Distributed Computation for Swapping a Failing
Edge*

Linda Pagli!, Giuseppe Prencipe!, and Tranos Zuva?

! Dipartimento di Informatica, Universita di Pisa, Italy
{pagli, prencipe}@di.unipi.it
2 Department of Computer Science, University of Botswana, Gaborone
Zuvat@mopipi.ub.bw

Abstract. We consider the problem of computing the best swap edges
of a shortest-path tree T} rooted in r. That is, given a single link failure:
if the path is not affected by the failed link, then the message will be
delivered through that path; otherwise, we want to guarantee that, when
the message reaches the edge (u,v) where the failure has occurred, the
message will then be re-routed using the computed swap edge. There
exist highly efficient serial solutions for the problem, but unfortunately
because of the structures they use, there is no known (nor foreseeable)
efficient distributed implementation for them. A distributed protocol ex-
ists only for finding swap edges, not necessarily optimal ones.

In [6], distributed solutions to compute the swap edge that minimizes
the distance from u to r have been presented. In contrast, in this paper
we focus on selecting, efficiently and distributively, the best swap edge
according to an objective function suggested in [13]: we choose the swap
edge that minimizes the distance from u to v.

Keywords: Fault-Tolerant Routing, Point of Failure Rerouting, Short-
est Path Spanning Tree, Weighted Graphs, Distributed Algorithms, Data
Complexity.

1 Introduction

Fault tolerance is a very important feature for distributed systems. When faults
occur, programs may produce incorrect results or may stop before they have
completed the intended computation. In many distributed systems the routing
of messages is performed through a shortest path strategy. For this purpose, the
shortest path trees (SPT’s for short) starting from each node of the network,
are computed in a preprocessing phase and stored in the so called routing tables.
These tables specify, for each node in the network and for all possible destina-
tions, the next hop that a message has to follow to reach its destination along the
shortest path route; they contain also additional information such as the length
of the path. The routing tables as a whole contain, in a distributed manner,

* This work has been supported in part by the University of Pisa and by “Progetto
ALINWERB: Algoritmica per Internet e per il Web”, MIUR Programmi di Ricerca
Scientifica di Rilevante Interesse Nazionale.

A. Sen et al. (Eds.): IWDC 2004, LNCS 3326, pp. 28-39} 2004.
(© Springer-Verlag Berlin Heidelberg 2004

Distributed Computation for Swapping a Failing Edge 29

the shortest path trees rooted at each node; they can be computed by several
distributed known algorithms with different degree of complexity and cost (e.g.,
see [3L[4L[7,[]), starting from the distributed representation of the network, where
the only knowledge of a node consists in its neighbors and their distance from it.

In these systems, a single link failure is enough to interrupt the message trans-
mission by disconnecting one or more SPT’s. Assuming that there should be at
least two different routes between two nodes in the networkl] - otherwise nothing
can be done — several approaches are known to recover from such situation.

One approach consists in recomputing the new shortest path trees from
scratch and rebuilding the routing tables accordingly; clearly, this approach is
rather expensive and causes long delays in the messages transmission [10,[15].
Another approach uses dynamic graph algorithms (e.g., those of [5]) but the
difficulties arising in finding an efficient distributed approach have not yet been
successfully overcome (e.g., see [14]).

A different strategy is suggested in [II]: & independent (possibly) edge-
disjoint spanning trees are computed for each destination; hence at each entry of
the routing table k additional links, specifying the next hop in each spanning tree,
are inserted. To compute edge-disjoint spanning trees there exist also distributed
algorithms (e.g. [12]). However, even if this strategy is k-fault tolerant, it is quite
expensive in term of space requirements; in addition it is not shortest path.

The last approach, which will be also ours, starts from the observation that
sooner or later each link will fail and from the idea of selecting for each link
failure, a single non-tree link (the swap edge) able to reconnect the network [8|
13]. This approach does not compute the new shortest path tree, but the selection
of the swap edge is done according to some optimization criteria and allows, with
a single global computation, to know in advance how to recover from any possible
failure. In addition, in [I6] experimental results show that the tree obtained from
the swap edge is very close to the new SPT computed from scratch.

