; in the literature, there are studies
that tackle also the scenarios in between; for instance, when the robots agree
on the direction and orientation just of the y coordinate, or there is agreement
just on the chirality of the coordinate system, e.g., [6]. With respect to direct
communication, the direction so far has been towards the use of external signals
or lights to enhance the capabilities of mobile, first suggested in [12], and also
referenced in [7], which provided the earliest indication that incorporating in the
robot model some simple means of signalling might positively affect the power
of the team. Recently, a study that tackles more systematically this particular
capability has been presented in [3].

In this paper, we solve the Near-Gathering problem: The robots are re-
quired to get close enough to each other, without touching or colliding during
their movements. Here, the team of robots under study executes the cycles ac-
cording to the ASYNC model, the robots are oblivious and have limited visi-
bility. The importance of this problem might not be clear at a first sight: With
a solution to the Near-Gathering problem it would be possible to overcome
the limitations of having robots with limited visibility, and it would be possible
to exploit all the studies (the majority, actually) done in the unlimited visibility

Getting Close without Touching 317

setting. In fact, after the robots get close enough, they are able to see all the
robots in the system, a scenario similar to the one where the robots have unlim-
ited visibility. Since most of the solutions to the unlimited visibility case assume
a starting configuration where no two robots touch (i.e., they do not share the
same position in the plane), it is of crucial importance to ensure that no collision
occurs during the near gathering.

A problem close to Near-Gathering is the gathering problem, where the
robots have to meet, within finite time, in a point of the plane not agreed in
advance. This problem has been studied in the literature in all models; in particu-
lar, a study in SSYNC with limited visibility has been presented in [1]: Actually,
this solution could be easily modified to solve also the Near-Gathering prob-
lem, just imposing a termination condition; however, it has been shown that this
solution does not work in ASYNC [13]. Another solution for the limited visi-
bility case is in [14], where the coordinate systems are assumed to be consistent
only after a period of instability (i.e., the robots agree on the coordinate system
only after an arbitrary long period); however, also this solution is designed for
the SSYNC model. In [10] a convergence protocol that works with a very lim-
ited form of asynchrony (called 1-bounded asynchrony) has been presented. In
the asynchronous model, the only solution to the gathering problem with robots
having limited visibility has been presented in [8]: This protocol, however, is not
collision-free; hence, it cannot be used to solve our problem. We note that, as in
the protocol in [8], we also assume that the robots have total agreement. Also,
we remark that, since the algorithm presented here is for the ASYNC model, it
solves the problem also in the SSYNC and FSYNC models.

As stated above, solutions to problems studied in the unlimited visibility set-
ting can be potentially used to solve the same problems in the limited visibility
setting, by exploiting the Near-Gathering protocol presented in this paper.
Among these, we can cite for instance the Arbitrary Pattern Formation Prob-
lem [9,6,15,16], or the Uniform Circle Formation (e.g., [4,5]).

The organization of the paper is as follows: In Section 2 the formal definition
of the robot model is presented; in Section 3 the collision-free algorithm that
solves the Near-Gathering problem is presented; in Section 4 the correctness
of the protocol is shown. Due to space constraints, the proofs will be omitted,
and we thoroughly discuss only the scenario in which distances are induced by
the infinity norm (the full version of the paper can be found in [11]). However,
some extensions of our algorithm to models with different distance functions,
including the usual Euclidean distance, are also briefly discussed in Section 5.

2 The Model

The system is composed of a team of mobile entities, called robots, each modeled
as a computational unit provided with its own local memory and capable of
performing local computations. The robots are (viewed as) points in the plane.
Let r(t) denote the absolute position of robot r at time t (i.e., with respect to an
absolute reference frame); also, we will denote by r(t).x and r(t).y the abscissa

318 L. Pagli, G. Prencipe, and G. Viglietta

and the ordinate value of position r(t), respectively. When no ambiguity arises,
we shall omit the temporal indication; also, the configuration of the robots at
time t is the set of robots’ positions at time t.

