FUN2004
Third International Conference on
'FUN with Algorithms

Paolo Ferragina and Roberto Grossi
Editors

Giulio Lucc:o, no title. Ink. acrylic, and tissue paper on canvas
Photegraphed by Cario Baldacci

*
g

FDIZIONEPEL 5

U niversita di Pisa

ON THE EFFICIENT CAPTURE OF DANGEROUS CRIMINALS

Vincenzo Gervasi
Giuseppe Prencipe
Dipartimento di Informatica, Universita di Pisa

{ gervasi,prencipe} @di.unipi.it

1. Prologue

President Hush! was extremely proud of his robotics troops. The search for the notorious crimi-
nal Assuma’ Hex Loaded was proceeding fairly well, and the robotic troops on the ground were
on the verge of surrounding and capturing the escapee. Compared to this, the thrill of his chief
scientific advisor, who was babbling about how efficient the new capture algorithm was, seemed
to President Hush rather incomprehensible. To him, what mattered was that the robots could
reach and surround the enemies, making sure they could not escape, and keep them in check
until the bomb squad could come and get rid of that nuisance. Of course, this tactic would cause.
the loss of all the robots as well, but in the end robots were expendable, did not vote, did not
have a family awaiting them back home, and their loss was not necessarily a sad occurrence, in
view of the needs of the arm lobby. Or at least, this was what his advisor Condoglianza kept
saying him.

Defense Secretary Donald Duckfield had a completely different point of view. He had always
felt that the extermination of the enemy had to be performed with maximal efficiency. It was
not enough to be effective, the robotic troops had to be optimal. Indeed, he had allocated 7.5
quadrillion dollars to a promising project comparing the performances of different algorithmic
approaches to the problem.

Of course, we could not afford to let such an important source of funding go. So, while
waiting for a promised national grant of 7.5 euros, we settled to study the effectiveness of several
algorithms to accomplish the desired task of reaching and surrounding an enemy unit fleeing in
a hostile battlefield. This paper reports on the finding of our investigation.

2. Formalizing the capture problem

Consider an open area where a set of robotic troopers are parachuted at random spots to surveil
a restricted area. Their task is to capture an hostile unit, or enemy, that could possibly enter the
surveilled zone: the robots consider their task accomplished when they surround the enemy, SO

1 All persons and events portrayed in this paper are entirely fictional. Any coincidence with real persons or facts is
purely coincidential.

On the Efficien: Capture of Dangerous Criminals

must do away with explicit communication, relying instead only on the intrinsic capabilities
of the robots; it must assume N0 external help, and should be abje to adapt to a varying (i.c.,

rious crimi- the edges connegting. them._ In the graph there is also an enemy robot, and the patrolling units
round were G must surron.md him: in partlcu'lar,' they have to. occupy all the neighborhood of t}.xe node where
>of his chief , the enemy is. In contrast to this kind of study, in our approach the patrolled area is modelled as i
vas. seemed a two dimensional plane where our agents, as well as the enemy, can freely move. §
obots could : A related problem to ours has been analyzed in [12, 13], where the robots and the enemy 4
.m in check could move strictly inside a polygonal area (including its border): each surveilling robot could .
vould cause hold a flashlight that emits rays of light whose direction can be changed continuously. In their

ote, did not model, each robot can only see points lying on one of the rays. The goal of the robots is to detect

currence, in the presence of the enemy. This is different from our problem, in that we assume the robots can

slianza kept : always see the enemy, but we ask them to surround him rather than Just detecting him. .
> Following the motivations that prompted previous studies ([6, 10, 11]), in this paper we adopt ‘ é

. had always ; extremely simple units. to study the problem: the robots are completely anonymous, identical (no h
ncy. It was identities are used during the computation), asynchronous, memoryless, and with no means of

llocated 7.5 direct communication. We describe two algorithms, the same for all the robots, that allows them

algorithmic ' to surround the enemy, limiting his movement ability, and to keep him surrounded until some