Consider in particular a message with destination the root r of the SPT,
arriving to node u where the link to the next hop v (as specified by the routing
table) has just failed. The SPT is now divided into two disconnected subtrees, one
of root r, say T/, and one of root u, T,,. The swap edge can be selected, among the
possible ones reconnecting the tree, to minimize different functions. For instance,
it can be the one minimizing the distance from u to r, or the distance from u
to v, (called one-to-one problems in [I3]) or the total or the average distances
from each node in T), to r (called one-to-many problems) in the tree obtained
by substituting the failed edge (u,v) with the chosen swap edge. In [I3] efficient
sequential algorithms solving different one-to-one and one-to-many problems are
given. In [8] the complexity of the selection of the swap edge minimizing the
average distance, called there average stretch factor, is improved. In [6] it has
been shown how the computation of swap edges can be efficiently performed in
a distributed way. The routing table stored at a node is then designed to contain
the new information needed to bypass any failed link.

! That is, the underlying graph must be 2—connected.

30 L. Pagli, G. Prencipe, and T. Zuva

However, the only problem considered in [6] is the one-to-one swap problem
which minimizes the distance from u to r, called there point-of-failure shortest-
path rerouting strategy. This corresponds to the situation in which, after a failure,
the message in u must be delivered as soon as possible to the root of the SPT
(or,viceversa, from r to).

Different situations can suggest a different selection of the swap edge. In
particular, as suggested in [I3], in this paper we consider the following problem
(BEST NEAR SwAP, shortly BNS):

Select any swap edge such that the distance from u to v is minimized,

with v the parent of u in the original SPT.

This problem is of type one-to-one: it can be useful when the node u, once the
failure has been detected, needs to deliver the message as soon as possible to its
parent v in the original SPT [I3]. In this paper, given an SPT T,., we propose an
efficient distributed algorithm which determines, for the failure of each possible
edge e, a swap edge optimal for the BNS problem.

The solution we propose uses as starting point the structure of one of the
algorithms presented in [6]. In addition, as will be observed later, the time needed
to compute all the swap edges of an SPT, is less than the time required by the
distributed computation of the SPT itself.

The paper is organized as follows. In the next section we give some definitions,
terminology and we recall the computing paradigm. In Section 3, we propose
and analyze the specific solutions for the considered problem. The concluding
remarks are in Section 4.

2 Basic Definitions and Previous Results

Let G = (V, E) be an undirected graph, of n = |V| vertices and m = |E| edges.
A label () of length |I(x)| < logn is associated to each vertex of G. A subgraph
G' = (V',E') of G is any graph where V! C Vand F' C E.If V' =V, G is
a spanning subgraph. A path P = (V,, E,) is a subgraph of G, such that V,, =
{v1,...,vs}|vi # vy, for i # j, and (v;,vi41) € Ep, for 1 <i < s—1.If v, = v,
then P is a cycle. A graph G is connected if, for each pair {v;, v;} of its vertices,
there exists a path connecting them. A graph G is biconnected if, after the removal
of anyone of its edges it remains connected. A tree is a connected graph with no
cycles. A non negative real value called weight (or length) and denoted by w(e) is
associated to each edge e in G. Given a path P, the length of the path is the sum
of the lengths of its edges. The distance dg(x, y) between two vertices x and y in a
connected graph G, is the length of the shortest path from x to y in G — computed
according to the weights of the edges in the path. In the following we will denote
dg(x,y) by d(z,y), when it is clear from the context to which graph is referred.

For a given vertex r, called root, the shortest path tree (SPT) of r is the
spanning tree T, rooted at r such that the path in 7} from 7 to any node v is
the shortest possible one; i.e., Vo € V, dr.(v,r) = d(v,r) is minimum.

