
Computing All the Best Swap Edges
Distributively�

P. Flocchini1, L. Pagli2, G. Prencipe2, N. Santoro3,
P. Widmayer4, and T. Zuva5

1 University of Ottawa, Canada
flocchin@site.uottawa.ca
2 Università di Pisa, Italy

{pagli, prencipe}@di.unipi.it
3 Carleton University, Canada
santoro@scs.carleton.ca
4 ETH, Zurich Switzerland
widmayer@inf.ethz.ch

5 University of Botswana, Gaborone
zuvat@mopipi.ub.bw

1 Introduction

In systems using shortest-path routing tables, a single link failure is enough
to interrupt the message transmission by disconnecting one or more shortest-
path spanning trees. The on-line recomputation of an alternative path or of the
entire new shortest path trees, rebuilding the routing tables accordingly, is rather
expensive and causes long delays in the message’s transmission [5, 10]. Hopefully,
some of these costs will be reduced if the serial algorithms for dynamic graphs
(e.g., those of [1]) could be somehow employed; to date, the difficulties of finding
an efficient distributed implementation have not been overcome (e.g., see [9]).

An alternative approach is to precompute additional information and use it
to augment the shortest-path routing tables so to make them operate when a
failure occurs. Examples of this approach are techniques (e.g., see [4]) of pre-
computing several edge-disjoint spanning trees for each destination. However,
the alternative routes do not satisfy any optimization criterion (such as shortest
path) even in the case when, at any time, only one link (not necessarily the same
at all times) might be down.

A new strategy has been recently proposed [2, 5, 7, 8, 11]. It starts from the
idea of precomputing, for each link in the tree, a single non-tree link (the swap
edge) able to reconnect the network should the first fail. The strategy, called
point-of-failure swap rerouting is simple: normal routing information will be used
to route a message to its destination. If, however, the next hop is down, the

� Research partially supported by “Progetto ALINWEB”, MIUR, Programmi di
Ricerca Scientifica di Rilevante Interesse Nazionale, NSERC Canada, and the Swiss
BBW 03.0378-1 for EC contract 001907 (DELIS).

T. Higashino (Ed.): OPODIS 2004, LNCS 3544, pp. 154–168, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Computing All the Best Swap Edges Distributively 155

message is first rerouted towards the swap edge; once this is crossed, normal
routing will resume. Experimental results [11] show that the tree obtained from
the swap edge is very close to the new shortest-path spanning tree computed
from scratch.

Clearly, some swap edges are preferable to others. In [8], four main objective
functions were defined, giving rise to four different problems. These functions
have the goal to find a new tree that minimizes, respectively, the distance be-
tween the point of failure to the root (Fdist); the sum of distances (Fsum), the
largest increment in the distance (Fincr), and the largest distance (Fmax) of all
nodes below the point of failure to the root.

In [8] they showed that these problems can be solved sequentially with dif-
ferent complexities: Fdist and Fincr in O(m ·α(m,n)), Fsum in O(n2), and Fmax

in O(n
√

m), where α(m,n) is the functional inverse of Ackermann’s function.
These bounds are achieved using Tarjan’s sophisticated technique of transmuters
[12]. Unfortunately, there is currently no efficient distributed implementation of
this sequential technique. From a distributed point of view, only the first of those
problems, Fdist, has been investigated and solved. A simple but non-optimal so-
lution has been developed in [5]. An efficient optimal solution has been recently
proposed [3]. No efficient distributed solution exists to date for the problems
Fsum, Fincr, and Fmax. These problems appear to be rather important, since
they minimize the average, the additional and the maximum delivery time of a
message issued at any node. In this paper, we will be able to solve efficiently all
three problems.

We propose two general distributed strategies, each solving the three prob-
lems with simple modifications. The first scheme uses O(n∗

r) short messages,
where n∗

r is the size of the transitive closure of Tr \ {r}; note that 0 ≤ n∗
r ≤

(n − 1)(n − 2)/2. In the second scheme the number of messages decreases to
O(n) if long (i.e., O(n) bits) messages are allowed. Both schemes use an overall
complexity of O(n∗

r).

2 Terminology and Problems

Let G = (V,E) be a 2-connected undirected graph, with n = |V | vertices and
m = |E| edges. A label of length l ≤ log n is associated to each vertex of G. A non
negative real length w(e) is associated to each edge e. We say that the length of a
path is the sum of the lengths of its edges, and the distance d(x, y) between two
vertices x and y is the length of a shortest path between them. Let T = (V,E(T))
be a spanning tree of graph G rooted in r. Let Tq = (V (Tq), E(Tq)) denote the
subtree of T rooted in q.

Consider an edge e = (x, y) ∈ E(T) with y closer to r; if such an edge is
removed, the tree is disconnected in two subtrees: Tx and T \ Tx. A swap edge
for e = (x, y) is any edge e′ = (u, v) ∈ E \ {e} that connects the two subtrees
and forms a new tree Te/e′ , called swap tree.