: external event concludes the pursuit. Moreover, we present results of computer simulations that
. So, while ' show the effectiveness of the proposed solution.

ss of several
it fleeing in 2.1. Computational model

We consider a System composed by n autonomous mobile robots. Each robot is capable of

observing its surrounding, computing a destination based on what it observed, and moving to- A
wards the computed destination; hence it performs an (endless) cycle of observing, computing,

ts to surveil
)ly enter the

e
© enemy, 50 the robot), a unit of len gth, and the directions of two coordinate axes, together with their orienta-
sons or facts is ; tions, identified as the positive and negative sides of t

FUN with Algorithms

share the same concept of where North, East, South, and West are).

The robots are modeled as units with computational capabilities, which are able to freely
move in the plane. They are equipped with sensors that let each robot observe the positions of
the others with respect to their local coordinate system. Each robot is viewed as a point, and can
see all the other fellow robots in the patrolled area, as well as the enemy.

The robots act totally independently and asynchronously from each other, and do not rely on
any centralized directives, nor on any common notion of time. Furthermore, they are oblivious,
meaning that they do not remember any previous observation nor computations performed in
the previous steps. :

The robots are anonymous, meaning that they are a priori indistinguishable by their appear-
ances, and they do not have any kind of identifiers that can be used during the computation.
They can only distinguish the enemy from a fellow robot. Moreover, there are no explicit direct
means of communication; hence the only way they have to acquire information from the fellow
robots is by observing their positions.

They execute the same algorithm, which takes as input the observed positions, and returns
a destination point towards which the executing robot moves. A robot, asynchronously and in-
dependently from the other robots, (i) observes the environment (Look), by taking a snapshot of
the positions of all other robots and of the enemy with respect to its local coordinate system?; (i)
It computes a destination point p according to its oblivious algorithm (Compute); the local com-
putation is based only on the current (i.e., at the time of the previous Look) locations observed
by the robot. (iii) Finally, the robot moves an unpredictable amount of space towards p (Move),

which is however assumed to be neither infinite, nor infinitesimally small (see Assumption Al
below), and goes back to the Look state.
In the model, there are three limiting assumptions. The first refers to space; namely, the

distance traveled by a robot during a cycle of activity.

Assumption Al (Distance) The distance traveled by a robot in a Move is not infinite. Fur-
thermore, it is not infinitesimally small: there exists a constant 8, > 0, such that if the

destination point is closer than 8., 7 will reach it; otherwise, T will move towards it by at

least 6.

The reason for introducing d;- is to ensure progress in the movement of the robots; in othe
words, if r aims to reach a destination point p, Al ensures that 7 will reach p in a finite numbe:
of cycles. Without such an assumption, it would be impossible to prove the termination of an;
algorithm in a finite number of cycles. As no other assumptions on space are made, the distanc

traveled by a robot in a cycle is unpredictable.
The second assumption in the model refers to the duration of a cycle of activity.

Assumption A2 (Cycle of Activity) The amount of time required by a robot T to complete
cycle of activity is not infinite. Furthermore, it is not infinitesimally small: there exists.

constant €, > 0 such that the cycle will require at least £y time.

2gince each robot is viewed as a point, its position in the plane is given by its coordinates.