After the removal of an edge e = (u,v), T, will be disconnected in two
components 7). and T, rooted in r and wu, respectively. Since G is biconnected,

Distributed Computation for Swapping a Failing Edge 31

there will always be at least an edge ¢ € E(G) \ E(T,) that will join the two
disconnected components. An edge is called a feasible swap edge (or simply a
swap edge) for a node x if after the failure of edge e = (u,v) € T, it can be
utilized to reconnect T}, to the other disconnected component rooted at r, thus
forming a new spanning tree 7" of G. It is easy to see that an edge (z,y) €
E\ E(T}) is feasible for u if and only if only one of x and y is a descendant of
u. In the following, we will denote by S(x) the set of swap edges for x, and by
InS(z) C S(x) the set of edges incident in x that are also swap edges for x.

We will assume that a node z knows the weight of all its incident links, and
can distinguish those that are part of the spanning tree T;. from those that are
not; moreover, among the links that are part of 7,., x can distinguish the one
that leads to its parent p(z) from those leading to its children. We assume also
that each node knows its distance from the root and the distance from the root
of its adjacent nodes in G.

The considered system is distributed with communication topology G. Each
process is located at a node of G, knows the weight of its incident edges, and can
communicate with its neighboring processes. A node, an edge, a label, a weight,
and a distance are all unit of data. The system is asynchronous, and all the
processes execute the same protocol. In the following, the term node or vertex
will be also used to indicate a process and the term edge or link to indicate a
communication line.

Algorithm 1 Overall Structure of the Algorithm

[Preprocessing]

1. DFS for labelling the tree according to [2].
[Broadcast.]

1. Each child x of the root starts the broadcast by sending to its children a list
containing its name and its distance from the root.
2. Each node y, append z to the received list and sends it to its children.

[Convergecast.]

1. Each leaf z first computes its best swap. It then computes the best feasible swap
edge for each of its ancestors, and sends the list of those edges to its parent (if
different from 7).

2. An internal node y waits until it receives the list of best swap edges from each of
its children. Based on the received information and on InS(y), it computes its best
swap edge. It also computes the best feasible swap edge for each of its ancestors,
and sends the list of those edges to its parent (if different from r).

As already mentioned, we will utilize as general paradigm, one of the algo-
rithms of [6] for the point-of-failure shortest path problem. The algorithm consists
of two phases: broadcast and convergecast. With the first phase (up-down in the
SPT T,) each node x receives the list of its ancestors along with their distances

32 L. Pagli, G. Prencipe, and T. Zuva

from the root. The phase is started by the children of the root because no swap
edge is computed for the root r. In the second phase (bottom-up) each node
computes the best swap edge for itself and the best swap edge, among the edges
examined so far, for each of its ancestors. The general structure of this algorithm
is shown in Algorithm [l

From [6], it derives that the message complexity of the above algorithm is
O(n), if long (that is O(n) unit of data) messages are allowed. Otherwise, it
becomes O(n}), where n is the size of the transitive closure of T, \ {r} and
0 <n} < (n—1)(n—2)/2. Clearly, swap edges must be selected in order to be
optimal with respect to the BNS problem; this will be the focus of next section.

3 The Algorithm

In the problem we consider, the optimal swap edge e’ for e = (u,v) is any
swap edge for e such that the distance from u to node v in the new tree TV =
T\ {e} U{e'} is minimized. More precisely, the optimal swap edge for e = (u,v)
is a swap edge ¢’ = (u/,v’) such that dr (u,v) = dr, (u,v') +w(u',v")+dr, (v, v)
is minimum.

As an example, consider the biconnected weighted graph G shown in Figure (),
with the minimum SPT (marked by a thick line) rooted in A. Consider vertex D
after the failure of edge (D, B): the best swap edge for the BNS problem is (F, B).

Fig. 1. An example: the thick line represents the starting SPT, rooted in A

Distributed Computation for Swapping a Failing Edge 33

Solving the BNS problem for a given T, means determining an optimal
swap edge for each edge in 7T,. We will design a distributed solution for the
above problem, for which sequential solutions have been already studied [8|,[13].
Starting from the overall structure described in Algorithm [we need to specify
how the convergecast part is done. In particular, we will detail
(i) the computation of the best swap edge in the convergecast phase, and
(ii) the additional information, of constant size, to be communicated to the an-

cestors together to the swap edge.