Each robot has its own local coordinate system, and we assume that the local
coordinate systems of the robots are consistent with each other: In other words,
they agree on where the North, South, East and West are. A robot is endowed
with sensorial capabilities and it observes the world by activating its sensors,
which return a snapshot of the positions of all other robots with respect to its
local coordinate system. The visibility radius of the robots is limited: Robots
can sense only points in the plane within distance V . This setting, referred in
the literature as limited visibility, is understandably more difficult; for example,
a robot with limited visibility might not even know the total number of robots
nor where they are located if outside its radius of visibility. Also, combined with
the asynchronous behavior of the robots, introduces a higher level of difficulty
in the design of collision-free protocols. For instance, in the example depicted in
Figure 1.a, robot s, in transit towards its destination, is seen by r; however, s is
not aware of r’s existence and, if it starts the next cycle before r starts moving,
s will continue to be unaware of r; hence, since r does not see s when s starts
its movement, it must take care of the “potential” arrival of s when computing
its destination.

All robots are identical: They are indistinguishable from their appearance
and they execute the same protocol. Robots are autonomous, without a central
control. Robots are silent, in the sense that they have no means of direct com-
munication (e.g., radio, infrared) of information to other robots. Each robot is
endowed with motorial capabilities, and can move freely in the plane. A move
may end before the robot reaches its destination, e.g., because of limits to its mo-
tion energy. The distance traveled in a move is neither infinite nor infinitesimally
small. More precisely, there exists a constant δ > 0 such that, if the destination
point is closer than δ, the robot will reach it; otherwise, it will move towards
it of at least δ. Note that, without this assumption, an adversary would make
it impossible for any robot to ever reach its destination, following a classical
Zenonian argument. The quantity δ might not be known to the robots.

The robots do not have persistent memory, that is, memory whose content
is preserved from one cycle to the next; they are said to be oblivious. The only
available memory they have is used to store local variables needed to execute
the algorithm at each cycle.

At any point in time, a robot is either active or inactive. When active, a
robot r executes a Look-Compute-Move (LCM) cycle performing the following
three operations, each in a different state: (i) Look: The robot observes the
world by activating its sensor, which returns a snapshot of the positions of all
robots within its radius of visibility with respect to its own coordinate system
(since robots are viewed as points, their positions in the plane are just the set
of their coordinates); (ii) Compute: The robot executes its algorithm, using
the snapshot as input. The result of the computation is a destination point; (iii)
Move: The robot moves towards the computed destination; if the destination

Getting Close without Touching 319

(b) (c)(a)

l

r∗

r

s
MS(s, t)

NE
SEr∗

NW
SW

qr

r

s

Fig. 1. (a) When s starts moving (the left end of the arrow), r and s do not see each
other. While s is moving, r Looks and sees s; however, s is still unaware of r. After
s passes the area of visibility of r, it is still unaware of r. (b) The area above and
to the right of s defines the Move Space of s. The fat line is the Contour of r∗. (c)
Computation of the length of the movement in the algorithm.

is the current location, the robot stays still (performs a null movement). When
inactive, a robot is idle. All robots are initially inactive. The amount of time
to complete a cycle is assumed to be finite, and the Look is assumed to be
instantaneous. We will denote by W(t), L(t), C(t), M(t) the sets of robots that
are, respectively, inactive, in a Look phase, in a Compute phase and in a Move
phase at time t.

In the following, we will assume that all distances are induced by the infinity
norm: ‖p‖∞ = max{p.x, p.y}. Different distance functions, including the usual
Euclidean distance, will be briefly discussed in Section 5.

2.1 Notation

We will denote by R = {r1, . . . , rn} the set of robots in the system. First note
that, in order to achieve explicit termination, it is necessary that all robots share
the knowledge of n. In Section 4.5 we will show how to overcome this by making
use of visible bits [3].

We will denote by G(t) = (N,E(t)) the distance graph at time t ≥ 0, where N
is the set of the input robots and, for any two distinct robots r and s, (r, s) ∈ E(t)
iff 0 ≤ ‖r(t) − s(t)‖∞ ≤ V . In [8] it was proved that the initial distance graph
G(0) must be connected for the gathering problem to be solvable; the same result
clearly holds also for the Near-Gathering problem. Thus, in the following we
will always assume that G(0) is connected.

