
The Power of Lights: Synchronizing Asynchronous Robots

using Visible Bits

Shantanu Das∗, Paola Flocchini†, Giuseppe Prencipe‡, Nicola Santoro§, Masafumi Yamashita¶

∗BGU & Technion-Israel Institute of Technology, shantanu@tx.technion.ac.il
†EECS, University of Ottawa, flocchin@site.uottawa.ca

‡Dipartimento di Informatica, Università di Pisa, prencipe@di.unipi.it
§School of Computer Science, Carleton University, santoro@scs.carleton.ca
¶ Department of Informatics, Kyushu University, mak@inf.kyushu-u.ac.jp

Abstract—In this paper we study the power of us-
ing lights, i.e. visible external memory, for distributed
computation by autonomous robots moving in Look-
Compute-Move (LCM) cycles. With respect to the LCM
cycles, the most common models studied in the lit-
erature are the fully-synchronous (FSYNC), the semi-
synchronous (SSYNC), and the asynchronous (ASYNC).
In this paper we introduce in the ASYNC model, the
weakest of the three, the availability of visible external
memory: each robot is equipped with a light bulb that is
visible to all other robots, and that can display a constant
numbers of different colors; the colors are persistent,
that is they are not automatically reset at the end of
each cycle.

We first study the relationship between ASYNC with
visible bits and SSYNC. We prove hat asynchronous
robots, when equipped with a constant number of
colors, are strictly more powerful than traditional semi-
synchronous robots. We also show that, when enhanced
with visible lights, the difference between asynchrony
and semi-synchrony disappears; this result must be
contrasted with the strict dominance ASYNC <SSYNC
between the models without lights.

We then study the relationship between ASYNC with
visible bits and FSYNC. We prove that asynchronous
robots with a constant number of visible bits, if they can
remember a single snapshot, are strictly more powerful
than fully-synchronous robots. This is to be contrasted
with the fact that, without lights, ASYNC robots are not
even as powerful as SSYNC, even if they remember an
unlimited number of previous snapshots. These results
demonstrate the power of using visible external memory
for distributed computation with autonomous robots. In
particular, asynchrony can be overcome with the power
of lights.

I. INTRODUCTION

A. The Framework

The computational capabilities of a team of au-

tonomous mobile entities, usually called robots or

agents, have been the object of extensive research

in a variety of fields. In particular, in the last few

years, a large amount of work in distributed computing

has been devoted to the study of models of au-

tonomous mobile robots operating in Look-Compute-

Move (LCM) cycles. During a cycle, a robot obtains

a snapshot of the environment (Look); executes the

protocol, the same for all robots, using the snap-

shot as an input (Compute); and moves towards the

computed destination, if any (Move). After each cy-

cle, a robot may be inactive for some time. The

main goal of the research efforts has been to un-

derstand the relationships between the capabilities of

the robots and their power to solve common tasks.

With respect to the LCM cycles, the most com-

mon models used in these studies are the fully syn-

chronous (FSYNC), the semi-synchronous (SSYNC),

and the asynchronous (ASYNC). In the asynchronous

(ASYNC) model [17], the robots are activated inde-

pendently, and the duration of each cycle is finite but

unpredictable. As a result, the robots do not have a

common notion of time, robots can be seen while

moving, and computations can be made based on ob-

solete observations. On the opposite side of the spec-

trum, in the fully synchronous (FSYNC) model [24],

the activations of the robots can be logically divided

into global rounds; in each round, all the robots are

activated, obtain the same snapshot, compute and

perform their move. As a result, no robot can be

seen while moving, and no information is out-of-date.

Note that, this is computationally equivalent to a fully

synchronized system in which all robots are activated

simultaneously and all operations are instantaneous.

The semi-synchronous (SSYNC) model is like the

fully synchronous model where however not all robots

are necessarily activated in each round [24]. Since

there are problems that can be solved in FSYNC but

not in SSYNC (e.g. [24]), and problems that can be

solved in SSYNC but not in ASYNC (e.g. [22]), the

relationship between the computational power of the

models is strict: FSYNC > SSYNC > ASYNC.

In this paper we introduce in the ASYNC model,

the weakest of the three, a simple form of direct and

explicit communication: each robot is equipped with

a light bulb that is visible to all other robots, and that

can display a constant numbers of different colors; the

colors are persistent, that is they are not automatically



reset at the end of each cycle. In other words, we

equip the robots with a constant number of visible

and persistent bits of memory. We denote this model

as ASYNCO(1), and study the computational power

of robots so endowed, with respect to the traditional

models SSYNC and FSYNC.

Peleg [21] first suggested the use of external lights

to enhance the capabilities of mobile robots. To our

knowledge, no results have been presented so far on

a set of mobile robots that have available some kind

of visible memory (such as the visible lights used in

this paper); the only reference to the use of visible

lights can be found in [14], which provided the earliest

indication that incorporating in the robot model some

simple means of signaling might positively affect the

power of the team. This paper explores this research

direction.

B. Main Contributions

In this paper we introduce the ASYNCO(1) model

and show that with just six colors it is at least

as powerful as the traditional SSYNC. We do so

constructively: we present a ASYNC6 protocol that,

for any given SSYNC protocol P , produces a semi-

synchronous execution of P . We then solve, in

ASYNC with four colors, the gathering of two obliv-

ious robots, a problem that is not solvable in SSYNC.

In other words, we prove that asynchrony with a

constant number of colors is strictly more powerful

than semi-synchrony: ASYNCO(1) > SSY NC.