All techniques described here are new and totally different from those adopted
to design sequential solutions; furthermore, to our knowledge, this is the first
distributed solution for the BNS problem.

Let us denote by u;,1 < j < h the children of node u, and by ANC(u) the
set of ancestors of u in the original spanning tree T,.. Moreover, let SL(u) be the
list containing the set of pairs (edge, distance) of the feasible swap edges for u
and their distance values, and ASL(u) be the list of triples (edge, distance, node)
indicating for each node a;, € ANC(u) the best feasible swap edge for a; and
the distance between ay, and p(ay) via the specified swap edge.

The details of the operations executed by node u are reported in Algorithm
(to compute its best swap edge) and Algorithm [3] (to compute its ancestors’ swap
edges). In particular, node u computes its best swap edge by considering all its
feasible swap edges; that is, InS(u) and the swap edges transmitted to it from
its children. Then it computes, among the ones in 7}, the best feasible swap
edge for each one of its ancestors. Note that, the swap edges it computes for
its ancestors can be worse than the final swap edges computed by its ancestors
when they execute Algorithm

Algorithm 2 Compute My Best Swap Edge
The protocol is described with respect to node u, with (u,v) the edge that fails.

1. Determine which of u’s incident edges are feasible for u; i.e., u constructs the set
InS(u).

2. For each swap edge s; = (u,y;) € InS(u), compute the value of the distance d
between u and v in 7" via s;, and insert it in SL(u) the pair (si,di,,).

3. If u is not a leaf, from each ASL(u;) received from child u;, extract (s;,d;, u) (or
NIL), and insert (s;,d;) in SL(u) (or NIL, if no such pair exists).

4. Sort SL(u) in non decreasing order of d;. The minimal element of SL(u) gives one
of the best swap edges for u and the value of the minimal distance.

it

In the next section, we will introduce some properties that will be needed
in order to show how node u can locally efficiently compute the operations in
Algorithms 2 and Bl

3.1 Basic Properties

The first thing a node has to be able to do locally is to check the feasibility of
an edge, i.e. if an edge can be considered a swap edge: this operation can be

34 L. Pagli, G. Prencipe, and T. Zuva

Algorithm 3 Compute My Ancestors’ Best Swap Edge
The protocol is described with respect to node .
For each ancestor node ax € ANC(u):

1. Consider the swap edge s; € SL(u) feasible for ar, with the minimal value of d;,
if any. If such an edge exists, compute the new value of the distance d; for ax,
otherwise set it to NIL.

2. Forall1 < j < h,let {(s;,d;,axr)} be the set of triples from ASL(u;), and consider
the set {(s;,d;, ar)U(si,di,ar)}, 1 < j < h, where (s;,d;, ax) is the triple computed
in Step 1. Select from this set the triple (3, d, ax) such that the distance d between
ar and p(ay) is minimal, if any, and insert it, in ASL(u) (to be sent to u’s parent);
if no triple can be selected, insert NIL in ASL(u).

8]

Fig. 2. Property [II

easily done during the convergecast phase, through the information collected in
the broadcast phase. We state the following

Property 1. A swap edge (x,y) € E\ E(T,) with x € T, and y € T is feasible
for node u if y does not belong to the path connecting x to u.

Property [derives immediately from the fact that an edge (z,y) is feasible
for w if and only if only one of its endpoints is a descendant of u (refer to
Figure 2)). Furthermore, we have

Property 2. Feasibility of swap edge (x,y) € E\ E(T,) withx € T, andy € T}
for node u can be checked at node x, and no communication is needed.

Property 2l immediately derives from the fact that node x is descendant of u
and neighbor of y in € E\ E(T,.), and that after the broadcast phase z has locally
the list of all nodes between the root and itself, hence it knows which nodes are its
ancestors. Therefore, the feasibility test of Step 1 in both Algorithm 2] and Bl can
be locally performed. Note that, even if the global complexity does not change,
this feasibility test is simpler than that used in [6], which required additional
labeling of the tree nodes, with two labels to be transmitted in the two phases.