Let Se be the set of all possible swap trees with respect to e. Depending on
the goal of the swapping algorithm, some swap edges are preferable to others.

156 P. Flocchini et al.

Given an objective function F over Se, an optimal or best swap edge for a link e
is a swap edge e′ such that F (Te/e′) is minimum.

Let dT (u, v) (shortly d(u, v)) denote the distance between nodes u and v in
T , and let dTe/e′ (u, v) (shortly de/e′(u, v)) denote their distance in Te/e′ . Given
a subtree Tw of T , we denote by W (Tw) =

∑
t∈V (Tw) d(t, w) the weight of Tw,

and by n(Tw) the number of nodes in Tw.
Given a rooted tree S, let C(x, S) denote the set of children of node x in tree

S, let p(x, S) be the parent of node x in S, and A(x, S) denote the ancestors of
x in S. When S = T we will simply write C(x), p(x) and A(x). We consider the
main problems studied in [8]:
1) Fsum-problem: minTe/e′∈Se

{Fsum(Te/e′)}, where Fsum(Te/e′) =∑
t∈V (Tx) de/e′(t, r). Choose one of the swap edges e′ that minimizes the sum of

the distances Fsum(Te/e′) from all nodes in Tx to r.
2) Fincr-problem: minTe/e′∈Se

{Fincr(Te/e′)} where Fincr(Te/e′) =
maxt∈V (Tx)(de/e′(t, r)− d(t, r)). Choose the swap edge that minimizes the max-
imum increment of the distance from r to any node in Tx.
3) Fmax-problem: minTe/e′∈Se

{Fmax(Te/e′)} where Fmax(Te/e′) =
maxt∈V (Tx) de/e′(t, r). Choose the swap edge that minimizes the maximum dis-
tance from the nodes in Tx to r.

3 Algorithmic Shell and Computational Tools

3.1 A Generic Algorithm

Consider the problem of computing the best swap edge for link e = (x, p(x)) ∈
E(T), where p(x) denotes the parent of x in T . We now present a generic dis-
tributed algorithm to perform this computation; the details of its modules de-
pend on the objective function F and will be described later.

The algorithm is started by x; during its execution each node z ∈ V (Tx) will
determine the best, according to the objective function, local swap edge (z, z′)
for (x, p(x)). Among the local swap edges of all nodes, the swap edge yielding
the global minimum cost will be then selected. More precisely, we define:

Procedure BSE(F, (x, p(x))

− Node x determines, among its local swap edges for (x, p(x)), the one that
minimizes F . As we will see, x is the only node that can do so without any
additional information.

− After this, x sends to each child the enabling information it needs to compute
the best among its local swap edges for (x, p(x)).

− Upon receiving the enabling information from its parent, a node computes the
best among its local swap edge for (x, p(x)); it then sends enabling information
to its children. This process terminates once the leaves of Tx are reached.

− The leaves then start a minimum finding process to determine, among the
swap edges chosen by the nodes in Tx, the one that minimizes the objective
function F .

− The optimal swap edge for (x, p(x)) is thus determined at node x.

Computing All the Best Swap Edges Distributively 157

This procedure finds the best swap edge for link (x, p(x)) (according to F).
Thus, the generic algorithm to find all the best swap edges is

Algorithm Best F -Swap

1. Pre-processing(F)
2. ∀x �= r: BSE (F, (x, p(x)))

where Pre-processing(F) is a preliminary process to be executed only if the
nodes do not have the required initial information.

3.2 Identifying Swap Edges

Before proceeding with the instantiation of the generic algorithm for each of the
objective functions, we describe a tool that allows a node to distinguish, among
its incident edges, the ones that are swap edges for a given edge (x, p(x)).

Consider the following labeling of the nodes λ : V → {1, . . . , n}2. Given
T , for x ∈ V let λ(x) = (a, b), where a is the numbering of x in the preorder
traversal of T ; and b is the numbering of x in the inverted preorder traversal
of T , i.e., when the order of the visit of the children is inverted. The pairs
given by the labeling form a partial order (λ,≥) of dimension 2 (let λ(z) =
(z1, z2) and λ(w) = (w1, w2), then λ(z) ≥ λ(w) if z1 ≥ w1 and z2 ≥ w2).
The “dominance” relationship between these pairs completely characterizes the
relationship “descendant” in the tree:

Property 1. A node z is descendant of a node w in T if and only if λ(z) ≥ λ(w).

In our algorithms, we assume that each node z knows its own pair λ(z) as
well the pairs of its neighbors. If not available, this information can be easily
acquired by having each node exchange the information with its neighbors. Such
a labeling will be given to the tree in a preprocessing phase. Based on Property 1,
we can now see how the labeling can be used by a node u to recognize its incident
swap edges for a given link (x, p(x)).