Let r be a robot, and let us divide its visible area into four quadrants, denoted
by NW(r), NE(r), SE(r), and SW(r) (see the example depicted in Figure 1.b).
For technical reasons, the vertical and the horizontal segment of length V starting
from r and going South andWest, respectively (including the location of r itself),
are part of SW(r); the vertical (resp. horizontal) segment of length V passing

320 L. Pagli, G. Prencipe, and G. Viglietta

through r and going North (resp. East) is part of NW(r) (resp. SE(r)). When
not necessary, the reference to r will be dropped. Similarly, a reference to time
may be added.

Next, we define the Move Space of a robot (refer to the example depicted in
Figure 1.b):

Definition 1 (Move Space). The Move Space of a robot r at time t, denoted
by MS(r, t), is the set

{
(x′, y′) ∈ R

2 | x′ ≥ r(t).x ∧ y′ ≥ r(t).y
}
.

Based on the previous definition, we introduce the Contour of a robot (refer
again to Figure 1.b):

Definition 2 (Contour). The Contour of a robot r at time t, denoted by
CT (r, t), is the boundary of the set

⋃
s MS(s, t), where s ranges through all

the robots in NW(r, t) ∪NE(r, t) ∪ SE(r, t).

We will call a peak of the contour any convex corner of CT (r); the concave corners
will be called valleys. An easy property of CT (r, t) is stated in the following

Observation 1. If there are robots in both NW(r) and in SE(r), and no robot
in NE(r), then CT (r) has exactly one valley in NE(r).

3 The Near-Gathering Problem and Its Solution

In the Near-Gathering problem, at the beginning a set of n robots is arbi-
trarily placed in the plane, on distinct positions such that G(0) is connected: We
will call this the initial configuration, denoted by I. In finite time, the robots
are required to move within distance ε from each other, for a given 0 < ε < V/4:
We will call this the final configuration, denoted by F .

Our solution is reported in Figure 2. Informally, at each cycle, robot r∗ first
computes the direction of movement according to the following rules:

– If r∗ can see robots only in SW , then it will not move; that is, in this case
the destination point is the point of coordinates (0, 0).

– If r∗ can see robots only in NW ∪ SW , then its direction of movement is
given by the half-line l starting in r∗ and going North.

– If r∗ can see robots only in SW∪SE , then its direction of movement is given
by the half-line l starting in r∗ and going East.

– Otherwise, the direction of movements of r is decided based on the shape
of the Contour of r∗. In particular, if in NE there is at least a robot, the
direction of movement is given by the half-line l starting from r∗ and passing
through robot in NE closest to r∗. Otherwise, there must be robots in both
NW and SE ; in this case, the direction of movement is given by the half-line
l starting from r∗ and passing through the only valley in CT (r∗).

In order to establish the length of the movements along l, r∗ checks two main
factors: First, it must not enter the Move Space of any robot it can see (this
contributes to guarantee collision avoidance); second, the new position must be

Getting Close without Touching 321

within distance V/2 from any of the robots it is currently seeing (this con-
tributes to guarantee both collision avoidance and the connectedness of the
initial distance graph). In order to ensure these two factors, first, for each
r ∈ NW ∪ NE ∪ SE , it computes the intersection pr between l and MS(r)
(notice that robots move only upward and rightward). Second, for each visible
robot r, the intersection qr between the visible area of r∗ and the line parallel
to l and passing through r is computed: The distance dr between r and qr is
the maximum distance r∗ is allowed to move in order to not lose visibility with
r (assuming r does not move). Thus, if p is the point closest to r∗ among the
points in {pr} ∪ {dr}, the destination point of r∗ is the median point dp on the
segment between r∗ and p.

As we will prove in the following, a consequence of the computation of dp as
described above is that the distance graph never gets disconnected; also, colli-
sions are avoided. Termination is achieved using the knowledge of n that the
robots are assumed to have. In fact, it is easy to see that, since the robots op-
erate in a totally asynchronous environment, without knowledge of n, explicit
termination would not be possible. In particular, in our solution, a robot ter-
minates its execution as soon as it sees n robots at distance less than a given
tolerance ε.