We also show that, when enhanced with visi-

ble lights, the difference between asynchrony and

semi-synchrony disappears; in fact we prove that

ASYNCO(1) ≡ SSYNCO(1). This result must be

contrasted with the strict dominance in absence of

lights: ASYNC < SSYNC.

Next, we investigate whether ASYNC robots with

lights can match the power of FSYNC. To this

end, we consider augmenting ASYNC robots with

internal (i.e., not visible) persistent memory of k
previous snapshots, a model denoted as ASYNCk.

This enhancement has been already considered in

the literature (e.g., see [6], [24]). There are however

problems solvable in FSYNC that are not solvable in

ASYNC∞, i.e., even if the asynchronous robots are

endowed with enough memory to store an unbounded

number of snapshots [22]. We show that with the

simultaneous use of both external lights and internal

snapshots, ASYNC becomes at least as powerful as

FSYNC. In fact, we demonstrate that if ASYNC

robots with only three colors can remember a single

snapshot, they can solve any problem solvable in

FSYNC. This proof is also constructive: we present

a ASYNC3
1 protocol that allows to produce a fully

≡ASYNCO(1)

ASYNC
O(1)
O(1)

FSYNC

SSYNCO(1)

SSYNC

Figure 1. Relationship between models.

synchronous execution of any given protocol. On

the other hand, we show the existence of problems

solvable with ASYNC robots having three colors and

one snapshot, but not solvable in FSYNC, without

these additional powers. In other words, we prove

that asynchrony with a constant number of colors and

a single snapshot is strictly more powerful than full

synchrony: ASYNC
O(1)
1 >FSYNC.

These results, summarized in Figure 1, demonstrate

the power of using lights i.e. visible external memory

for distributed computation with autonomous robots.

In particular, they show that asynchrony can be over-

come with the power of lights.

C. Related work

The main effort in the study of autonomous mobile

robots has been to understand their limitations and

their power for solving basic coordination tasks. In

a seminal work [24], the authors have compiled a

comprehensive study of the computational capabilities

of oblivious robots in FSYNC and in SSYNC, char-

acterizing the Arbitrary Pattern Formation Problem,

where the robots are required to form a given pattern.

This problem has been also studied in the ASYNC

model, introduced in [15]; in particular, in [17] the

solvability of the problem has been characterized

based on the various levels of agreement on a common

coordinate system; another interesting study on pattern

formation in the semi-synchronous model can be

found in [25], which shows that oblivious robots can

form any pattern that non-oblivious robots can form.

A number of studies have been devoted to the analysis

of a particular pattern formation problem, the circle;

here, the robots are required to place themselves

uniformly on the border of a circle (e.g., [10], [11]).

Another basic coordination problems that has been

studied in the literature in all models is the gathering,

where the robots are required to meet in a point of

the plane not fixed in advance. In particular, in [24]

the problem has been tackled in the semi-synchronous

model, with oblivious robots having unlimited visibil-

ity; in the same model, a study with limited visibility

has been presented in [2]. The gathering problem

has also been studied in the asynchronous model, in

both the unlimited ([7]) and limited visibility setting

([16]). One interesting result is that, in both the semi-

synchronous and asynchronous model, the problem



is not solvable when n = 2 (if we assume that the

robots cannot bump into each other), as shown in [24].

Also, in all the available solutions, an implicit neces-

sary condition as that the robots have the ability of

multiplicity detection, that is a robot can dustinguish

whether a given position on the plane is occupied by

one or more than one robot. In [6] the problem is

solved dropping this condition; however, the solution

requires an unbounded amount of memory available

to each robot.

Other important problems studied for these teams

of robots include scattering (e.g., [3], [13]), where the

robots are required to scatter on the plane where they

operate; leader election, where the robots have to elect

one of them as the leader of the team (e.g., [12]); and

flocking, where the robots have to follow one of the

robots while keeping a formation, like a flock of birds

(e.g., [5], [18]). Also studied has been the problem

of communicating the local coordinate systems (e.g.,

[4]). Finally, studies have also been conducted on the

fault-tolerance of a distributed system composed by a

set of autonomous mobile robots, such as in [1], [9],

[19], [20], [23].

As mentioned earlier, the use of external signals

or lights to enhance the capabilities of mobile robots

was first suggested by Peleg [21]. The use of visible

identities has been investigated in [8]. The use of

visible lights for signaling has been proposed in [14]

in the context of partitioning a swarm of anonymous

mobile robots.

II. THE MODEL

The system is composed of a team of mobile enti-

ties, called robots, each modelled as a computational

unit provided with its own local memory and capable

of performing local computations.

The robots are placed in a spatial universe, here

assumed to be R
2, and they are viewed as points in

R
2. Each robot has its own local coordinate system;

however, the local coordinate systems of the robots

might not be consistent with each other. A robot is

endowed with sensorial capabilities and it observes

the world by activating its sensors, which return a

snapshot of the positions of all other robots with

respect to its local coordinate system.

The robots are identical: they are indistinguishable

by their appearance and they execute the same pro-

tocol. The robots are autonomous, without a central

control. The robots are silent, in the sense that they

have no means of direct communication (e.g., wire-

less) of information to other robots.