Distributed Computation for Swapping a Failing Edge 35

We also observe that if an edge is not feasible for x, it is not feasible for none of
its ancestors.

In order to solve BNS problem, we need to compute in the convergecast
phase the nearest common ancestor of pairs of nodes z,y € T, (called nca(x,y)).
Recall that the nca(x,y) is the common ancestor of x and y, whose distance
to x and y is smaller than the distance of any other common ancestor of x
and y. In a recent work [2], it has been shown that this information can be
locally computed in constant time, through a proper labeling of the tree that
requires labels of O(logn) bits, denoted in the following as [(x), that can be p
recomputed by a depth first traversal of the tree. Therefore, Algorithm [needs
to be slightly modified to transmit, for each node z, (x) instead of its name z.
When such a labeling is computed for 7;., each node can be distinguished by its
label. Therefore, we can state that

Property 3. Let (z,y) € E\ E(T,), with x € T}, and y € T). be a swap edge
for w after the failure of edge (u,v). Then, nca(y,v) can be computed at x, and
no communication is needed.

Property B follows from the results shown in [2], and noting that I(v) €
ANC (u), hence [(v) € ANC(z), and that [(y) is accessible at x since x is directly
connected to y.

3.2 Correctness

In the BNS problem, the optimal swap edge for the failure of the edge e = (u,v)
is an edge which minimizes the distance d(u, v) from u to v in the new spanning
tree T' obtained after the removal of the failed edge. In this section, we show that
the computation of the best swap edge can be accomplished by each node, in
the convergecast phase, without requesting additional information to any other
node in the SPT, which is not a neighbor; that is without additional message
complexity, obtaining the same complexity of Algorithm [

First of all we have to define how the distance d7(u,v) along a given swap
edge e = (u,y) € InS(u) is computed (Step 2 of Algorithm [Z). The possible
cases that we can have are:

— v and y lay on the same path from the root to a leaf, hence one node is
ancestor of the other one (Figure Bla, and nodes B an F' in Figure[I]), or

— v and y have a nearest common ancestor (Figure[3lb), such as nodes H and
I in Figure[Il having D as nca.

The following lemma states how correctly compute this distance.
Lemma 1. Let (u,y) € InS(u). We have:

(i) dr(u,v) = wu,y) + |dr(v,r) — dr(y,r)|, if nca(y,v) =v or nca(y,v) =y.
(i) dr(u,v) = w(u,y)+dr(v,r)—dr(z,7)+dr(y,r)—dr(z,r), if nca(y,v) = z.

Proof. First note that dp (u,v) = w(u,y) + dr(y,v). We distinguish the two
possible cases.

36 L. Pagli, G. Prencipe, and T. Zuva

Fig. 3. (a) Case (i) of Lemmal[ll(b) Case (ii) of Lemma/[ll

(i) y and v lay on the same path from the root to a leaf; hence, dr/(y,v) can be
computed as the difference of their distances from the root.

(ii) In this case y and v lay on different paths which intersect in z. Their distance
is easily computed by their distances from the root and from the distance of
z from the root, possibly equal to 0.

Note that, each node knows its distance from r and the distance from r of
each of its neighbors in G (this information can be obtained during the broadcast
phase); hence, dr'(u,v) in the above lemma can be locally computed at w.

In the convergecast phase of Algorithm[Il a node (either a leaf or an internal
node) has to be able to locally compute the best feasible swap for an ances-
tor. The following lemma states how distance in Step 1 of Algorithm [3] can be
computed (refer to Figure @a and [dlDb).

