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Abstract. Given a set of n autonomous mobile robots that can freely
move on a two dimensional plane, they are required to gather in a po-
sition of the plane not fixed in advance (Gathering Problem). The
main research question we address in this paper is: under which condi-
tions this task can be accomplished by the robots? The studied robots
are quite simple: they are anonymous, totally asynchronous, they do not
have any memory of past computations, they cannot explicitly commu-
nicate among each other. We show that this simple task cannot be in
general accomplished by the considered system of robots.
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1 Introduction

In this paper, we consider a distributed system populated by a set of n au-
tonomous and anonymous mobile robots that can freely and independently move
on a plane: in particular, they do not obey to any central coordinator. The be-
havior of these robots is quite simple: each of them execute a cycle of sensing,
computing, moving and being inactive. In particular, each robot is capable of
sensing the positions of other robots in its surrounding, performing local com-
putations on the sensed data, and moving towards the computed destination.
The local computation is done according to a deterministic algorithm that takes
in input the sensed data (i.e., the robots’ positions), and returns a destination
point towards which the executing robot moves. All robots execute the same
algorithm. The main research focus is to understand which are the conditions
that allow these robots to complete given tasks, such as exploring the plane or
forming a pattern like a circle, and design, in case the task is solvable, to design
the algorithm they have to execute.

In this paper we focus on the Gathering problem: the robots are asked
to meet in finite time in a point p of the plane not determined in advance.
In spite of its apparent simplicity, this problem has recently been tackled in
several studies: in fact, several factors render this problem difficult to solve [3,
4, 5, 8, 10]. In particular, in all these studies, the problem has been solved only
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making some “extra” assumption on the capability of the robots. In particular,
in [4, 5, 10] the robots must be able to detect whether a given point on the plane
is occupied by one or more robots. In contrast, such an assumption is not used
in [3], but it is assumed an unlimited amount of memory the robots can use (the
robots are said to be non-oblivious). In [8], the robots are assumed to have only
limited visibility (i.e., they can sense only a portion of the plane) and to share
a compass. Recently [1], Gathering has also been studied in the presence of
faulty robots; another study has been devoted to design convergence solutions
to the problem [6].

In this paper we aim to prove that Gathering is in general impossible, if
the nature of the robots is not changed, and no “extra” assumption is made on
the capabilities of the robots. The results shown here, are based on the basic
model usually adopted in the majority of the studies present in literature. In
particular, we will use the features of Corda, first presented in [7], and of the
model from Suzuki et al. (here referred to as Atom): the description of these
models will be the focus of the next section. In Section 3 the impossibility of the
Gathering is presented.

2 Definitions

2.1 Autonomous Mobile Robots

In this section, we describe the Corda model, that will be used to prove
the impossibility of Gathering. The robots we consider are modeled as de-
vices with computational capabilities1, that are equipped with motorial capa-
bilities – allowing them to move on the plane – and sensorial capabilities that
let them to observe the positions of the other robots in the plane, and form
their local view of the world. The set of absolute positions2 on the plane oc-
cupied by the robots at a given time instant is called a configuration of the
robots.

The local view of each robot includes a unit of length, an origin, and a
Cartesian coordinate system defined by the directions of two coordinate axes,
identified as the x and y axis, together with their orientations, identified as the
positive and negative sides of the axes.

The robots are able to sense the complete plane: we say they have Unlimited
Visibility. The robots, however, can not distinguish whether there is more than
one fellow on a given positions of the plane: we say that they cannot detect
multiplicity. The case when the robots can sense just a portion of it (Limited
Visibility) has been studied too [8]; in particular, each robot can sense up to at
most a distance V .

1 To our knowledge, nothing is ever mentioned on the computational power of the
modeled robots. For the purpose of this paper, they can be considered as Turing-
equivalent machines.