4 Correctness

In this section, we will prove that the Algorithm reported in Figure 2 correctly
solves theNear-Gathering problem. In particular, the proof will be articulated
in three parts: First, we will prove that the initial distance graph is preserved
during the execution; second, we will prove that no collision occurs during the
movements of the robots; finally, the correctness proof concludes by showing that
the algorithm terminates.

4.1 Preliminary Definitions and Observations

Before presenting the correctness proof, we will introduce a few preliminary
definitions and observations. First, by construction, it is easy to observe the
following:

Observation 2. Each robot can only move rightward and upward. Furthermore,
the robots on the rightmost vertical axis never move right, and the robots on the
topmost horizontal axis never move up.

Observation 3. During each cycle, a robot travels a distance of at most V/2.

Definition 3 (First and Last). Given a robot r, let First(r , t) = min{t′ >
t|r ∈ L(t′)} be the first time, after time t, at which r performs a Look operation.
Also, let Last(r , t) = max{t′ ≤ t|r ∈ L(t′)} be the last time, from the beginning
up to time t, at which r has performed a Look operation; if r has not performed
a Look yet, then Last(r , t) = 0.

322 L. Pagli, G. Prencipe, and G. Viglietta

State Look

Take the snapshot of the positions of the visible robots, which returns, for each
robot r ∈ R within distance V , Pos[r], the position in the plane of robot r
(according to my coordinate system); (Note: I am robot r∗)

State Compute

Zε = Robots in Pos[] within distance ≤ ε;
If |Zε| = n Then Terminate.
l, p1, . . . , pn, p

′
1, . . . , p

′
n, b = nil;

Let NW, NE , SE , and SW be the quadrants of my visible area;
CT = Contour of the robots in NW ∪NE ∪ SE ;
If I see robots only in SW Then dp = (0, 0);
Else

If I see robots only in NW ∪ SW Then
l = Half-line from me going North;

Else If I see robots only in SE ∪ SW Then
l = Half-line from me going East;

Else
If There is at least one robot in NE Then

l = Half-line from me to the closest robot in NE ;
Else

l = Half-line from me to the only valley of CT in NE ;
For Each robot r ∈ NW ∪NE ∪ SE Do

pr = Intersection between l and MS(r);
For Each visible robot r Do

lr = Line parallel to l and passing through r;
qr = Lowest or leftmost intersection between lr and my visible area;
dr = Distance between r and qr;
p′r = Point on l at distance dr from me;

b = Point on l at distance V from me;
p = Point closest to me among points in {pr} ∪ {p′r} ∪ {b};
dp = Median point on the segment between my position and p.

State Move

Move(dp).

Fig. 2. The Near-Gathering Protocol

Now, we define the Destination Point of a robot at a time t as follows:

Definition 4 (Destination Point). Given a robots r, we define the Destina-
tion Point DP(r, t) of r at time t as follows:

– If r ∈ W(t), then: if r is in its first cycle, then DP(r, t) = r(0) (i.e., the
starting position of r); otherwise, DP(r, t) is the point p as computed in the
last Compute state before t (in the previous cycle).

Getting Close without Touching 323

– If r ∈ L(t), then DP(r, t) is the point p as computed in the next Compute
state after t (in the current cycle).

– If r ∈ C(t), then DP(r, t) is the point p as computed in the current Compute
state.

– If r ∈ M(t), then DP(r, t) is the point p as computed in the last Compute
state before t (in the current cycle).

From the previous definition, we can state the following:

Lemma 1. Let r be a robot. During the time strictly between two consecutive
Looks, the Destination Point of r does not change.

4.2 Preservation of Mutual Awareness

We will now prove that the connectedness of the initial distance graph is pre-
served during the entire execution of the algorithm. We do so by first introducing
the notion of mutual awareness.

Definition 5 (Mutual Awareness). Two distinct robots r and s are mutually
aware at time t iff both conditions hold:

1. ‖r(tr)− s(tr)‖∞ ≤ V , with tr = Last(r , t), and
2. ‖r(ts)− s(ts)‖∞ ≤ V , with ts = Last(s , t).