Lemma 2. Consider a subset a,...,a; of the ancestors of u, with p(u) = aq,
and ay adjacent to apy1, 1 < k < 1. Furthermore, let (z,y) be a feasible swap
edge for (u,a1) and for (ag,art+1), 1 < k < I. Consider the two trees T' =
(Tr\ (u,a1) U (2, 9)) and T" = (T, \ (ak, ap41) U (2, y)); then, dpr(ag, apr) =
dr/(u, a1) + w(u, a1) — w(ak, ag+1)-

Proof. Since (z,y) is feasible for ay, by Property [l it follows that y is not de-
scendant of ay, and that nca(y,a1) = nca(y,ax). Thus, in T’, the path p’ from
u to a; along the swap edge (z,y) includes ag, ..., as (see Figure @a). Moreover,
the path p” from ay to agyq in T” results to be the same as p’, except for edge
(u, a1), that is substituted with (ag,ar+1) (Figure db), and the lemma follows.

Also in this case, similarly to Lemma [Il the computation of dp~ can be
performed locally at u, because of the information retrieved during the broadcast
phase of Algorithm [l Finally, we can state that problem BNS is correctly solved
by Algorithm [2] and Bl

Theorem 1. Fach node u # r:

(1) correctly computes its best swap edge;

Distributed Computation for Swapping a Failing Edge 37

a. b.

Fig. 4. Trees T and 7" in Lemma

(ii) correctly determines for each ancestor ay # r the best swap edge feasible for
ag in T,

Proof. First observe that, as result of the broadcast, every node receives the
label of its ancestors (except r) and it can compute the feasibility of each avail-
able swap edge for itself and its ancestors (Property [[l and 2]). The proof is by
induction on the height h(u) of the subtree T,.

Basis. h(u) = 0; i.e., u is a leaf. In this case, one component contains only u,
while the other contains all the other nodes. In other words, the only possible
swap edges are incident on u. Thus, u can correctly compute its best swap edge
computing the value of the distance as stated in Lemma [I] proving (i). It can
also immediately determine the feasibility of any of those edges with respect to
all its ancestors and, in case they are feasible, compute for them the value of the
distance as stated in Lemma[land select, for each ancestor, the best feasible one.

Induction Step. Let the theorem hold for all nodes « with &k — 1 > h(z) > 0;
we will now show that it holds for u with h(u) = k. By inductive hypothesis,
it receives from each child y the best feasible swap edge for each ancestor of y,
including u itself. Hence, based on these lists and on the locally available set
InS(u), u can correctly determine its optimal swap edge, as well as its best
feasible swap edge for each of its ancestors.

We can pose the following:

Theorem 2. Problem BNS can be solved with the O(n) message complexity and
O(n}) data complexity.

38 L. Pagli, G. Prencipe, and T. Zuva

Proof. The theorem follows immediately from Properties Pl and Bl the computa-
tion of the nca, from Lemma [2] and from the fact that all the needed computa-
tion to determine the best swap edge of a node and of its ancestors can be done
locally, thus not changing the complexity of Algorithm [II

Ezample. Consider in the example of Figure [I, the computation of node D.
Assume that nodes F' and E have already correctly computed the lists ASL(F) =
{((F,B),4,D),NIL} and ASL(E) = {((E,C),5,D),((F,C),5,B)} and sent
them to their parent D. D has only one feasible swap edge (D, C), for which
dr/(D, B) = 5, then it receives (F, B),4 from F and (E,C),5 from E. Therefore
(F, B) is the best swap edge for D. Now D selects the best feasible swap for its
parent B, by considering the best one among its swap edges feasible for B, that
is (D, () and considering the edges coming from its children, in this case only
(E,C) from E. The value dr/ (B, A) via (E,C) is already known, while D has
to compute dr (B, A) via (D, C), which is equal to 5. {((D,C),5,B)} is then
transmitted to B.

4 Concluding Remarks

In this paper we have presented an efficient distributed algorithm to solve the
BNS problem: given a shortest path tree T, rooted in r, we want to select the
swap edge €’ for any edge (u,v) in T, so that the distance between u and v is
minimized in T, \ {(u,v)} U{e’}. To make the routing table 1-fault tolerant, the
computation of the swap edges must be repeated for all possible shortest path
trees; that is, for all nodes of the graph.