Property 2. An edge (u, v) ∈ E \ E(T) is a swap for (x, p(x)) ∈ E(T) if and
only if only one of u and v is a descendant of x in T .

Thus, node u ∈ Tx will be able to tell whether its incident edge (u, v) is a swap
edge for (x, p(x)) simply by comparing λ(v) with λ(x); if λ(v) ≥ λ(x), then (u, v)
is not a swap edge for (x, p(x)).

4 The Fsum-problem

In Problem Fsum, the optimal swap edge for link e = (x, p(x)) is one which
minimizes the sum of the distances from all nodes in Tx to the root r, in the new
spanning tree T ′ = Te/e′ . A swap edge (u, v) solving Fsum will also minimize the
average distance of all the nodes belonging to Tx from the root r, since the size
of Tx is the same for all the swap edges for x.

158 P. Flocchini et al.

For solving the Fsum-problem (known also as average stretch factor [2]), we
require each node z to possess the following a-priori information: its distance
d(z, r) from the root; the sum of the distances of all nodes in Tq to z for each of
the children q of z; and the number of nodes n(Tq) in Tq for each of its children
q. If this information is not initially available, it can be easily acquired by the
nodes in a pre-processing phase, composed by the following simple convergecast
in T , executed only once at the beginning of the algorithm.

Given a subtree Tw and an edge (a, b), with a ∈ V (Tw) and b ∈ V \ V (Tw),
let sum(Tw, (a, b)) denote the sum of distances in Tw ∪ (a, b) from all nodes of
Tw to b.

Pre-processing(Fsum)

1. The root r sends down a message to each child q containing a request-for-sum

and a value k = w(r, q).
2. The message is propagated down to the leaves (adding to k the weight of each

traversed edge so that each node z knows its distance d(z, r) to the root).
3. When a leaf l receives the message it starts a convergecast up to the root to

propagate the requested information.
4. A leaf l with parent p(l) sends up sum(Tl, (l, p(l))) = w(l, p(l)) and n(Tl) = 1
5. An internal node z receiving from each of its children q, the values W (Tq) and

n(Tq), will compute:

n(Tz) =
∑

q∈C(z)

n(Tq) + 1, and sum(Tz, (z, p(z))) = W (Tz) + n(Tz) · w(z, p(z)),

and will send up the information [sum(Tz, (z, p(z))), n(Tz)].

The correctness of the pre-processing is proven by the following:

Lemma 1. Let z be a node in T .

1. The total number of nodes in Tz is: n(Tz) =
∑

q∈C(z) n(Tq) + 1.
2. The sum of the distances from all nodes in Tz to p(z) is:

sum(Tz, (z, p(z))) = W (Tz) + n(Tz) · w(z, p(z)).

Proof. Part 1. is obvious. Let us consider Part 2. By definition,
sum(Tz, (z, p(z))) =

∑
u∈V (Tz) d(u, p(z)). Thus,

sum(Tz, (z, p(z))) =
∑

u∈V (Tz)

d(u, z) +
∑

u∈V (Tz)

w(z, p(z))

= W (Tz) + n(Tz) · w(z, p(z)).

Once all the information is available to the nodes, each node will exchange its
local information with the neighbors in G. The number of messages exchanged
during the preprocessing phase is then: O(|E|).

Let z be a node in Tx that needs to compute the cost of a candidate swap
edge e′ = (z, z′) for e. Let T ′ = Te/e′ .

Computing All the Best Swap Edges Distributively 159

Lemma 2. The sum of the distances in T ′ from all nodes in Tx to r is:

Fsum(T ′) = W (T ′
z) + n(T ′

z) · w(z, z′) + n(Tx) · d(z′, r).

Proof. By definition we know that Fsum(T ′) =
∑

t∈V (Tx) de/e′(t, r)
=

∑
t∈Tx

[de/e′(t, z′)+d(z′, r)] =
∑

t∈Tx
de/e′(t, z′)+

∑
t∈Tx

d(z′, r), which is equal
to sum(T ′

z, (z, z′)) + n(Tx) · d(z′, r). Noticing that sum(T ′
z, (z, z′)) = W (T ′

z) +
n(T ′

z) · w(z, z′), the lemma follows.

Notice that W (T ′
z) = W (Tz) + sum(Tx \ Tz, (p(z), z)) and n(T ′

z) = n(Tz) +
n(Tx \ Tz) (see Figure 1). Thus, of the information required to compute the
cost of the candidate swap edge (z, z′), there are two components that a node z
(z �= x) does not have locally available: sum(Tx \ Tz, (p(z), z)) and n(Tx \ Tz).
Only x has all the information immediately available and can locally compute the
cost of its candidate swap edges; any other node z in Tx requires this additional
information.