186

On the Efficient Capture of Dangerous Criminals

we able to freely some robot takes an infinite time to complete one of jtg cycles. As no other assumption on time
: the positions of exists, the resulting system is truly asynchronous and the duration of each activity (or inactivity)
s a point, and can is unpredictable. As a result, robots can be seen while moving, and computations can be made
based on obsolete observations.
nd do not rely on Finally, since we need to model robots that “continuously” move, we assume that
ey are oblivious, . .
ms performed in Assumption A3 (Continuous Movement) The time spent in looking and computing is negligi-
$ ble compared to the time Spent in moving,
by their appear-
he computation. We stress that no one of the followers knows in advance the path that the enemy will follow,
10 explicit direct nor can it derive it at run-time (e.g., by observing the position of the enemy at different times or
from the fellow P his heading in order to estimate the current direction).
ons, and returns Z 2.2. Formalization
ronously and in- !) . \
ng a snapshot of : We_ con'31der a system. of_ aut(?nom(?us mobile robo.ts that have to pairol a given area, modelled ag
ate system?; (ii) an infinite plgne. A distinguished mdepen@ent unit £, the enemy, is also on the plane. The goal
); the local com- : of the robots is to surround the enemy, while keeping at a certain distance from him, in order to
:ations observed < reduce his leeway. In particular, the robots must place themselves as to minimize the maximum
wards p (Move), ’ distance that the enemy can’place bethae‘n himself and the nearest robot along any escape route.
Assumption Al Let!; and 5 be respectively the minimum and maximum distance from the enemy that we
want the robots to maintain (given as constants of the problem). It is casy to see that the problem
ice; namely, the as stated is solved when the n, robots pl-ace themselves uniformly spaced on a ring at a distance

ot infinite. Fur- C2 \ C1, with C; and C, the two circles centered in E and having radius {; and I3, respectively.
such that if the Since the enemy keeps moving, it is impossible for the robots to maintain a perfect solution.
towards it by at : In the following we will consider sub-optimal solution acceptable, as long as they are indefinitely

maintained once first reached at time ¢,. In this context, a sub-optimal solution is defined as
having each robot at a distance between [1 —€pand ly + g,.

robots; in other The constants £, and £, are also tied to the temporal features of the asynchronous behavior

a finite number : of the robots. In fact, the longer the time between two consecutive Looks of a robot, the more

mination of any outdated the snapshot taken of the other robots’ positions becomes, Hence, computationally

de, the distance slow robots will only be able to guarantee a sub-optimal solution for relatively large values of
€1,2, while faster robots will be able to better approximate the optimal solution

Jity. Finally, it is worthwhile to observe that the robots have no hope of reliably capturing an en-
emy faster than themselves Therefore, a necessary condition for the solvability of the problem

r to complete a : is that the enemy is slower than the slowest of the robots, ..

I: there exists a .
vy <minv,,,
i

where vy, denotes the linear velocity of k.

187

FUN with Algorithms

3. Algorithms

We present here two algorithms solving our problem using two different approaches, and com-
pare their performances in the next section. The first algorithm, that is a variation of the one
introduced in [8], tackles the problem from a strictly algorithmic perspective, while the second,
that is introduced here, relies on an heuristic.

An algorithm for our robots will have in input the positions of all the other robots at the time
of the last Look, and the position of the enemy, expressed as set of points in the local coordinate
system of the robot.

The algorithm must return as output the point p towards which the robots should move, also
expressed in the local coordinate system. (E .z, E.y) will denote the coordinates of E, and Me
the current position of the robot executing the algorithm, that is (0,0) in its local coordinate
system.

Note that a requirement of any capture algorithm is that the robots must have common
knowledge [9] of the unit of measure. This is needed to allow them to have a common un-
derstanding of constants [, and I3, and to agree on the distance they have to be to surround the

enemy.

3.1. The LAT Algorithm

Algorithm 1 (LAT) An algorithmic solution to the capture problem.
1. Chief := Closest Robot to E;
2. 1 Am Chief Then
3. |:=dist(Me, E);
4 target = (E.x- #&E.y- #1)
5. Else
6. ¢ =2m/n;
7
8
9

sortByAngle (Robots, E, Chief) ;
k :=myRank () ;
. @:=angle (MyX,[E, Chief));
100 oa:=k-o+06;
11: 1 := max(ly,dist(E, Chief)) - (1 +¢€);
12 target == (E.x + 1 cos(c),
13: Ey+1-sin(a));
14: C := Circle Centered in £ With Radius [;
15. If [Me, target] N C # @ Then
16: target :=NonIntersTarget (E, target,l);
17: Return target;