Each robot is endowed with motorial capabilities,

and can freely move in the plane. A move may end

before the robot reaches its destination, e.g. because of

limits to its motion energy. The distance traveled in a

move is neither infinite nor infinitesimally small. More

precisely, there exists an (arbitrarily small) constant

δ > 0 such that if the destination point is closer than δ,

the robot will reach it; otherwise, it will move towards

it a distance of at least δ. Note that, without this

assumption, an adversary would make it impossible

for any robot to ever reach its destination, following

a classical Zenonian argument. The quantity δ might

not be known to the robots.

At any point in time, a robot is either active or

inactive. When active, a robot r executes a Look-

Compute-Move (LCM) cycle performing the following

three operations, each in a different state:

(i) Look: The robot observes the world by activat-

ing its sensor, which returns a snapshot of the

positions of all robots with respect to its own

coordinate system (since robots are viewed as

points, their positions in the plane are just the

set of their coordinates).

(ii) Compute: The robot executes its algorithm,

using the snapshot as input. The result of the

computation is a destination point.

(iii) Move: The robot moves towards the computed

destination; if the destination is the current

location, the robot stays still (performs a null

movement).

When inactive, a robot is idle. All robots are initially

inactive. The amount of time to complete a cycle is

assumed to be finite, and the Look is assumed to be

instantaneous.

The robots may or may not have distinct identities;

if they are without identifiers that can be used during

the computation they are said to be anonymous. The

robots may or may not have a finite but persistent

memory, that is memory whose content is preserved

from one cycle to the next; they are said to be

oblivious if they do not, in which case they start each

cycle without any information on the past.

We denote by R the set of all teams of robots sat-

isfying the above assumptions (i.e., they are identical,

silent, autonomous, and operate in LCM cycles), and

denote by R ∈ R a team of robots having identical

capabilities (e.g., persistent storage, anonymity, etc.).

We will specifically denote by Ro ⊂ R the set of all

teams of oblivious robots.

With respect to the activation schedule of the

robots and their Look-Compute-Move cycle, the most

common models are the fully-synchronous, the semi-

synchronous, and the asynchronous. In the asyn-

chronous (ASYNC) model, the robots are activated

independently, and the duration of each Compute,

Move and inactivity is finite but unpredictable. As a

result, the robots do not have a common notion of



time, robots can be seen while moving, and compu-

tations can be made based on obsolete observations.

On the opposite side of the spectrum, in the fully-

synchronous (FSYNC) model, the activations of all

robots can be logically divided into global rounds;

in each round, the robots are all activated, obtain

the same snapshot, compute and perform their move.

Note that this is computationally equivalent to a fully

synchronized system in which all robots are activated

simultaneously and all operations are instantaneous.

The semi-synchronous (SSYNC) model is like the

fully-synchronous model where however not all robots

are necessarily activated in each round. Based on the

fairness of the activation scheduler, sub-models can be

obviously defined.

Given a model X and a team of robots R ∈ R, let

Task(X,R) denote the set of problems solvable by

R in X . Given two models X and Y , we say that X
is computationally not less powerful than Y , denoted

by X ≥ Y if ∀R ∈ R, T ask(Y,R) ⊆ Task(X,R). If

X ≥ Y and ∃R ∈ R, T ask(X,R) \Task(Y,R) 6= ∅,

we say that X is computationally more powerful than

Y , denoted by X > Y . If X ≥ Y and Y ≥ X ,

X and Y are said to be computationally equivalent,

denoted by X ≡ Y . For simplicity of notation, let

A(R), S (R), and F (R) denote Task(ASYNC, R),
Task(SSYNC, R), and Task(FSYNC, R), respec-

tively. Trivially we have:

FSYNC ≥ SSYNC ≥ ASYNC. (1)

There are problems that are solvable in SSYNC but

not in ASYNC (e.g. [22]); that is,

∃R ∈ R,S(R) \ A(R) 6= ∅ (2)

Similarly, there are problems that are solvable in

FSYNC but not in SSYNC (e.g. [24]); that is,

∃R ∈ R,F(R) \ S(R) 6= ∅ (3)

Thus, from (1), (2) and (3), we have the following

relationship between the computational power of the

three basic models:

FSYNC > SSYNC > ASYNC. (4)

In this paper we augment the ASYNC model by

providing some additional capabilities to the robots.

Each robot in addition to its capabilities, has a light

bulb that is visible to all the robots when they perform

their Look operation. The light associated with a

robot can assume different colors (from a finite set)

and can be updated by a robot during the Compute

operation. The light is persistent; i.e., while the robots

might be oblivious forgetting all other information

from previous cycles, their lights are not automatically

turned off at the end of a cycle. Thus, it constitutes a

form of external persistent memory.

The second capability we consider is the ability to

remember a constant number of snapshots from previ-

ous cycles. More precisely, for some integer constant

j > 0, the robot is allowed to store in its internal

memory at most j snapshots from previous Look

operations (the robot may choose which snapshots it

stores).

We denote these two additional abilities using a

subscript and a superscript representing the number of

snapshots and the number of external colors respec-

tively; that is, ASYNCi
j denotes the ASYNC model

when each robot is augmented by a visible light with

i > 0 colors and by a persistent memory of j > 0 past

snapshots, and Aj
i (R) denotes the class of problems

solvable in this model by R ∈ R.

III. ASYNCHRONY WITH VISIBLE LIGHTS VERSUS

SEMI-SYNCHRONY

A. ASYNCO(1) is at least as powerful as SSYNC

In this section we show that asychronous systems

equipped with a light colorable with O(1) colors

are at least as powerful as semi-synchronous systems

without lights. More precisely, we have:

Theorem III.1. ∀R ∈ R, S (R) ⊆ A6(R).