Since initially all robots are inactive, then by definition of mutual awareness we
have

Lemma 2. All the pairs of robots that are within distance V from each other at
time t = 0 are initially mutually aware.

In the following lemma, we will prove that two robots that are mutually aware
at the beginning of the computation keep the awareness during the execution.

Lemma 3. If robots r and s are mutually aware at time t, they are mutually
aware at any time t′ > t.

Based on the previous lemma, we can state the following

Corollary 1. The connectedness of G(0) is preserved during the execution of
the algorithm.

4.3 Collision Avoidance

In this section, we will prove that no collision occurs during the execution of the
algorithm.

Lemma 4. No collision ever occurs between any pair of robots during the exe-
cution of the algorithm.

324 L. Pagli, G. Prencipe, and G. Viglietta

4.4 Termination

Let us call Right the vertical axis passing throught the righmost robot(s) in I,
and Top the horizontal axis passing throught the topmost robot(s) in I; also,
let f be the intersection point between Right and Top. By Observation 2, and
by the algorithm, we can easily observe that

Observation 4. If at any time t a robot is at position f , then it never moves
from there.

Next, we introduce a definition that will be useful to prove the convergence of
the algorithm.

Definition 6 (Convergence Point). Given a point a, let Ψ and Γ be the
vertical and the horizontal axes passing through it, respectively. We say that a is
a convergence point for robot r (or that r converges towards a) if, within finite
time, r passes any vertical axis to the left of Ψ and any horizontal axis below Γ ,
and never passes neither Ψ or Γ .

Note that, by Observation 2, all robots that converge towards a point a are below
and to the left of a. The following lemma shows that f is the only converge point.

Lemma 5. All robots converge towards point f .

From the previous lemma, and by the termination condition of the algorithm,
we can state the following

Corollary 2. After finite time, all robots terminate their execution, being at
distance ε from each other.

By Corollaries 1 and 2, and by Lemma 4, we can state the following

Theorem 1. Algorithm 2 correctly solves the Near-Gathering problem.

4.5 On the Knowledge of n

In the solution that we presented, in order for the robots to explicitly terminate,
the knowledge of n is necessary. However, this assumption can be dropped by
using external visible bits, as recently introduced in [3]. In particular, each robot
is equipped with a visible light, whose color can be changed during the Compute
state. During the Look, a robot can retrieve, beside the position, also the value
of the light of its fellow robots, which can be stored in a local Light[] array (the
color of the light of the executing robot is stored in Light[1]).

With this extra information, the explicit termination of the robots can be
achieved by substituting the termination check in the Near-Gathering proto-
col with the following check, where ε is an arbitrary small constant (any fraction
of V):

If |Z \ Zε| == 0 Then
Light[r∗] = 1;
If ∀r ∈ Zε, Light[r] == 1 Then Terminate.

Else Light[r∗] = 0.

Getting Close without Touching 325

5 Conclusions

In this paper we presented the first algorithm that solves the Near-Gathering
problem for a set of autonomous mobile robots with limited visibility (where the
distance function is induced by the infinity norm); the protocol presented here
is collision-free: This allows to potentially combine our protocol with solutions
designed for the unlimited visibility setting.

We remark that our algorithm also solves the Near-Gathering problem in
the robot model that uses the Manhattan distance (i.e., the distance induced
by the 1-norm): Each robot merely has to transform each snapshot that it gets
during a Look state by rotating it clockwise by 45◦ and scaling it by a factor of√
2. Then the protocol can be applied as it is, and finally the computed point

dp has to be moved again with the inverse transformation: Scaled by 1/
√
2 and

rotated counterclockwise by 45◦.
The Near-Gathering algorithm can also be applied to models that use

distances induced by any p-norm, with p > 1, including the usual Euclidean
distance: Each robot r just “ignores” any point p such that ‖r− p‖∞ > V , thus
pretending to be in the infinity norm model. Of course, this is guaranteed to
terminate correctly only if the initial conditions given in Section 2.1 are met,
i.e., if G(0), computed with the infinity norm, is connected.