2 i.e., with respect to an inertial reference frame.
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During its life, each robot cyclically executes four states:

i. Wait.The robot is idle. A robot cannot stay indefinitely idle (see Assumption
A2 below). At the beginning all the robots are in Wait.

ii. Look. The robot observes the world by activating its sensors which will
return a snapshot of the positions of all other robots within the visibility
range with respect to its local coordinate system. Each robot is viewed as
a point, hence its position in the plane is given by its coordinates, and the
result of the snapshot (hence, of the observation) is just a set of coordinates
in its local coordinate system: this set forms the view of the world of r. More
formally, the view of the world of r at time t is defined as the last snapshot
taken at a time smaller than or equal to t.

iii. Compute. The robot performs a local computation according to a deter-
ministic algorithm A (we also say that the robot executes A). The algorithm
is the same for all robots, and the result of the Compute state is a destina-
tion point. Since the robots are oblivious, then A can access only the set of
robots’ positions retrieved during the last Look.

iv. Move. If the point computed in the previous state is the current location of
r, we say that r performs a null movement, and it does not move; otherwise it
moves towards the point computed in the previous state. The robot moves to-
wards the computed destination of an unpredictable amount of space, which
is assumed neither infinite, nor infinitesimally small (see Assumption A1 be-
low). Hence, the robot can only go towards its goal, but it cannot know how
far it will go in the current cycle, because it can stop anytime during its
movement3. The amount of space traveled by a robot during this state is
also called the length of the move.

The sequence: Wait - Look - Compute - Move will be called a computation
cycle (or briefly cycle) of a robot.

The (global) time that passes between two successive states of the same robot
is finite but unpredictable. In addition, no time assumption within a state is
made. This implies that the time that passes after the robot starts observing the
positions of all others and before it starts moving is arbitrary, but finite. That
is, the actual move of a robot may be based on a situation that was observed
arbitrarily far in the past, and therefore it may be totally different from the
current situation.

This assumption of asynchronicity within a cycle is important in a totally
asynchronous environment, since each robot has enough time to perform its
local computation; furthermore, in this way it is possible to model also different
motorial speeds of the robots.

In the model, there are only two limiting assumptions about space and time.
The first one refers to space.

3 That is, a robot can stop before reaching its destination point, e.g. because of limits
to the robot’s motorial capabilities.
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Assumption A1(Distance). The distance traveled by a robot r in a move is
not infinite. Furthermore, there exists an arbitrarily small constant δr > 0,
such that if the destination point is closer than δr, r will reach it; otherwise,
r will move towards it of at least δr.

As no other assumptions on space exist, the distance traveled by a robot in
a cycle is unpredictable.

Similarly, to prove that the algorithms designed in Corda terminate in finite
time, the following assumption on the length of a computational cycle is made.

Assumption A2(Computational Cycle). The amount of time required by a
robot r to complete a computational cycle is not infinite. Furthermore, there
exists a constant εr > 0 such that the cycle will require at least εr time.

As no other assumption on time exists, the resulting system is fully asyn-
chronous and the duration of each activity (or inactivity) is unpredictable. As
a result, the robots do not have a common notion of time, robots can be seen
while moving, and computations can be made based on obsolete observations.

The robots do not necessarily share the same x−y coordinate system, and do
not necessarily agree on the location of the origin (that we can assume, without
loss of generality, to be placed in the current position of the robot), or on the unit
distance. In general, there is no agreement among the robots on the chirality of
the local coordinate systems (i.e., in general they do not share the same concept
of where North, East, South, and West are).

The robots are totally oblivious; that is, the robots can only store the robots’
positions retrieved in the last observation.

The robots are completely autonomous: no central control is needed. Fur-
thermore they are anonymous, meaning that they are a priori indistinguishable
by their appearance, and they do not (need to) have any kind of identifiers that
can be used during the computation4.

Moreover, there are no explicit direct means of communication: any commu-
nication occurs in a totally implicit manner. Specifically, it happens by means of
observing the robots’ positions in the plane, and taking a deterministic decision
accordingly. In other words, the only mean for a robot to send information to
some other robot is to move and let the others observe (reminiscent of bees in a
bee dance).

In the following, we will discuss in detail the implications of time settings.

2.2 Activation Schedules

Before proceeding to prove the main result of this paper, we need to describe
in more detail the critical feature that regards the way the robots act during

4 Note that the non obliviousness feature does not imply the possibility for a robot
to find out which robot corresponds to which position it stored, since the robots are
anonymous.
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the computation; that is, the timing of the operations executed by each robot
during its life.