The idea of the algorithm is as follows. First, the closest robot to the enemy is determined
(call it chief). The chief simply moves towards or away from the enemy, trying to maintain 2

188

On the Efficient Capture of Dangerous Criminals

iches, and com-
ation of the one
‘hile the second,

sbots at the time
local coordinate

would move, also
:s of £, and Me
focal coordinate

st have common
> a common un-
> to surround the

Figure 1: Sideway stepping in NonIntersTarget () routine.

distance I from him (Lines 2-4). All the other robots aim to reach the vertices of the regular
n-gon inscribed in a circle centered in the observed enemy’s position and having as radius [such
that l; <! <[, (Lines 6-16). Once they reach such a position, the robots’ task is achieved.

- SR In order to reach an agreement on which vertex is assigned to each robot, the robots are
S sorted by routine sortByAngle () : in particular, the chief is considered to be the first robot
in the order; the other robots are sorted, in increasing order, according to the angle each of
them forms with the enemy and the chief (Line 7). At this point, the targets (i.e. the positions
they have to reach in order to complete the task) of the robots are computed: these are the
vertices of the regular polygon having characteristic angle ¢ = 27 /n, with the first vertex
being on the chief’s position, and inscribed in the circle C centered in E and having radius
! = max(ly, dist(E, Chief))-(1+¢) (Line 11). The target of the i-th robot in the ordering is the
i-th vertex of the polygon. Routine angle () in Line 9 returns the angle between the half-line
[E, Chief) and the z axis in the local coordinate system of the executing robot: this angle is
used to rotate the polygon to be formed so that the first vertex coincides with the Chief (Line 10).
The reason for the targets being computed with respect to C and not with respect to a smaller
. circle of radius exactly 1, is to reduce cases where another robot becomes chief, displacing the
previous chief: in fact, such displacements would introduce some instability in the algorithm,

~ slowing down convergence.

Also, it is possible that a robot r, to reach its target, crosses C. This too would intro-
duce instability in the algorithm, since in so doing r could come closer to E than the current
chief, thus becoming chief itself. To avoid this effect, Line 16 of the algorithm invokes routine
NonIntersTarget (), that forces r to take a route outside C , 80 that no crossing is possible:
4 r moves sideways until a straight path from its current position to its assigned target does not
:my is determined o ; - cross C (see the example depicted in Figure 1). In this routine, the constant p represents the
ying to maintain a s Q length of the sideway step. The robot will keep stepping sideway until necessary to reach its real

189

FUN with Algorithms

target without crossing C.

Routine NonIntersTarget (E, target,r’)
B = arctan(target.y/target.z);
v :=angle (Me, E, target) ;

If v > 7 Then
B = beta + w/2;
Else

B := beta — /2;
Return (p - cos(8), p - sin(3)).

3.2. The HEUR-S Algorithm

Algorithm 2 (HEUR-S) An heuristic solution to the capture problem
. | := dist(Me, E);
target := (E.x - l—_l—li, Ey- l—}h),
dr .= FE.x- l——l—tl;
dy:=E.y- l—_li‘-;
cord =2-1; -sin (%);
For All i = 1..n such that I am not r; Do
I' .= dist(Me, r3);
If !’ < cord Then
de:=dr+rix- l—’;ﬁ‘ﬂ;
dy = dy + 1.y - =
: Return (dz, dy);

—

R B AN o

—
O

The intuition behind Algorithm 2 is as follows. All robots are subject to a force, attracting
them towards the enemy if they are farther than {; from him, or repulsing them if they are nearer.
Moreover, when two robots come closer to each other than a certain distance cord, they repel
each other. The distance cord is computed as the side of an n-gon of radius !y (Line 5).