The proof is constructive: we present a ASYNC6

protocol SIM that produces a semi-synchronous exe-

cution of any SSYNC protocol P .

The lights used by SIM can have six colors:

T(rying), M(oving), S(topped), F(inished), W(aiting),

N(ext). At the beginning, all lights are set to T. The

protocol is a sequence of Mega-Cycles, each of which

starts with all robots trying to execute protocol P
(color T) and ends with all robots finishing the Mega-

Cycle having executed P once (color F). All robots

with light F then eventually turn their lights to T; when

this process is completed, a new Mega-Cycle starts.

During a Mega-Cycle every robot executes P once.

Each Mega-Cycle is composed of a sequence of

stages: at each stage, some robots are allowed to ex-

ecute P , and protocol SIM ensures that they have the

same view of the world (i.e., they observed the same

snapshot). Each stage starts when a robot observes all

the other robots with their light either T or S (and

starts the execution of P , eventually turning its light

to M), and it ends when at least a robot has changed

light from M to S and all other robots are again in T

or S. In particular, at the beginning, all the robots that

during their Look phase see only robots with light T

are allowed to enter the first stage by turning their own

light to M before executing P . Any other robot with



State Look

Take the snapshot of the positions of the robots, that
returns for all robots r ∈ R:

– Pos[r], the position on the plane of robot r
(according to my coordinate system);

– Light[r], the color of the light of robot r.

(Note: I am robot x)

State Compute

p := Pos[x].
Case Light[x]:

• T

If ∀r 6= x, Light[r] ∈ {T, S} Then
Execute P .
p := computed destination.
Light[x] := M.

If (∃r 6= x| Light[r] ∈ {M}) Then
Light[x] := W.

• M

If ∀r 6= x, Light[r] ∈ {M, W, S} Then
Light[x] = S.

• S

If ∀r 6= x, Light[r] ∈ {S, F} Then
Light[x] = F.

• F

If ∀r 6= x, Light[r] ∈ {F, T} Then
Light[x] = T.

• W

If ∀r 6= x, Light[r] ∈ {W, N, S} Then
Light[x] = N.

• N

If ∀r 6= x, Light[r] ∈ {S, N, T} Then
Light[x] = T.

State Move

Move(p).

Figure 2. Protocol SIM

light T that performs its Look operation when some

robots’ lights are M (and thus the robots are potentially

moving), will be prevented from entering the current

stage, loses its turn changes color to W and waits for

another turn. The robots with light M, after executing

P , will turn their own lights to S.

Only after all robots that entered the current stage

turn their light to S, the robots waiting for their turn,

i.e., with light W, will be given a chance to enter the

next stage. In particular, they will turn their lights to

N and eventually to T to try to execute P .

Essentially, the transition of lights from T to W, to

N, and back to T corresponds to a queue where robots

that failed to enter the current stage wait for their turn.

In the following, we will prove that Protocol SIM

provides a fair and correct execution of any semi-

synchronous protocol P .

Compute

S FM
∀T, S ∀M, W, S ∀S, F

∀F, T

W

N

∃M

∀W,
N, S

∀
T
,
N
,
S

T

Figure 3. The transition diagram of the SIM protocol. The label in
the nodes represent the value of the light of the executing robot (i.e.
Light[x]). The label of an edge expresses a condition that must be
satisfied on the light of all the other robots.

Lemma III.1. In each Mega-Cycle, each robot ex-

ecutes P exactly once; in each stage, all robots

executing P have the same snapshot.

Proof: (Sketch) First observe that a robot can

perform a non-null move in the Move phase only if it

executed P in the Compute phase.

Let t be any time instant such that all robots are

colored T, and let t0 be the latest time t0 ≤ t when

they all became colored T. Let us call a robot active

when its light is not S. By definition the configuration

at time t0 is the same as the one at time t.
By construction, it is easy to observe the following

facts:

1) From time t0, at least one robot in phase Look

observes all other robots with light T, and thus

executes P and turns its light to M.

2) Let t1 ≥ t0 be the first time since (and includ-

ing) t0 when a robot turns its own light to M.

That is all robots that Look from (and including)

time t0 to (and excluding) t1 eventually turn

their lights to M. Since a robot can perform a

non-null move only after changing its own light

to M, all robots with light M have observed the

same configuration in their Look.

3) All robots with light set to M do not change color

as long as some robots’ light is T.

4) The robots that Look after time t1 (inclusive)

change color to W and keep that color until no

robot has light colored T or M. That is, there is

a time instant when all active robots have light

either M or W, and at least one robot’s light is M

(see case 1 above).

5) Since all robots with light W did not execute P
and thus did not move, and all robots with light

M have observed the same configuration (the one

at time t1), then their movements are based on

the configuration at time t1.



RED

Compute
to other]

BL
UE

OFF
[M

OVE

[MOVE to half]

GREEN, OFF

BLUE, GREEN

BLUE GREENOFF

Figure 4. The transition diagram of the TWOGATHERLIGHT

protocol.

6) All robots with light M eventually change their

color to S (Case Light[x] = M in SIM). The

robots with light W can turn their lights to N only

after all robots in M have turned their lights to

S. Eventually, they will all have light T. Note

that the number of these robots is smaller than

the robots that were in T at t1.