In particular, in the model described so far, the amount of time spent in ob-
servation5, in computation, in movement, and in inaction is finite but otherwise
unpredictable; then, we say that the robots are fully asynchronous. In particular,
the robots do not (need to) have a common notion of time. Each robot executes
its actions at unpredictable time instants. This setting is adopted in Corda. If
the robots move according to this time setting, we say that they move according
to an asynchronous activation schedule. Furthermore,

Definition 1. An algorithm A solves a problem P in Corda if, by activating
the robots according to any asynchronous activation schedule, the robots reach a
configuration such that the task defined by P is accomplished.

In contrast, if the robots execute their activities (observation, computation,
movement, and waiting) in an atomic and instantaneous fashion (that is, the
amount spent in each activity of each cycle is negligible), we say that the robots
are atomically synchronized, and that they move according to an atomic activa-
tion schedule. This temporal setting was first introduced by Suzuki et al. [10];
we will refer to this setting as Atom.

Let us denote by C and Z the class of problems that are solvable in the asyn-
chronous and the atomic setting, respectively. The relationship between these
two classes is expressed from the following

Theorem 1 ([9]). C ⊂ Z.

Therefore, in order to prove the impossibility of Gathering, it is sufficient
to show that the problem is unsolvable in the atomic setting.

In an atomic activation schedule, at each time instant t, every robot ri is
either active or inactive. At least one robot is active at every time instant, and
every robot becomes active at infinitely many unpredictable time instants6. For
any t ≥ 0, if ri is inactive, then pi(t + 1) = pi(t); otherwise pi(t + 1) = p, where
pi(t) denotes the position of robot ri at time instant t, and p is the point returned
by A [10].

Thus, an active robot ri executes its cycle atomically and instantaneously, in
the sense that a robot that is active and observes at t, has already reached its
destination point p at t+1, and no fellow robot can see it while it is moving (or,
alternatively, the movement is instantaneous).

We now introduce two general properties that follow from the Atom setting,
and that are not specific to the Gathering. The first one stresses out the fact
that, if a set of robots that at a given time instant t lie on the same position of
the plane are all active at time t, then they will behave like they were one robot.

5 i.e., activating the sensors and receiving their data.
6 A special case is when every robot is active at every time instant; in this case we say

that the robots are strongly synchronized. In [2, 10], the authors refer to this case
simply as synchronous.
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Lemma 1. Let H be a set of black robots that at time t lie all on the same point
pt

H
. If all robots in H are active at time t, then at time t + 1 all robots in H will

again lie on the same position (possibly different from pt
H
).

Proof. The lemma follows from the fact that A is deterministic, the robots can-
not detect multiplicity, and that all robots in H clearly have the same view of
the world at t.

The following lemma points out that, if all robots in the system take the
decision to move towards a point p at the same time instant t, then, even if a
subset of them is blocked, all the others will still move towards p.

Lemma 2. Let us assume that activating all robots at time t they gather on the
same point p at time t + 1, and let H, with 1 ≤ |H| < n, be any subset of robots
that are not on p at t. If all robots not in H were still activated at t, and all
robots in H were inactive at t, then all ri, ri �∈ H, will be on p at t + 1, and all
robots in H will not.

Proof. The lemma follows from the lack of multiplicity detection and from the
fact that A is deterministic.

3 Is Gathering Possible?

To our knowledge, in all solutions proposed to solve the Gathering, the ability
of the robots to detect multiplicity (i.e., if on a given point there is more than one
robot) is used either implicitly (like in [10]) or explicitly (like in [4]). Moreover,
as already mentioned, the only attempt to avoid use of multiplicity detection
to solve the problem, produced a solution that works only for non oblivious
robots [3]. In other words, all previous solutions make some extra assumption on
the capabilities of the robots. In this section, we indeed prove that Gathering
is impossible in general.