To instantiate algorithm BSE for Fsum we have to specify what is the enabling
information to be propagated. On the basis of the above reasoning, the enabling
information that any node z has to send down to its child q is composed of:
the sum sum(Tx \ Tq, (z, q)) of the distances from q to the nodes in the subtree
Tx \ Tq; and the number n(Tx \ Tq) of nodes in this subtree.

The algorithm for finding the best swap edge for (x, p(x)) according to Fsum

is as follows:

BSE(Fsum, (x, p(x)))

(* Algorithm for node z *)
1. If z = x

− Compute cost of each local candidate swap edge:
(for each e′ = (x, x′), Fsum(Te/e′) = sum(Tx, (x, x′)) + n(Tx) · d(x′, r))

− select best candidate
− for each child q: compute the enabling information sum(Tx \ Tq, (x, q)) and
n(Tx \ Tq) and send it to q. It will be shown that this information can be
computed locally.

− wait for the result of minimum finding; determine the best swap edge for
(x, p(x))

2. Else {z �= x} – Receiving enabling info (s, n) for (x, p(x))
− Compute cost of each local candidate swap edge:
(for each e′ = (z, z′), Fsum(Te/e′) = s+ sum(Tz, (z, z′))+(n+n(Tz)) ·d(z′, r)+
n · w(z, z′). It will be shown that this information can be computed locally.

− select best candidate
− if I am a leaf: start minimum finding
− if I am not a leaf

− for each child q: compute the enabling information sum(Tx \Tq, (z, q)), and
n(Tx \ Tq) and send it to q.

− participate in minimum finding (wait for info from all children, select the
best and send to parent)

160 P. Flocchini et al.

Tx \ Tz

z

z′

q

p(z)

x

Fig. 1. Structure of the subtree Tx with respect to the swap edge (z, z′)

Lemma 3. Let e = (x, p(x)). Each node z ∈ Tx can correctly compute: 1) the
best local swap edge for e, 2) the value sum(Tx \ Tq, (z, q)) for each q ∈ C(z), 3)
the value n(Tv \ Tq) for each q ∈ C(z).

Proof. First observe that, by Lemma 1, after the preprocessing phase, a node z
has available: the labeling λ(y) of each of its neighbors y; the distance d(y, r)
to r from each of its neighbors y; the sum of the distances sum(Tq, (q, z)) of all
nodes in Tq to itself and the number of nodes n(Tq) in Tq for each of its children
q. The proof is by induction on the number of nodes in the path from z to
of x.

Basis. z = x; i.e., the link to be swapped is (z, p(z)). By Lemma 2 we know that,
for each swap edge (x, x′),

∑
t∈V (Tx) de/e′(t, r) = sum(Tx, (x, x′))+n(Tx)·d(x′, r).

Since x is the root of Tx, all the needed information is available at x after
the preprocessing phase. Thus, x can locally compute all the swap edges and
choose the minimum. Moreover x can compute, by using local information only,
sum(Tx \ Tq, (x, q)) and n(Tx \ Tq) for each q ∈ C(x).

Induction step. Let it be true for a node and consider its child z in T . By
Lemma 2 we know that, for each swap edge (z, z′),∑

t∈V (Tx) de/e′(t, r) = sum(T ′
z, (z, z′)) + n(Tx) · d(z′, r). Moreover,

sum(T ′
z, (z, z′)) =

∑
q∈C(z,T ′) sum(T ′

q, (q, z))
+(

∑
q∈C(z,T ′) n(Tq) + 1) · w(z, z′).

Notice that the children of z in T ′ consists of all the children of z in T
plus the parent of z in T (i.e., C(z, T ′) = C(z) ∪ {(z, p(z))}. The values of
sum(T ′

q, (q, z)), and n(T ′
q) for q ∈ C(z) have been computed in the preprocess-

ing phase and are locally available. Since, by induction hypothesis, p(z) has
computed the locally best swap edge and the values of s(Tx \ Tz, (p(z), z)) and
n(Tx \ Tz), and since it has sent to z these information, z can now correctly
compute the cost of all its local swap edge and choose the minimum. Moreover,
it can now compute s(Tx \ Tq, (z, q)) and n(Tx \ Tq) for each of its children
q ∈ C(z).

Computing All the Best Swap Edges Distributively 161

5 The Fmax and Fincr Problems

In Problem Fmax, the optimal swap edge e′ for link e = (z, p(z)) is any swap
edge such that the longest distance of all the nodes in Tz from the root r is
minimized in the new spanning tree Te/e′ ; in Fincr, it is any swap edge such that
the maximum increment in the distance from the nodes in Tz to the root r is
minimized in the new spanning tree Te/e′ .

The algorithm for computing the best swap edges with respect to Fmax and
Fincr have the same structure as the one for Fsum. What differs is: (i) the
information propagated in the preprocessing phase, and (ii) the “enabling infor-
mation” to be sent to the children during the algorithm.