From the above observations, we have that all

robots will have light S at some time after t0. Once

all robot’s lights are S, by construction, all robots turn

their lights to F, and then eventually to T. Thus the

next Mega-Cycle safely starts (with all lights being

T). We also observe that, by construction, all robots

can change light to M exactly once in a Mega-Cycle;

this implies that every robot execute P exactly once.

From Lemma III.1, it follows that protocol SIM pro-

duces a semi-synchronous execution of any SSYNC

input protocol P . This, in turn, provides the proof of

Theorem III.1.

B. ASYNCO(1) is more powerful than SSYNC

In the previous section we have shown that

ASYNCO(1) ≥ SSY NC; that is, asynchronous

robots, if endowed with O(1) visible lights, are at

least as powerful as if they were semi-synchronous.

In this section we show that there are problems that

robots cannot solve without visible bits, even if they

are semi-synchronous, but can be solved with O(1)
visible bits even if the robots are asynchronous; in

particular, we show that for any team R ∈ Ro of

oblivious robots AO(1)(R) \ S (R) 6= ∅.

Consider the extensively investigated gathering or

rendezvous problem GATHERING{K} of having k
oblivious robots terminally gather in the same lo-

cation, not previously known in advance. It is well

known that the gathering of two oblivious robots

cannot be guaranteed:

Lemma III.2 ([24]). ∀R ∈ Ro, GATHERING{2} /∈
S (R).

We now prove that two oblivious robots can gather,

even if they are asynchronous when enabled with O(1)
visible lights; more precisely:

State Look

Let y be the other robot, and x be me;
Pos[x] :=my current position;
Pos[y] := position of the other robot;
Light[x] := Value of my light;
Light[y] := Value of the light of the other robot.

State Compute

If Gather Then STOP.
p := Pos[x].
Case Light[x]:

• OFF

If Light[y] = OFF Then
p := Half point between me and the other robot;
Light[x] := RED.

Else If Light[y] = BLUE Then
p := Position of the other robot;
Light[x] := RED.

• RED

Light[x] := BLUE.
• BLUE

If Light[y] ∈ {BLUE, GREEN} Then
Light[x] := GREEN.

• GREEN

If Light[y] ∈ {GREEN, OFF} Then
Light[x] := OFF.

State Move

Move(p).

Figure 5. TWOGATHERLIGHT, a protocol for gathering two robots
in ASYNC4.

Theorem III.2. ∀R ∈ R, GATHERING{2} ∈ A4(R).

We prove the theorem constructively. Consider the

protocol TWOGATHERLIGHT shown in Figure 5; let

x and y be the two robots. The protocol uses four

colors: OFF, RED, GREEN, and BLUE; initially the light

of both x and y are set to OFF. The idea behind the

protocol is as follows. If, after the beginning of the

execution, both robots observe OFF as the color of the

other robots’ light, then they both try to reach the point

halfway between the two robots. On the other hand if

one robot begins execution earlier than the other it

will move towards the midpoint, turning its light RED

before moving. If the second robot now performs a

Look operation, it will see the RED light and know that

the other robot is potentially moving. In this case the

second robot waits for the first robot to change colors

from RED to BLUE. When the robot sees the BLUE light

on the other robot it will try to move directly towards

it. A robot with BLUE light waits until the second robot

has also turned its light to BLUE. When both robots

have BLUE lights, they turn their lights to GREEN to

signal the end of one round of the algorithm (i.e. the



robots synchronize with each-other at the end of each

round). Now the robots turn their lights to OFF to start

the next round. As before we will use the term Mega-

Cycle to refer to the time period during which the

robot has its light exactly once in each color starting

from OFF to RED, BLUE, GREEN and just before turning

to OFF again.

Based on the rules of the algorithm TWOGATH-

ERLIGHT, the following properties can be shown:

Lemma III.3. In the execution of Algorithm

TWOGATHERLIGHT:

(i) Unless the robots are already gathered, each

Mega-Cycle completes in finite time. (i.e. there

are no deadlocks)

(ii) If the distance between the robots, dist(x, y) >
2δ, then after each complete Mega-Cycle this

distance decreases by at least 2δ and the robots

never cross each-other.

(iii) If dist(x, y) ≤ 2δ, then the robots gather during

the next Mega-Cycle.

Proof:

(i) An activated robot x stays in its current state if

Light[x] is OFF and Light[y] is RED or GREEN,

or if Light[x] is BLUE and Light[y] is RED or

OFF. Note that none of this two conditions can

hold for more than one activation cycle for each

robot. Thus, there could be no deadlock.

(ii) It is easy to see that during a complete Mega-

Cycle, each robot is guaranteed to move. Let

robot x be the first robot to start moving during

this Mega-Cycle. Let d be the distance between

the robots at this time. The robot x may move

only if Light[y] is OFF or BLUE during the

Look operation. If Light[y] is BLUE, then robot

y has already moved during this Mega-Cycle

contradicting the assumption. Thus, Light[y] is

OFF. Thus, robot x moves towards robot y by

at least distance δ and at most a distance d/2
during this Mega-Cycle. The distance moved by

robot y depends on what robot y sees during

the Look operation performed when its light is

OFF. If Light[x] was OFF at that time the robot

y moves at most by d/2 towards robot x (so

they do not cross). Otherwise if Light[x] was

BLUE, then robot x has already finished moving

and robot y moves a distance of d′ which is at

most the current distance between the robots.

Thus, the robots do not cross. In both cases,

the distance between the robots after the Mega-

Cycle is at most d− 2δ.