In particular, we first focus on Atom; by Theorem 1, the result extends to
Corda. In the following we assume that the n robots in the system execute only
deterministic and oblivious algorithms according to atomic activation schedules.
Moreover, we assume n ≥ 3. In fact, in [10] it has been proven that there
exists no oblivious algorithm that solves the problem in a model based on Atom
when n = 2, under the assumption that two robots never collide (since they
are modeled as no-dimensional points). Therefore, by Theorem 1, this case is
unsolvable in Corda too7.

Moreover, we denote by A a generic deterministic and oblivious algorithm,
and by Ag an oblivious deterministic algorithm that correctly solves the gather-
ing problem in Atom. Recall that Ag solves the gathering problem if, starting

7 In [5], however, has been proved that the problem is trivially solvable in Corda,
hence in Atom, if the robots can collide: in this case, in fact, it is sufficient to move
the robots against each other until they gather.
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Fig. 1. Orientation of the axes of the black robots and of the white robot, in Assum3

from any valid initial configuration, it lets the robots gather on the same point p
in finite time: here, a valid initial configuration is a configuration where no two
robots occupy the same position on the plane.

Finally, let H be a set of robots that at time t lie all together on the same
point on the plane: in the following, we indicate such a position by pt

H
, and by

|H| the number of robots in H.

3.1 The Proof: General Idea

The general idea to prove impossibility of Gathering is as follows. First, we
define a scenario that we will use to defeat any possible Ag. In particular, in this
scenario

Assum1. all robots have the same unit distance;
Assum2. δ = δ1 = . . . = δn (with δi as defined in Assumption A1 of Sec-

tion 2.1);
Assum3. robots r1, . . . , rn−1, from now on the black robots, have the same

orientation and direction of the local coordinate system, while rn, from now
on the white robot, has a local coordinate system where both axes have
the same direction but opposite orientation with respect to the coordinate
system of the black robots (see Figure 1). In the following, we denote by pt

w

the position of the white robot at time t. The black and white coloring is
used only for the sake of presentation, and this information is not used by
the robots during the computation. The same applies for the indices given
to the robots (they are anonymous).

We want to stress out, however, that Assum1–Assum3 are not known to the
robots; hence they cannot use these information in their computations. Moreover,
Ag correctly solves Gathering iff the robots gather in finite time regardless
their local unit measures, and the local orientation of their axes; hence, Ag must
work also in a scenario described by Assum1–Assum3.
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Fig. 2. In (a) a E1-configuration is depicted, while in (b) a E2-configuration. By Assum3

and since the robots cannot detect multiplicity, in both configurations (and in general

in any E-configuration) the white robot has the same view of the world as the robots

in B. In fact, both rn and the robots in B see only one other robot on the point of

coordinate (z, z′), with respect to their local coordinate systems

Second, we indeed show that there exists no Ag that can be executed in such
a scenario according to an atomic activation schedule and that allows the robots
to gather in a point in finite time. More specifically, we first show that, given
Ag, there exists always an atomic activation schedule that brings the robots, in
a finite number of cycles, in a particular configuration, called E-configuration,
and defined as follows.

Definition 2 (E-configuration). An E-configuration is a configuration of the
robots where (i) the black robots are partitioned in two groups B and B

′, with
B
′ possibly empty; (ii) the robots in B

′ and the white robot rn lie on the same
position pw, and (iii) the robots in B lie on a position pB �= pw. Moreover, E1-
configuration (shortly E1) is the E-configuration where B

′ = ∅ (see Figure 2.a),
and E2-configuration (shortly E2) is the E-configuration where |B| = 1 and |B′| =
n − 2 (see Figure 2.b).

Then, we prove that there exists an atomic activation schedule for Ag that,
starting from a E-configuration, lets the robots loop between E-configurations,
always avoiding the gathering.

Assume for a moment that at a given time t robots are in a E-configuration;
furthermore, let the robots in B (resp. the white robot) be active at t, and
the robots in B

′ inactive for all t′ ≥ t. Then, since the robots cannot detect
multiplicity, the robots in B and the white robot have the same view of the
world at time t. Hence, since Ag is deterministic, we have that

Lemma 3. If no robot changes position at time t + 1, then no robot will ever
move, independently from their activation sequences (given that the robots in B

′

stay inactive).