In particular, when using the Euclidean distance, our protocol and proofs work
if G(t) is constructed by connecting pairs of robots that are within Euclidean
distance V/

√
2, as opposed to V . Moreover, we are confident that even this

constraint on the initial distance graph can be dropped, by a simple adaptation
of our protocol to circular visible areas. Due to space limitations, we are unable
to discuss the topic further in this paper.

Acknowledgments. We would like to thank Paola Flocchini, Nicola Santoro,
and Peter Widmayer, who contributed to the writing of this paper by sharing
their ideas.

References

1. Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: A distributed memoryless point
convergence algorithm for mobile robots with limited visibility. IEEE Transaction
on Robotics and Automation 15(5), 818–828 (1999)

2. Cieliebak, M.: Gathering Non-oblivious Mobile Robots. In: Farach-Colton, M. (ed.)
LATIN 2004. LNCS, vol. 2976, pp. 577–588. Springer, Heidelberg (2004)

3. Das, S., Flocchini, P., Prencipe, G., Santoro, N., Yamashita, M.: The power of
lights: Synchronizing asynchronoys robots using visibile bits. In: The 32nd Inter-
national Conference on Distributed Computing Systems, ICDCS (to appear, 2012)

4. Défago, X., Souissi, S.: Non-uniform circle formation algorithm for oblivious mobile
robots with convergence toward uniformity. Theoretical Computer Science 396(1-
3), 97–112 (2008)

5. Dieudonné, Y., Labbani-Igbida, O., Petit, F.: Circle formation of weak mobile
robots. ACM Transactions on Autonomous and Adaptive Systems 3(4) (2008)

326 L. Pagli, G. Prencipe, and G. Viglietta

6. Dieudonné, Y., Petit, F., Villain, V.: Leader Election Problem versus Pattern For-
mation Problem. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS,
vol. 6343, pp. 267–281. Springer, Heidelberg (2010)

7. Efrima, A., Peleg, D.: Distributed Models and Algorithms for Mobile Robot Sys-
tems. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H.,
Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 70–87. Springer, Heidelberg
(2007)

8. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of robots with
limited visibility. Theoretical Computer Science 337(1-3), 147–168 (2005)

9. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary pattern forma-
tion by asynchronous oblivious robots. Theoretical Computer Science 407, 412–447
(2008)

10. Katreniak, B.: Convergence with Limited Visibility by Asynchronous Mobile
Robots. In: Kosowski, A., Yamashita, M. (eds.) SIROCCO 2011. LNCS, vol. 6796,
pp. 125–137. Springer, Heidelberg (2011)

11. Pagli, L., Prencipe, G., Viglietta, G.: Getting close without touching. Technical
Report TR-12-05, Dipartimento di Informatica, Università di Pisa (2012)

12. Peleg, D.: Distributed Coordination Algorithms for Mobile Robot Swarms: New
Directions and Challenges. In: Pal, A., Kshemkalyani, A.D., Kumar, R., Gupta, A.
(eds.) IWDC 2005. LNCS, vol. 3741, pp. 1–12. Springer, Heidelberg (2005)

13. Prencipe, G.: The effect of synchronicity on the behavior of autonomous mobile
robots. Theory of Computing Systems (TOCS) 38(5), 539–558 (2005)

14. Souissi, S., Défago, X., Yamashita, M.: Using eventually consistent compasses to
gather memory-less mobile robots with limited visibility. ACM Transactions on
Autonomous and Adaptive Systems 4(1), 1–27 (2009)

15. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of
geometric patterns. Siam Journal on Computing 28(4), 1347–1363 (1999)

16. Yamashita, M., Suzuki, I.: Characterizing geometric patterns formable by oblivious
anonymous mobile robots. Theoretical Computer Science 411(26-28) (2010)

	Getting Close without Touching
	Introduction
	The Model
	Notation

	The Near-Gathering Problem and Its Solution
	Correctness
	Preliminary Definitions and Observations
	Preservation of Mutual Awareness
	Collision Avoidance
	Termination
	On the Knowledge of n

	Conclusions