(iii) Let d ≤ 2δ be the distance between the two

robots and let p be the midpoint between the two

locations. Without loss of generality, let x be the

first robot to perform Look operation in the next

Mega-Cycle. Robot x would decide to the move

a distance d/2 ≤ δ and thus it would eventually

arrive at the location p. If robot y sees robots

x when Light[x] is OFF, then robot x has not

moved yet and the distance between the robots

is still d. Thus the robot y will also decide to

move a distance d/2 and will eventually reach p.

The only other case is when robot y sees robot

x when Light[x] is BLUE. In this case, robot

x has already arrived at p. During the Compute

operation, robot y will decide to move directly

to the other robot and it will also reach location

p. Hence in all cases, the robots will gather at

p during this Mega-Cycle.

We have shown that algorithm TWOGATHERLIGHT

correctly solves the problem of gathering two robots

when provided with a light of 4 colors. This completes

the proof of Theorem III.2.

By Theorem III.1, Lemma III.2, and Theorem III.2

it follows that ASYNCO(1) ≥ SSYNC and ∃R ∈ R,

AO(1)(R) \ S (R) 6= ∅; that is,

Theorem III.3. ASYNCO(1) > SSYNC .

C. ASYNCO(1) is as powerful as SSYNCO(1)

To complete this section we now prove that, when

enhanced with a constant number of visible bits,

semi-synchronous robots are not more powerful than

asynchronous ones with the same capability. More

precisely we show the following:

Theorem III.4. ∀R ∈ R, SO(1)(R) ≡ AO(1)(R).

Proof: First, let us show that SO(1)(R) ⊆
AO(1)(R); in particular, we will show that Sk(R)
⊆ A6k(R), ∀k > 1. Let P be a protocol designed

for the SSYNCk model. We show how to extend the

simulation algorithm SIM to execute P in ASYNC6k.

Suppose we equip the robots with a second light bulb

of k colors. The second light bulb would initially be

set to the same color as the robots executing P in

SSYNCk. During the Compute step of the simulation

whenever the robots compute a new destination, they

also comupte the new color of the light bulb according

to P and set the color of the second light bulb

accordingly. All other steps of the algorithm are same

as in SIM. From the correctness of SIM protocol

it follows that the above algorithm would correctly

simulate any protocol for semi-synchronous robots

with k lights. Notice that we can replace the two

light bulbs in the above simulation with a single light

bulb having 6k colors. The other inclusion, hence

the theorem, follows from the obvious relationship

SSYNCO(1) ≥ ASYNCO(1).



Thus, we have shown that: ASYNCO(1) ≡
SSYNCO(1). In other words, when enhanced with

visible lights, the difference between asynchrony and

semi-synchrony disappears. This result must be con-

trasted with the strict dominance between the models

without lights.

D. A Note on Self-stabilization

Note that protocol TWOGATHERLIGHT is self-

stabilizing in the sense that it works even when

initially the lights have arbitrary colors. Protocol SIM,

which is not self-stabilizing as described, can be easily

modified to have this property. In fact, it is easy to

characterize the “illegal” configurations; we can then

add to SIM the rule that, if the result of a robot Look

is an illegal configuration, then the robot turns its light

to S, and waits until all lights become S. From that

moment on, the protocol behaves correctly.

IV. ASYNCHRONY WITH VISIBLE LIGHTS VERSUS

FULL SYNCHRONY

In this section we address the relationship between

full synchrony and ASYNC when the latter is en-

hanced with both visible bits and persistent internal

memory. We show that asynchronous robots if em-

powered with both a constant number of lights and the

ability to remember a single snapshot from the past,

become at least as powerful as synchronous robots.

A. ASYNC
O(1)
O(1) is at least as powerful as FSYNC

We now present a protocol for ASYNC robots,

which uses 3 colors, one past snapshot, and simulates

FSYNC. In other words, we show that any problem

solvable in FSYNC is solvable also in ASYNC3
1.

Protocol SYNCSIM, whose rules are shown in

Figure 6, uses three colors: OFF, GREEN, and RED;

initially, all lights are OFF. Similarly to Protocol SIM,

protocol SYNCSIM enforces a sequence of Mega-

Cycles mc0,mc1, . . .: the difference here is that all

robots execute P in each Mega-Cycle based on the

same snapshot (we are simulating FSYNC). Each

mega-cycle mci starts with all robots being OFF;

within finite time, all OFF robots become GREEN; when

a robot becomes GREEN in a Mega-Cycle, it stores

in a local array Perm[] the configuration it just

observed: this is necessary to ensure that all robots

will compute on the same configuration in this Mega-

Cycle. After all robots become GREEN, the destination

point is computed, using as configuration the one

locally stored in Perm[] and the robot starts to

perform the Move operation, turning its light to RED.

After a robot has completed the Move, it changes its

light to OFF. When the lights of all robots are OFF,

the current Mega-Cycle ends and the next one begins.

Theorem IV.1. ∀R ∈ R, F (R) ⊆ A3
1(R).

Sketch: The proof is by construction. We show

that Protocol SYNCSIM correctly simulates a fully

synchronous execution of any protocol P .

Initially all robots are OFF. By construction, an OFF

robot becomes GREEN, storing the current snapshot,

but does not execute P . As a consequence, all robots

that become GREEN for the first time have stored the

same snapshot. By construction, a GREEN robot does

not execute P as long as it sees some OFF robot; on

the other end, it does execute P on the stored snapshot

if all the other robots are either GREEN or RED, and

in this case it itself becomes RED. This means that all

robots that become GREEN for the first time eventually

execute P on the same snapshot and then become RED.