3.2 The Proof

As already outlined in Section 3.1, we first show that a E-configuration can
be reached by executing Ag according to a specific atomic activation schedule,
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Fig. 3. The synchronous activation schedule SyncFE described in Lemma 4

say SyncFE. Such a schedule is built as follows: at each cycle, if the robots,
all activated, do not compute all the same destination point (according to the
definition of Ag), then they are activated and moved towards the destination
point they compute. Otherwise, one of them, say rk, is kept inactive, while all
others are activated. In this way, the n− 1 robots that are active will gather on
the same point p̃, while rk does not; hence, the robots are in a E-configuration.
More formally,

Lemma 4. Given Ag, there exists an atomic activation schedule SyncFE for
Ag, and a time tE > 0 such that, if the robots do not all occupy the same position
on the plane when the execution of Ag starts, the robots are in E1 or E2 at time
tE, if the computation is done according to SyncFE.

Proof. Let ts be the time when the computation starts, and pos1, . . . , posn be
the positions occupied by the robots at this time. By hypothesis, there exist
at least two positions posi and posj , i �= j, such that posi �= posj . SyncFE is
reported in Schedule 1 (refer to Figure 3 for a pictorial representation).

Schedule 1 BuildE(ts, pos1, . . . , posn).
Init. At the beginning, all robots are inactive. Set t = ts, and go to Rule1.
Rule1. If normally activating all robots at time t they are not on the same point p̃ at

time t + 1, then in SyncFE all ri are active at t. Set t = t + 1, and go to Rule1.
Otherwise,

Rule2. let rk be a robot that is not on p̃ at time t. Then, in SyncFE all ri, i �= k, are
active at t, while rk is inactive at t.

In the following we will show that, starting the execution of Ag at time ts
according to SyncFE, all robots are in a E1-configuration or E2-configuration at
time tE > ts. In fact, since by hypothesis Ag solves the problem, after finite time
Rule2. is executed; hence tE is finite. Moreover, until tE −1 all robots are always
active, and at this time, rk is the only robot to be inactive.

By construction, tE is the first time such that, if all the robots were nor-
mally activated at time tE − 1, they would be on the same position p̃ at time tE.
Therefore, since there exists at least two positions posi and posj at time ts such
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that posi �= posj , there must exist at least one robot rk that is not on p̃ at time
tE − 1. According to Rule2., rk is inactive at tE − 1. By Lemma 2, at time tE

all robots ri, i �= k, are on p̃, and rk is on a position different from p̃, and the
lemma follows.

In the following two lemmas, we show that there is no algorithm that, starting
from E1 or E2, lets the robots gather in a point.

Lemma 5. There exists no deterministic oblivious algorithm that, starting from
a E1-configuration, solves the gathering problem in a finite number of cycles for
a set of n ≥ 3 robots that can not detect multiplicity.

Proof. By contradiction, let Ag be a deterministic oblivious algorithm that,
starting from a E1-configuration, lets the robots gather in a point in finite
time when they cannot detect multiplicity. In the following, we will describe
an atomic activation schedule SyncFE1 for Ag such that, if the robots are in a
E1-configuration at a given time ts and the computation is done according to
SyncFE1 , the robots never gather in the same point p.

Schedule 2 BuildE1(ts, pos1, . . . , posn).
Init. At the beginning, all robots are inactive. Set t = ts, and go to RuleB1.
RuleB1. If activating one of the black robots at time t, it is not on pt

w at time t + 1,
then in SyncFE1 all black robots are activated at t and moved to the destination
point they compute. The white robot is inactive at t. Set t = t + 1, and go to
RuleW1.

RuleB2. Otherwise,
RuleB2.1 In SyncFE1 , the black robots r1, . . . , rn−2 are active at t and moved to

the destination point they compute. The black robot rn−1 and the white robot
rn are inactive at t. Set t = t + 1.

RuleB2.2 In SyncFE1 , the white robot is active at t and moved to the destination
point it computes. All black robots are inactive at t. Set t = t + 1.