For solving the Fmax and the Fincr problems we require each node z to possess
the following information: its distance d(z, r) from the root, and the maximum
distance mD(Tq, z) to z from a node in Tq for each q ∈ C(z). This will be
accomplished with a basic convergecast like in the previous section. In this case,
Lines 4. and 5. of protocol Pre-processing change as follows:

In the Pre-processing

4. a leaf l with parent p(l) sends up max(Tl, p(l)) = w(l, p(l))
5. an internal node z receiving from each of its children q, the values max(Tq, z)

will compute

max(Tz, p(z)) = max{max(Tq, z)} + w(z, p(z))

and will send up the information max(Tz, p(z)).

Let z be a node in Tx that needs to compute the cost of a candidate swap
edge e′ = (z, z′) for e = (x, p(x)). Let T ′ = Te/e′ .

Lemma 4. The maximum distance Fmax(T ′) and the maximum distance incre-
ment Fincr(T ′) in T ′ from a node z in Tx to r are:

Fmax(T ′) = max
q∈C(z,T ′)

{mD(Tq, z) + w(z, z′) + d(z′, r)}

Fincr(T ′) = max
q∈C(z,T ′)

{mD(Tq, z) + w(z, z′) + d(z′, r)} − d(z, r)

To instantiate the generic algorithm of Section 3 for the Fmax and the Fincr

objective functions we have now to specify what is the enabling information that
needs to be propagated so that all the nodes can make their local choice. As it
will be shown, in both cases the enabling information that a node z has to send
down to its child q is composed of the maximum distance mD(Tx \ Tq, q) of the
nodes in the subtree Tx \ Tq to q. The algorithm for node z is then the same as
the one for Fsum, where the computation of the cost of the local candidate swap
edges and the enabling information change as follows:

162 P. Flocchini et al.

Changes: MAX Algorithm

1. If z = x, the cost of each local candidate swap edge is computed as follows: for
each e′ = (z, z′),
Fmax(Te/e′) = maxq∈C(x){mD(Tq, x) + w(x, x′) + d(x′, r)}
Fincr(Te/e′) = maxq∈C(x){mD(Tq, x) + w(x, x′) + d(x′, r)} − d(x, r).

2. Else {z �= x} – Receiving enabling info m for (x, p(x)), the cost of each local
candidate swap edge is computed as follows:
Fmax(T ′) = max{m, maxq∈C(z){mD(Tq, z)}} + {w(z, z′) + d(z′, r)}
Fincr(T

′) = max{m, maxq∈C(z){mD(Tq, z)}} + {w(z, z′) + d(z′, r) − d(z, r)}.
3. The enabling information to be sent is mD(Tx \ Tq, q).

Lemma 5. Given e = (x, p(x)) , each node z ∈ Tx correctly computes: 1) the
local best swap edges for e, 2) the value mD(Tq, z) for each q ∈ C(z).

Proof. The values w(z, z′) and d(z′, r)) are locally available because they have
been computed in the preprocessing phase. We know that C(z, T ′) = C(z) ∪
{(z, p(z))}). If q ∈ C(z), then max(Tq, z) is locally available because it has also
been computed in the preprocessing phase. On the other hand, if q = p(z),
max(Tq, z) has to be computed during the algorithm. By definition, this is the
enabling information sent to z by p(z).

6 Correctness and Complexity

Lemma 6. Algorithms BSE(Fsum),BSE(Fmax), and BSE(Fincr), find the best
swap edge for e = (x, p(x)) according to the corresponding objective function.

Proof. By Lemmas 3, and 5 respectively, every node correctly computes its local
best swap edge for e. By the correctness of the minimum finding, the global best
swap edge will be communicated to x.

Theorem 1. Independently executing Algorithms BSE(Fsum),BSE(Fmax), and
BSE(Fincr) for each edge, the problems {r,∑}, {r, δ}, and {r,max} are solved.

Let us now examine the complexity of the proposed algorithm. Let n∗ be the
number of edges of the transitive closure of Tr \ {r}.

Theorem 2. The message complexity of the Algorithms is at most 3n∗.

Proof. The preprocessing phase is executed only once and its complexity is
O(|E|). During the swap algorithm for (x, p(x)) the number of messages ex-
changed is 2|V (Tx)|, thus, in total we have:

∑
x 2|V (Tx)| = 2n∗.

Since each message contains only a constant number of units of information
(i.e., node, edge, label, weight, distance), the overall information complexity is
of the same order of magnitude, i.e., O(n∗).

Computing All the Best Swap Edges Distributively 163

7 An O(n) Messages Algorithm

7.1 Algorithmic Shell

The idea is that each node x simultaneously computes the “best” swap edges,
not only for (x, p(x)), but also for each (a, p(a)), where a is an ancestor of x in
T . At an high level, the algorithm consists simply of a broadcast phase started by
the children of the root, followed by a convergecast phase started by the leaves.