We note that the proposed algorithm allows for the efficient construction
of a rerouting service. To do so, the proposed computation must be carried
out for the n shortest path trees, each having as root a different vertex of the
graph G. In this regards, an interesting open problem is whether it is possible to
achieve the same goal in a more efficient way than by performing n independent
computations.

An immediate possible development of this study, would be to study how to
recover from multiple link failures, following the same strategy of storing in the
routing tables the information useful for finding alternative paths. Other possible
studies involve the analysis of the one-to-many problems presented in Section [T}
such as choosing the swap edge so to minimize the sum of the distances from
each node in T, to r.

References

1. Y. Afek, M. Ricklin. Sparser: a paradigm for running distributed algorithms.
Journal of Algorithms, 14:316-328, 1993.

2. S. Alstrup, C. Gavoille, H. Kaplan, T. Rauhe. Nearest Common Ancestor: A
survey and a new distributed algorithms. 14th Annual ACM Symposium on Parallel
Algorithms and Architecture (SPAA), 258-264, 2002.

10.

11.

12.

13.

14.

15.

16.

Distributed Computation for Swapping a Failing Edge 39

B. Awerbuch, R. Gallager. A new distributed algorithm to find breadth first search
trees. IEEE Transactions on Information Theory, 38 (815-822) 1987.

. K. M. Chandy, J. Misra. Distributed computation on graphs: shortest path algo-

rithms. Communication of ACM, 25 (833-837) 1982.

D. Eppstein, Z. Galil, G.F. Italiano. Dynamic graph algorithms. CRC Handbook
of Algorithms and Theory, CRC Press, 1997.

P. Flocchini, A. Mesa Enriquez, L. Pagli, G. Prencipe, N. Santoro. Efficient pro-
tocols for computing the optimal swap edges of a shortest path tree. Proc. of 3-
th IFIP International Conference on Theoretical Computer Science (TCS@Q2004),
153-166, 2004.

G. N. Frederikson. A distributed shortest path algorithm for planar networks.
Computer and Operations Research, 17 (153-151) 1990.

A. Di Salvo, G. Proietti. Swapping a failing edge of a shortest paths tree by
minimizing the average stretch factor. Proc. of 10th Colloguium on Structural
Information and Communication Complezity (SIROCCO 2004), 99-104, 2004.

P. Humblet. Another adaptive distributed shortest path algorithm. IEEE/ACM
Transactions on Communications, 39(6):995-1003, 1991.

H. Ito, K. Iwama, Y. Okabe, T. Yoshihiro. Polynomial-time computable backup ta-
bles for shortest-path routing. Proc. of 10th Colloquium on Structural Information
and Communication Complexity (SIROCCO 2003), 163-177, 2003.

A. Ttai, M. Rodeh. The multi-tree approach to reliability in distributed networks.
Information and Computation, 79:43-59, 1988.

H. Mohanti, G. P. Batthacharjee. A distributed algorithm for edge-disjoint path
problem. Proc. of 6th Conference on Foundation of Software Technology and the-
oretical Computer Science, (FSTTCS), 344-361, 1986.

E. Nardelli, G. Proietti, P. Widmayer. Swapping a failing edge of a single source
shortest paths tree is good and fast. Algoritmica, 35:56—74, 2003.

P. Narvaez, K.Y. Siu, H.Y. Teng. New dynamic algorithms for shortest path tree
computation. IEEE Transactions on Networking, 8:735-746, 2000.

L. L. Peterson, B. S. Davie. Computer Networks: A Systems Approach, 3rd Edition.
Morgan Kaufmann, 2003.

G. Proietti. Dynamic maintenance versus swapping: An experimental study on
shortest paths trees. Proc. 3-rd Workshop on Algorithm Engineering (WAE 2000).
Lecture Notes in Computer Science, Springer, (1982) 207-217, 2000.

	Introduction
	Basic Definitions and Previous Results
	The Algorithm
	Basic Properties
	Correctness

	Concluding Remarks