While the algorithm by itself does not coordinate the behavior of each robots with that of
its fellows, like Algorithm 1 does when establishing a shared assignment of robots to vertices,
it has as a lowest-energy equilibrium a configuration where the robots do evenly surround the
enemy. In this sense, the behavior of Algorithm 2 is truly emergent, in that no explicit and direct
solution of the problem: is provided in the code (see [1, 2]).

190

a force, attracting
if they are nearer.

: cord, they repel
(Line 5).

obots with that of
robots to vertices,
enly surround the
explicit and direct

P

On the Efficient Capture of Dangerous Criminals

Figure 2: Traces of the behavior of the robots according to (a) the LAT algorithm, and (b) the
HEUR-S algorithm. The camera is fixed on the enemy, that thus appears static.

4. Evaluation of the Algorithms

Experimental setting. To assess the effectiveness of the two algorithms, we ran a number of
tests using numerical simulations. Each run included a random3 number of robots between 2 and
50; the enemy and the robots were initially placed at random in a 256 x 256 units square. The
robots had their axes orientation and direction assigned randomly, and linear speed vy between
0.5 and 5 space units per time units,

The enemy’s course was determined as follows: at all times, the enemy would move forward
according to its linear velocity (determined randomly). At each move, with a probability of
1710, the enemy could start turning to its left or right, with random angular velocity less than its
maximum angular velocity. If already turning, with probability 1/100 the enemy could stop and
continue its course as a straight line (these parameters ensured curved, irregular trajectories).

As an example, Figures 2(a) and 2(b) show the traces of two run of the LAT and HEUR-S
algorithm, respectively.

Measures. To measure the convergence features of the algorithms, we measured two param-
eters. The first one, v,-, measures how many robots have reached the capture area, as a ratio of

3 all cases, random values were obtained from a linear distribution.

191

FUN with Algorithms

the total number of robots:
_ l{ri\ll < diSI(TZ', E) < lg}‘

r

n
The second one, ¢, measures the ratio between the largest angle between two angularly

adjacent robots in the capture area, and the optimal value of such an angle (27/n), i.e.

n - max; ;{riET;}
¢T = 9 ’
7r

with i # 7, such that there is no g in the region of the plane delimited by the half-lines [E,T;)
and [E,7;) intersected with the capture area. Values of ¢, close to 1 indicate that the robots
are close to the optimal capture configuration.

Results. In all cases the robots were able to surround the enemy, correctly solving the problem
(although with sub-optimal solutions, as described earlier). The results obtained by averaging
the measures above over 1000 random runs of our algorithms, with each run comprising 4000
Look-Compute—Move cycles are shown in Figures 3 and 4.

100% . . ; . . .
80% |)
@
&
2
s
® 60% i
2
B H
2 i
¥ i
3 40% |
k]
ES
20% |
v, for LAT —o
\— v, for HEUR-S -e-----
0% L ' 1 ' N R X
[} 500 1000 1500 2000 2500 3000 3500 7000

cycles

Figure 3: Average number of robots in the capture area (vr) in the simulations.

As can be observed in the figures, both algorithms exhibit reasonably fast and stable conver-
gence to a good solution. In particular, Algorithm 1 (LAT) sports a slower convergence of the
robots into the capture area than Algorithm 2 (HEUR-S), as shown in Figure 3. This is not sur-
prising, as LAT directs the robots directly towards their final positions, and may have to re-route
them laterally when NonIntersTarget () is called. In contrast, HEUR-S simply moves the

192

On the Efficient Capture of Dangerous Criminals

100%

80%

een two angularly

7r/n), Le. § 60%
&
£
g
5 40%
&
¢ half-lines [E,7;) :
:ate that the robots 20%
;
: @, for LAT
9, for HEUR-S ~eeeeee
0% . N . . s . "
0 500 1000 1500 2000 2500 3000 3500 4000

olving the problem
ained by averaging
n comprising 4000

cycles

Figure 4: Average relative largest angle between two angularly adjacent robots in the capture
area (¢,) in the simulations.

robots towards a position distant {; from the enemy, leaving their uniform distribution around
the enemy for a later stage (after the robots have entered the capture area). It is worthwhile to
notice that, while v, for LAT converges more slowly than that of HEUR-S, both algorithms have
essentially the same asymptotic performance, with all the robots reaching the capture area.