Best F -Swap-Long (BSL)

[Broadcast.]

1. Each child x of the root starts the broadcast by sending to its children a list
containing its name and its distance from the root.

2. Each node y, receiving a list of names and distances from its parent, appends
its name and dT (y, r) to the received list and sends it to its children.

[Convergecast.]

1. Each leaf z first computes the best local swap for (z, p(z)); then, for each a in
the received list, it computes the best candidate swap for (a, p(a)); finally, sends
the list of those edges to its parent (if different from r).

2. An internal node y waits until it receives the list of best swap edges from each
of its children. Based on the received information and on its local swap edges,
it computes its best swap edge for (y, p(y)); it then computes for each ancestor
a the best candidate for (a, p(a)); finally, it sends the list of those edges to its
parent (if different from r).

To show how this generic algorithmic structure can be used to solve the
three studied problems, we need to specify how the convergecast part is done.
The differences in three solutions are: (i) the computation of the best swap edge
in the convergecast phase, and (ii) the additional information, of constant size,
to be communicated to the ancestors together with the swap edge.

In the following, we will denote by SL(x) the Swap List associated to node
x; it is defined as a list of records (edge, value, attributes), where edge indicates
a swap edge for (x, p(x)); value the value of the objective function computed in
the tree where (x, p(x)) has been substituted with edge; and attributes a list of
parameters to be specified for the particular problem being solved. Moreover, let
ASL(x) be the swap list associated to the ancestors of x; it is a list of records
(edge, value, attributes, node) indicating for each node a ∈ A(x) (stored in the
field node) the best candidate for (a, p(a)) (stored in edge), and the value of the
objective function (value); attributes is as in SL(x).

Let us describe in details the operations executed by node x. First of all x
computes the best swap edge for (x, p(x)) by considering the set InS(x) of all
local swap edges for (x, p(x)) and the set of swap edges transmitted to it from its
children (Algorithm MyBSE). Then for each ancestor a it computes, among the
swap edges in Tx, the best candidate for (a, p(a)) (Algorithm MyABSE). Note

164 P. Flocchini et al.

that the swap edges x computes for its ancestors can be worse than the final
swap edges computed by its ancestors when they execute Algorithm MyBSE.

MyBSE

(* Algorithm for node x, where e = (x, p(x)) is the link to be swapped *)

1. Determine which of x’s incident edges are swap edges for (x, p(x)); i.e., x con-
structs the set InS(x).

2. For each swap edge ei = (x, yi) ∈ InS(x), compute the value of the objective
function via ei, and the value of the other attributes and insert them together
with ei in SL(x).

3. If x is not a leaf, from each ASL(xj) received from xj ∈ C(x), ex-
tract (ej , value, attributes, x) (or NIL, if no such record exists), and insert
(ej , value, attributes) in SL(x) (or NIL).

4. Sort SL(x) in non decreasing order of value. The minimal element of SL(x) gives
one of the best swap edges for x and the value which minimizes the objective
function.

MyABSE

(* Algorithm for node x *) For each ancestor node a ∈ A(x):

1. Select the swap edge ei ∈ SL(x) which is also a swap edge for (a, p(a)), if any,
with the minimal value of value, and consider its record (ei, vi, attributes, a).

2. For xj ∈ C(x),1 ≤ j ≤ h, let (ej , vj , attributes, a) be the record from ASL(xj).
Update the values of vj and of the attributes in relation to node x. Consider
the set of the updated records {(ej , vj , attributes, a) ∪ (ei, vi, attributes, a)},
1 ≤ j ≤ h, where (ei, vi, attributes, a) is the record computed in Step 1. Select
from this set the record (e, v, attributes, a) with minimal value, if any, and insert
it, in ASL(x) (to be sent to x’s parent); if no record can be selected, insert NIL
in ASL(x).

7.2 Identifying a Swap Edge

In order for a node to decide if one of its incident edge is a swap edge it is
sufficient to check, during the convergecast phase, the information collected in
the broadcast phase.

Property 3. The fact that an edge (u, v) ∈ E\E(T) with u ∈ Tu and v ∈ T \Tu

is a swap edge for (x, p(x)), with x ∈ A(u), can be checked at node u, and no
communication is needed.

Property 3 derives from the fact that, after the broadcast phase, u knows all
its ancestors. Observe that if an edge is not a swap edge for e = (x, p(x)), it is
not feasible for none of a ∈ A(x).

Computing All the Best Swap Edges Distributively 165

8 The Fsum Problem with O(n) Messages

Problem Fsum is solved with minor modifications of the Convergecast Phase of
Algorithm BSL.

To compute, each node z need some additional information: the distance
dT ′(z, r) in Te/e′ for each considered swap edge e′ for (z, p(z)); the weight W (Tz)
of the subtree Tz; the number of nodes n(Tz) in such a subtree. The records of
the list SL(z) will thus have the form: (edge, Fsum(Tz),
{dT ′(z, r),W (Tz), n(Tz)}); the same three items (plus the field node indicating
the ancestor) are stored in the records of ASL(z).