RuleB2.3 In SyncFE1 , the black robot rn−1 is active at t and moved to the desti-
nation point it computes. The black robots r1, . . . , rn−2 and the white robot
rn are inactive at t. Set t = t + 1, and go to RuleW1.

RuleW1. If activating the white robot at time t, it is not on pt
B at time t + 1, then in

SyncFE1 the white robot is activated at t and moved to the destination point it
computes. The black robots are inactive at t. Set t = t + 1, and go to RuleB1.

RuleW2. Otherwise,
RuleW2.1 As in RuleB2.1.
RuleW2.2 As in RuleB2.2.
RuleW2.3 As in RuleB2.3, except that at the end of this step go to RuleB1.

Proof. Let pos1 = . . . = posn−1 = pts

B
, and posn = pts

w . SyncFE1 is reported in
Schedule 2 (refer to Figure 5 for a pictorial representation).

It follows from the definition of E1 that, at ts, pts

B
�= pts

w . SyncFE1 moves
alternatively the black robots (as a group) and the white robot, until at time
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t either the black robots compute as destination point pt
w, or the white robot

computes as destination point pt
B
. When this happens, the gathering is avoided

1. by first moving all the black robots but one on pt
w; then,

2. by moving the white robot on pt
B
; and finally,

3. by moving the last black robot (still on pt
B
) on pt

w;

that is the black robots and the white robot are forced to switch their positions.
First note that, after every execution of RuleB1. all black robots must change

position, and move all together towards the new destination (different from the
position occupied by the white robot). In fact, let t∗ ≥ ts be a time instant
when RuleB1. starts being executed, and such that all robots in B are on the
same position pt∗

B
�= pt∗

w . It follows from the definition of SyncFE1 that at t∗ all
black robots are active. If all these robots are still on pt∗

B
at the end of RuleB1.

(that is at time t∗ + 1), then by Lemma 3 no robot would ever move, hence the
robots would never gather on the same point. Therefore, the robots in B cannot
be on pt∗

B
at the end of RuleB1., and they must change position. Furthermore,

since there is a black robot that, if active at t∗, would reach a position p �= pt∗
w

at time t∗ + 1, by Lemma 1 the black robots will reach all together p at time
t∗+1, with p �= pt∗

w and p �= pt∗
B

. Symmetrically, it follows that, if RuleW1. starts
at time t∗, the white robot will be on a position p �= pt∗

w and p �= pt∗
B

at time
t∗ + 1, while all black robots are inactive at t∗ (hence they are still on pt∗

B
at

time t∗ + 1). Therefore, as long as RuleB1. or RuleW1. are executed, the robots
are in E1-configurations.

r2

p

r3

r1

p′

p

r3

r2r1

p′

r2

p′ = pt′
w

r3

r1

p = pt′
b

t′

t′′′ = t′ + 2 t′ + 3

p

p′

r1r3

r2

t′′ = t′ + 1

Fig. 4. Execution of RuleB2. in schedule BuildE1() in Lemma 5, with n = 3. At time t′

each robot sees only one other robot; in particular, r1 and r2 see one robot on the point

of coordinate (z, z′) (with respect to their local coordinate system), and r3 sees one

robot on the point of coordinate (z, z′) (with respect to its local coordinate system).

That is, all the robots have the same view of the world. This view of the world is

observed also by r3 at time t′′, and by r2 at time t′′′
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Fig. 5. The synchronous activation schedule SyncFE1 described in Lemma 5. Here is

depicted the case when RuleB2. is invoked first

Since, by hypothesis, Ag solves the problem, after a finite number of cycles
either RuleB2. or RuleW2. is executed. Without loss of generality, let us assume
that RuleB2. is executed first, say at time t′ > ts (the case when RuleW2. is
executed first can be handled similarly). Thus, according to SyncFE1 , n−2 black
robots are active at time t′, while rn−1 and rn are inactive (RuleB2.1). This rule
is chosen because there is a black robot that, if normally activated at t′, would
compute pt′

w as destination point. Hence, by Lemma 1, the n − 2 active robots
will leave p = pt′