By construction, a RED robot always turns its light

to OFF in the next activation cycle (i.e. after perform-

ing the Move). So, eventually all robots will be OFF

again. At this point, each robot has executed one Look-

Compute-Move cycle according to the protocol P . We

are now in the same conditions as before and the

argument applies for the next cycle of activities.

The above result proves that: ASYNC3
1 ≥

FSYNC.

B. ASYNC3
1 is more powerful than FSYNC

We proved that ASYNC3
1 is at least as powerful as

FSYNC. We now show that there are problems that

can be solved in ASYNC3
1 but are not solvable in

FSYNC. Consider the BLINKING problem defined

as follows:

Definition IV.1 (BLINKING). The BLINKING problem

requires n > 2 robots to perform subtasks T1 and T2

repeatedly in alternation. In T1, the robots must form

a circle, i.e. each robot lies on a distinct point on the

same circle C of radius rC > 0; While in T2, the

robots must gather at a single point.

Observe that, once n oblivious robots are gathered

at a single point, it is not possible to separate these

robots using any deterministic algorithm, even in the

synchronous model. Thus,

Lemma IV.1. ∀R ∈ Ro, BLINKING /∈ F (R).

We will now show that

Lemma IV.2. ∀R ∈ R; BLINKING ∈ A3
1(R).

Proof: We will prove the above result by pro-

viding an algorithm for solving BLINKING. Starting

from any initial configuration with robots in distinct

locations, the robots simply move to the smallest

enclosing circle (SEC) without creating multiplicity.

Note that during this operation, the SEC remains

invariant. Once a robot arrives at the SEC, it turns



State Look

Take the snapshot of the positions of the robots, that
returns for all robots r ∈ R:

– Pos[r], the position on the plane of robot r
(according to my coordinate system);

– Light[r], the color of the light of robot r.

(Note: I am robot x)

State Compute

p := Pos[x].
Case Light[x]

• OFF

If ∀r 6= x, Light[r] = OFF ∨ Light[r] = GREEN,
Then

Store the current snapshot into the non-volatile
array Perm[].
Light[x] := GREEN.

• GREEN

If ∀r 6= x, Light[r] = GREEN ∨ Light[r] = RED

Then
Execute P using the snapshot in Perm[].
p := computed destination.
Light[x] := RED.

• RED

Light[x] := OFF.

State Move

Move(p).

Figure 6. Protocol SYNCSIM, that simulates FSYNC protocols
in ASYNC3

1
.

its light RED. When a robot sees that all robots have

their lights RED, the robot stores a snapshot and then

turns its light to GREEN and waits for the other robots

to turn their lights to GREEN. Note that each robot

will store the same snapshot but oriented according

to its local coordinate system. When a robot sees

all other robots have GREEN light, the robot executes

any standard gathering algorithm without changing the

light. Once all robots have gathered at a point, each

robot turns its light to OFF. When a robot sees all

other lights are turned OFF, it moves back towards its

previous location on the circle C which is the SEC

of the robot’s locations in the snapshot. Note that in

the snapshot each robot knows its own location and

can compute the vector from this point to the center

of the circle C. The robot then simply moves along

the inverse of this vector. The robot may not reach the

circle, but once each robot has executed at least one

cycle, all the robots will be in distinct locations and

the robots can re-execute the same algorithm.

Using the above algorithm the robots in the

ASYNC3
1 model can solve the BLINKING problem.

Compute

REDGREENOFF STORE

∀OFF, GREEN ∀GREEN, RED

Figure 7. The transition diagram of the SYNCSIM protocol.

The above results show that: ∃R ∈ R, A3
1(R) \

F (R) 6= ∅. This combined with the results of the

previous section imply the following:

Theorem IV.2. ASYNC3
1 > FSYNC .

Thus, we have shown that the capability of using

external lights and remembering a single snapshot

allows ASYNC robots to become more powerful

than FSYNC robots. In constrast, without the use of

external lights, remembering any number of snapshots

does not allow ASYNC robots to achieve the power

of even the SSYNC model [22].

V. CONCLUSIONS

The results of this paper show the power of using

lights, i.e. visible external memory, for distributed

computations with autonomous robots. In fact, we

have shown that using only a few bits of visible

memory asynchronous robots can perform tasks which

cannot be performed even with unbounded amount of

internal memory. Moreover a team of robots empow-

ered with lights (without or with snapshot-memory)

is more powerful than an otherwise similar team

of semi-synchronous robots (or, fully- synchronous

robots respectively). In other words, asynchrony can

be overcome with the power of lights.

ACKNOWLEDGMENT

This work has been partially supported by NSERC

Discovery Grant (Canada), by Grant-in-Aid for Sci-

ence Research, and by MIUR of Italy under project

MadWeb.

REFERENCES

[1] N. Agmon and D. Peleg, “Fault-tolerant gathering
algorithms for autonomous mobile robots,” SIAM Jour-
nal on Computing, vol. 36, pp. 56–82, 2006.

[2] H. Ando, Y. Oasa, I. Suzuki, and M. Yamashita, “A
distributed memoryless point convergence algorithm
for mobile robots with limited visibility,” IEEE Trans-
action on Robotics and Automation, vol. 15, no. 5, pp.
818–828, 1999.