The parameters n(Tz) and W (Tz) are easily computed inductively from the
values sent to z by its children zj , and from the weight of the edge (zj , z). Namely:
n(Tz) =

∑
zi∈C(z) n(Tzi

) + 1; and W (Tz) =
∑

zi∈C(z) W (Tzi
) +

∑
zi∈C(z) n(Tzi

)
w(z, zi). If z is a leaf n(Tz) = 1 and W (Tz) = 0.

Let us now show how to compute the new values of Fsum(Tz), and of dT ′(z, r)
(Step 2 of MyBSE and of MyABSE).

Lemma 7. Let (z, y) ∈ InS(z). Then

(i) Fsum = W (Tz) + n(Tz) · (w(z, y) + dT ′(y, r).
(ii) For each record (ei �= NIL,Fsum(Tzi

), {dT ′(zi, r),W (Tzi
), n(Tzi

)}, z) re-
ceived from child zi, dT ′(z, r) = w(z, zi) + dT ′(zi, r), and
Fsum(Tz) = Fsum(Tzi

) + dT ′(z, r) +
∑h

j=1,j �=i(W (Tzj
) + n(Tzj

)(w(z, zj) +
w(z, zi) + dT ′(zi, r))).

Proof. Assume that the children of z have already terminated their computation
and transmitted their lists to z. Case (i) follows by Lemma 2.

The scenario of Case (ii) is better understood looking at Figure 2. If a swap
edge ei belonging to Tzi

is considered, all the nodes in Tzi
maintain their distance

z1 zi zh

r

z

ei

Fig. 2. Case (ii) in Lemma 7: the computation of Fsum(Tz) via the swap edge ei. The
thick line represents the path to the root via ei

166 P. Flocchini et al.

from the root, hence they contribute to Fsum(Tz) only for Fsum(Tzi
). Node z

contributes for dT ′(z, r). All the other nodes in Tzj
, 1 ≤ j ≤ h, j �= i, to get the

root, follow a path through edges (zj , z), (z, zi) and finally through the swap
edges ei.

The messages used in the convergecast phase are now longer with respect to
the messages used in the approach of Section 4, but still of constant size. We
finally have:

Theorem 3. Each node z �= r:
(i) correctly computes its best swap edge:
(ii) determines for each ancestor a �= r the best swap edge for a in Tz.

Proof. First observe that, as result of the broadcast, every node receives the label
of its ancestors (except r) and it can determine which edges are swap edges for
itself and its ancestors (Property 2 and 3). The proof is by induction on the
height h(z) of the subtree Tz.

Basis. h(z) = 0; i.e., z is a leaf. In this case, one component contains only z,
while the other contains all the other nodes. In other words, the only possible
swap edges are incident on z. Thus, z can correctly compute its best swap edge
by computing the value of the distance as stated in point (i) of Lemma 7, thus
proving (i). It can also immediately determine the swap edges with respect to
all of its ancestors and compute for them the value of the parameters as stated
in point (ii) of Lemma 7, and select, for each ancestor, the best candidate.

Induction step. Let the theorem hold for all nodes z with 0 ≤ h(z) ≤ k − 1;
we will now show that it holds for z with h(z) = k. By inductive hypothesis,
it receives from each child y the best candidate for each ancestor of y ∈ C(z),
including z itself. Hence, based on these lists and on the locally available set
InS(z), z can correctly determine its optimal swap edge, as well as its best
feasible swap edge for each of its ancestors.

Theorem 4. Fsum can be solved with the O(n) message complexity and O(n∗
r)

data complexity.

Proof. The theorem follows immediately from Properties 2 and 3, and from the
fact that, by Lemma 7, the messages still have constant size.

9 The Fmax and Fincr Problems with O(n) Messages

We will show how Fmax is solved by BSL. The value to be minimized is the
maximal distance from the nodes in Tz to the root via a swap edge ei. Similarly
to Fsum, we need to compute inductively two values; namely, the distance from
z to the root via ei, dT ′(z, r), and the maximal distance from the nodes in Tz to
z, that is mD(Tq, z), with q ∈ C(z). The list SL(z) is now composed of records of

Computing All the Best Swap Edges Distributively 167

four elements; namely: (edge, Fmax(Tz), {dT ′(z, r),mD(Tq, z)}); ASL(z) contains
the same information, plus the field node.