B
and reach p′ = pt′

w (Figure 4).
At this point, RuleB2.2 is invoked at time t′′ = t′ + 1: the white robot is

active at t′′, while all black robots are inactive. By Assum1–Assum3 and since
multiplicity cannot be detected, rn has the same view of the world that the black
robots that moved in RuleB2.1 had at time t′ (refer to Figure 4); specifically,
the white robot sees only one robot, that is the last black robot rn−1 that at
this time is still on p (rn−1 is inactive at t′ and t′′). As a consequence, since Ag

is oblivious and deterministic, the result of the Compute state of rn at t′′ is the
same as the result of the Compute state that the black robots performed at time
t′ (in RuleB2.1): that is, rn decides to reach the only other robot it sees (rn−1),
hence rn computes p as destination point. Therefore, at time t′′ + 1 the white
robot reaches rn−1 on p.

Finally, RuleB2.3 is started at time t′′′ = t′′ + 1: the last black robot rn−1

(still on p) is active at t′′′, while all the other black robots (at this time on p′)
and rn (on p) are inactive. At time t′′′, rn−1 has the same view of the world that
the black robots that moved in RuleB2.1 had at time t′; specifically, since it can
not distinguish multiplicity, it sees all other black robots (on p′) as one robot.
Therefore it computes p′ as destination point, and reaches all the other black
robots at time t′′′ + 1.

In conclusion, if RuleB2.1 is started at time t′, at time t′′′+1 = t′+3 all black
robots are on p′, and the white robot is on p. That is, the black and white robots
simply switched positions, and at time t′+3 they are again in a E1-configuration.
Therefore, by executing Ag according to SyncFE1 , the robots will never gather
on the same point. This leads to a contradiction, and the lemma follows.

Lemma 6. In Corda there exists no deterministic oblivious algorithm that,
starting from a E2-configuration, solves the gathering problem in a finite number
of cycles for a set of n ≥ 3 robots that can not detect multiplicity.
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Proof. By contradiction, let Ag be a deterministic oblivious algorithm that,
starting from a E2-configuration, lets the robots gather in a point in finite time
when they cannot detect multiplicity. Similarly to the previous lemma, we will
describe a synchronous activation schedule SyncFE2 for Ag such that, if the
robots are at a given time ts in a E2-configuration and the computation is done
according to SyncFE2 , the robots never gather in the same point p. By Lemma 1,

Schedule 3 BuildE2(ts, pos1, . . . , posn).
Init. At the beginning, all robots are inactive. Set t = ts, and go to Rule1.
Rule1. If activating all robots at time t, they are not on the same position p̃ at time

t + 1, then in SyncFE2 all robots are normally activated. Set t = t + 1, and go to
Rule1.

Rule2. Otherwise,
Rule2.1 If no robot is on p̃ at time t, then in SyncFE2 all robots in B

′ and rn−1

are active at t and moved to the destination point they compute. The white
robot rn is inactive at t. Set t = t + 1, and go to RuleB1. defined in Lemma 5.

Rule2.2 If rn is on p̃ at time t, then all robots in B
′ are active at t, while rn−1 and

rn are inactive at t. Set t = t + 1, and go to Rule1.
Rule2.3 If rn−1 is on p̃ at time t, then all robots in B

′ are active at t, while rn and
rn−1 are inactive at t. Set t = t + 1, and go to RuleB1. in Schedule 2.

Rule2.4 If all robots in B
′ are on p̃ at time t, then rn−1 is active at t, while the

robots in B
′ and rn are inactive. Set t = t+1, and go to RuleB1. in Schedule 2.

as long as Rule1. is executed, all robots in B
′ move always all together; hence, at

any time, they always occupy the same position on the plane. Since by hypoth-
esis Ag solves the problem, after a finite number of cycles Rule2. is executed,
say at time t′, and let p̃ as defined in Rule2., that is the point where the robots
would gather if all active at t′.