[3] L. Barrière, P. Flocchini, E. Mesa-Barrameda, and
N. Santoro, “Uniform scattering of autonomous mobile
robots in a grid,” International Journal on Foundation
of Computer Science, vol. 22, no. 3, pp. 679–697,
2011.

[4] Z. Bouzid, S. Dolev, M. Potop-Butucaru, and
S. Tixeuil, “Robocast: Asynchronous communication
in robot networks,” in 114th International Conference
on Principles of Distributed Systems (OPODIS), ser.
LNCS 6490, 2010, pp. 16–31.

[5] D. Canepa and M. G. Potop-Butucaru, “Stabilizing
flocking via leader election in robot networks,” in 9h
International Conference on Stabilization, Safety, and
Security of Distributed Systems (SSS), ser. LNCS 4838,
2007, pp. 52–66.

[6] M. Cieliebak, “Gathering non-oblivious mobile
robots,” in 6th Latin American Conference on
Theoretical Informatics (LATIN), ser. LNCS 2976,
2004, pp. 577–588.

[7] M. Cieliebak, P. Flocchini, G. Prencipe, and N. San-
toro, “Solving the robots gathering problem,” in 30th
International Colloquium on Automata, Languages
and Programming (ICALP), ser. LNCS 2719, 2003,
pp. 1181–1196.

[8] S. Das, P. Flocchini, N. Santoro, and M. Yamashita,
“On the computational power of oblivious robots:
forming a series of geometric patterns,” in 29th Annual
ACM Symposium on Principles of Distributed Comput-
ing (PODC), 2010, pp. 267–276.

[9] X. Défago, M. Gradinariu, S. Messika, and P. Raipin-
Parvédy, “Fault-tolerant and self-stabilizing mobile
robots gathering,” in 20th International Symposium
on Distributed Computing (DISC), ser. LNCS 4167,
September 2006, pp. 46–60.

[10] X. Défago and S. Souissi, “Non-uniform circle for-
mation algorithm for oblivious mobile robots with
convergence toward uniformity,” Theoretical Computer
Science, vol. 396, no. 1-3, pp. 97–112, 2008.

[11] Y. Dieudonné, O. Labbani-Igbida, and F. Petit, “Circle
formation of weak mobile robots,” ACM Transactions
on Autonomous and Adaptive Systems, vol. 3, no. 4,
2008.

[12] Y. Dieudonné, F. Petit, and V. Villain, “Leader election
problem versus pattern formation problem,” in Interna-
tional Symposium on Distributed Computing (DISC),
ser. LNCS 6343, 2010, pp. 267–281.

[13] Y. Dieudonné and F. Petit, “Scatter of robots,” Parallel
Processing Letters, vol. 19, no. 1, pp. 175–184, 2009.

[14] A. Efrima and D. Peleg, “Distributed models and algo-
rithms for mobile robot systems,” in 33rd International
Conference on Current Trends in Theory and Practice
of Computer Science (SOFSEM), ser. LNCS 4362,
2007, pp. 70–87.

[15] P. Flocchini, G. Prencipe, N. Santoro, and P. Wid-
mayer, “Hard Tasks for Weak Robots,” in 10th Annual
International Symposium on Algorithms and Compu-
tation (ISAAC), ser. LNCS 1741, 1999, pp. 93–102.

[16] ——, “Gathering of robots with limited visibility,”
Theoretical Computer Science, vol. 337, no. 1-3, pp.
147–168, 2005.

[17] ——, “Arbitrary pattern formation by asynchronous
oblivious robots,” Theoretical Computer Science, vol.
407, pp. 412–447, 2008.

[18] V. Gervasi and G. Prencipe, “Coordination without
communication: the case of the flocking problem,”
Discrete Applied Mathematics, vol. 144, no. 3, pp.
324–344, 2004.

[19] T. Izumi, Z. Bouzid, S. Tixeuil, and K. Wada, “Brief
announcement: The BG-simulation for byzantine mo-
bile robots,” in 25th International Symposium on Dis-
tributed Computing (DISC), 2011, pp. 330–331.

[20] Y. Katayama, Y. Tomida, H. Imazu, N. Inuzuka, and
K. Wada, “Dynamic compass models and gathering
algorithms for autonomous mobile robots,” in 14th
Colloquium on Structural Information and Communi-
cation Complexity (SIROCCO), ser. LNCS 4474, 2007.

[21] D. Peleg, “Distributed coordination algorithms for mo-
bile robot swarms: New directions and challenges,” in
7th International Workshop on Distributed Computing
(IWDC), ser. LNCS 3741, 2005, pp. 1–12.

[22] G. Prencipe, “The effect of synchronicity on the be-
havior of autonomous mobile robots,” Theory Comput.
Syst., vol. 38, no. 5, pp. 539–558, 2005.

[23] S. Souissi, X. Défago, and M. Yamashita, “Using
eventually consistent compasses to gather memory-less
mobile robots with limited visibility,” ACM Transac-
tions on Autonomous and Adaptive Systems, vol. 4,
no. 1, pp. 1–27, 2009.

[24] I. Suzuki and M. Yamashita, “Distributed anonymous
mobile robots: formation of geometric patterns,” Siam
Journal on Computing, vol. 28, no. 4, pp. 1347–1363,
1999.

[25] M. Yamashita and I. Suzuki, “Characterizing geomet-
ric patterns formable by oblivious anonymous mobile
robots,” Theoretical Computer Science, vol. 411, no.
26-28, 2010.