Let us now show how to compute the new values of the parameters along
a new swap edge ei (Step 2 of MyBSE) and how to compute the same values
when a swap edge transmitted from a child is considered. The same operations
are performed also in Step 2 of MyABSE. We have:

Lemma 8. Let Tzk
be the subtree of Tz containing the node at the maximal

distance from r. Moreover, let mD2(z) = maxq �=k(mD(Tq, z) be the maximal
distance of the nodes in Tzj

to z, with zj ∈ {C(z) \ zk}. For (z, l) ∈ InS(z), we
have

(i) Fmax(Tz) = maxq∈C(z,T)(mD(Tq, z) + w(z, l) + dT ′(l, r)).
(ii) For each record (es �= NIL,Fmax(Tzs

), {dT ′(zs, r),mD(zs)}, z) received from
child zs, dT ′(z, r) = (w(z, zs) + dT ′(zs, r)). Moreover, if s = k, then
Fmax(Tz) = max(Fmax(Tzs

),mD2s(z) + dT ′(z, r)); otherwise, Fmax(Tz) =
max(Fmax(Tzs

),mD(z) + dT ′(z, r)).

Proof. Assume that the children of z have already terminated their computation
and transmitted their lists to z. From these values z can compute the maximum
distance of a node in Tz, and Case (i) follows immediately. For Case (ii), if the
swap edge es does not belongs to Txk

, the maximal distance is given by the
maximal value among Fmax(Tzs

) and (mD(z) + dT ′(z, r)). Otherwise, all the
nodes in Txk

maintain their distance from the root; for all the other nodes (in
Tj , 1 ≤ j ≤ h, j �= k), called far nodes, to get to the root the path goes through
edges (zj , z), (z, zk), and finally through the swap edge zs. Hence, in this case,
to compute the distance of the far nodes we have to consider the node at the
maximal distance not belonging to Txk

, whose distance is mD2(z).

Thus, it follows that:

Theorem 5. Each node x �= r:

(i) correctly computes the best swap edge for (x, p(x)) according to Fmax;
(ii) determines for each ancestor a �= r the best swap edge for v in Tu.

Fincr can be solved with a simple extension of the solution of Fmax.

Theorem 6. Problems Fmax and Fincr can be solved with O(n) messages and
an overall O(n∗

r) information complexity.

Proof. It follows immediately from Properties 2 and 3, and from Lemma 8.

References

1. D. Eppstein, Z. Galil, and G.F. Italiano. Dynamic graph algorithms. CRC Hand-
book of Algorithms and Theory, CRC Press, 1997.

2. A. Di Salvo and G. Proietti. Swapping a failing edge of a shortest paths tree
by minimizing the average stretch factor. Proc. of 10th Colloquium on Structural
Information and Communication Complexity (SIROCCO 2004) 2004.

168 P. Flocchini et al.

3. P. Flocchini, T. Mesa, L. Pagli, G. Prencipe, and N. Santoro. Efficient protocols
for computing optimal swap edges. In Proc. of 3rd IFIP International Conference
on Theoretical Computer Science (TCS 2004), 2004, to appear.

4. A. Itai and M. Rodeh. The multi-tree approach to reliability in distributed net-
works. Information and Computation, 79:43-59, 1988.

5. H. Ito, K. Iwama, Y. Okabe, and T. Yoshihiro. Polynomial-time computable backup
tables for shortest-path routing. Proc. of 10th Colloquium on Structural Informa-
tion and Communication Complexity (SIROCCO 2003), 163–177, 2003.

6. H. Mohanty and G.P.Bhattacharjee. A distributed algorithm for edge-disjoint
path problemProc. of 6th Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS), 44-361, 1986.

7. E. Nardelli, G. Proietti, and P. Widmayer. Finding all the best swaps of a minimum
diameter spanning tree under transient edge failures. Journal of Graph Algorithms
and Applications, 2(1):1–23, 1997.

8. E. Nardelli, G. Proietti, and P. Widmayer. Swapping a failing edge of a single
source shortest paths tree is good and fast. Algoritmica, 35:56–74, 2003.

9. P. Narvaez, K.Y. Siu, and H.Y. Teng. New dynamic algorithms for shortest path
tree computation IEEE Transactions on Networking, 8:735–746, 2000.

10. L. L. Peterson and B. S. Davie. Computer Networks: A Systems Approach, 3rd
Edition. Morgan Kaufmann, 2003.

11. G. Proietti. Dynamic maintenance versus swapping: An experimental study on
shortest paths trees. Proc. 3rd Workshop on Algorithm Engineering (WAE 2000),
207–217 2000

12. R. E.Tarjan. Application of path compression on balanced trees. Journal of ACM,
26:690–715, 1979.

	Introduction
	Terminology and Problems
	Algorithmic Shell and Computational Tools
	A Generic Algorithm
	Identifying Swap Edges

	The Fsum-problem
	The Fmax and Fincr Problems
	Correctness and Complexity
	An O(n) Messages
Algorithm
	Algorithmic Shell
	Identifying a Swap Edge

	The Fsum Problem with O(n)
Messages
	The Fmax and Fincr Problems with O(n)
Messages