It follows from the definition of E2 that at the beginning pts

B
�= pts

w . Without
loss of generality, let us assume that r1, . . . , rn−2 are the black robots in B

′ (at
ts they lie on pts

w ), and that rn−1 is the only robot in B.
SyncFE2 moves all robots until they decide to gather on the same point (even-

tually this happens, since by hypothesis Ag solves the problem); in particular,
all robots in B

′ are forced to move together, hence to lie always on the same
point. When this happens, the robots are forced to reach either a E1 or a E2-
configuration. At this point, SyncFE2 behaves exactly like SyncFE1 described in
the previous lemma; hence it avoids the gathering. Let pos1, . . . , posn−2, posn =
pts

w , and posn−1 = pts

B
. SyncFE2 is reported in Schedule 3 (refer to Figure 6 for

a pictorial representation).
First, note that it is impossible that at time t′ the robots in B

′ and rn are al-
ready on p̃, while the only robot in B is not. In fact, let us assume that rn and the
robots in B

′ are already on p̃ at time t′; thus, the robots are in a E-configuration
at t′. Rule2. is executed at t′ because, if all the robots were active at t′, they would
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be on p̃ at time t′ + 1; hence, since by hypothesis rn and the robots in B
′ are

already on p̃ at time t′, these robots would not move between time t′ and t′ + 1.
Therefore, is like the robots in B

′ are inactive at t′. Hence, by Lemma 3, no
robot would change position between time t′ and t′ + 1, hence they would not
gather on p̃ at time t′ + 1, and Rule2. would not have been executed at time t′.
Similarly, it can be proven that

it is impossible that at time t′ the robot in B and rn are already on p̃,
while the robots in B

′ are not (it is sufficient to switch the roles of B and
B
′ in Lemma 3); and

it is impossible that at time t′ the robot in B and those in B
′ are already

on p̃, while rn is not.

Moreover, since by hypothesis t′ is the first time such that activating all
robots, they would gather on the same point, it can not be that all robots
are already on p̃ at t′. In the following, we analyze the remaining possible
cases.

1. No robot is on p̃ at time t′. In this case, Rule2.1 is executed, and rn is inac-
tive at t′. Hence, by Lemma 2, at time t′ + 1 all robots but rn are on p̃; that
is, the robots are in a E1-configuration.

2. Only rn is already on p̃ at time t′. In this case, Rule2.2 is executed, and
the robots in B

′ are active at t′, while rn−1 and rn are inactive. Hence, by
Lemma 2, at time t′ + 1 all robots in B

′ and rn are on p̃, while rn−1 is not.
That is, the robots do not gather in p̃ at t′ + 1, and they are again in a
E2-configuration.

3. Only rn−1 is already on p̃ at time t′. In this case, Rule2.3 is executed: at t′,
rn−1 and rn are inactive, while the robots in B

′ are active. By Lemma 2,
at time t′ + 1 all robots but rn are on p̃; that is, the robots are in a E1-
configuration.

4. Only the robots in B
′ are already on p̃ at time t′. Rule2.4 is executed.

Using an argument similar to the one used in the previous case, it fol-
lows that also in this case the robots are in a E1-configuration at time
t′ + 1.

In conclusion, at time t′ + 1, either the robots are in a E1-configuration or
again in a E2-configuration. In the first case, the lemma follows by Lemma 5. In
the second case, either Rule2.2 is never executed again after t′ +1, or every time
it is executed the robots are once again in a E2-configuration. In both cases, the
lemma follows.

To summarize, thus far we proved that,

given any algorithm Ag, there exists an atomic activation schedule that,
starting from any valid configuration for the gathering problem, brings
the robots either in a E1 or E2-configuration in a finite number of cycles
(Schedule 1);
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Fig. 6. The synchronous activation schedule SyncFE2 described in Lemma 6. The case

when Rule2.1 is executed first is depicted

there exists no deterministic oblivious algorithm that, starting form a
E1 or E2-configuration, solves the gathering problem in a finite number
of cycles (Schedules 2 and 3 in the Appendix).

Hence, by Lemmas 4–6, and by Theorem 1, it follows that

Theorem 2. In Corda and Atom, there exists no deterministic oblivious al-
gorithm that solves the Gathering problem in a finite number of cycles, hence
in finite time, for a set of n ≥ 2 robots.
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