On the other hand, LAT behaves much better than HEUR-S in terms of ¢, (see Figure 4).
The more precise strategy employed by LAT allows the robots to better approximate the optimal
equidistribution around the enemy. Indeed, LAT reaches 90% of the optimal distribution, while
- HEUR-S stops at 72%.

5. Fault Tolerance

= An interesting aspect in the study of autonomous robots is the characterization of their behavior
4000 ‘

) the presence of faults. In this section, we analyze the behavior of our algorithms when a
particular type of faults — transient hang-ups of the robots, during which they stop moving —
can occur.

simulations. - This fault model is based on two parameters, namely, the probability of occurrence of a fault

' P7, and the probability of resuming the normal behavior p,.. Initially, all robots are in order. At
each cycle, with probability p £» arobot can enter its faulty state; in this case, it stops moving,
but continues executing its Look-Compute-Move cycle. A faulty robot can recover and switch
back to normal behavior with probability p,.

- It can be seen easily that the obliviousness of the robots in our model makes the system self-
stabilizing in the sense of Dijkstra [4] — that is, if after a certain number of cycles K faults no

st and stable conver-
¢ convergence of the
re 3. This is not sur-
may have to re-route
-S simply moves the

1 ol 1550k U1 LaPIUTG FANGD

% of oplimal 85cape

FUN with Algorithms

Plots of v, for various values of py and p,.

pr = 0.04
pr = 0.16
éz pf = 0.04
g pr = 0.04
py =004
pr = 0.01
(b)
Plots of ¢, for various values of py and pr.
= 0.04
T ey = 0.01 ~ 016
,, p = 0.04
ps = 0.01 == 0.04
=}ps = 0.01 = 0.04
}pr = 0.0025 e pr = 0.01
" 500 ;o:; 1500 2000 "o 500 ‘:: 1500 2000
© (D

Figure 5: Simulation results in the presence of faults. In all plots, the continuous line represents
the measures for LAT, while the dashed line represents the measures for HEUR-S.

longer happen, the robots will solve their task correctly. Indeed, in such a setting we can imagine
the configuration of the robots at cycle K as the starting one, and since our algorithms solve the
problem starting from any arbitrary configuration, the self-stabilization property trivially holds.

Hence, we focus here on the performances of the algorithms when faults occur indefinitely.
Figures 5(a) and 5(b) show the vy measured for the two algorithms with various values for ps
and p,. As can be observed, the HEUR-S algorithm consistently beats the LAT algorithm under
this measure. On the contrary, LAT performs better, even in the presence of faults, according to
the ¢, measure, as can be observed in Figures 5(c) and 5(d).

It should be noted that, on average, the robots will be in order for p,-/(ps + pr) of the time,
and faulty in the remaining py /(ps -+p;) of the time. Thus, we can expect the optimat v and ¢r
to be reduced accordingly: for example, if py = p,, we can expect half the robots to be faulty

194

N ops =004
R S
Nar =0.01
}ﬁ,’ =0.04

—— A
Y py = 0.04
[| S it

pr = 0.04
] 0.04
pr = 0.01

wous line represents
IUR-S.

iting we can imagine
algorithms solve the
perty trivially holds.

ts occur indefinitely.
rarious values for py
_AT algorithm under
f faults, according to

ps + pr) of the time,
he optimal v, and ¢,
1e robots to be faulty

On the Efficient Capture of Dangerous Criminals

at any given time, and thus the measured vr and ¢y to be at most 0.5 (and indeed, this behavior
can be observed in Figure 5(c) for py = p, = 0.01, after the initial transient due to the fact that
no robot is faulty at the start of the simulation). o

This model, however, is not totally accurate, since the robots have a certain “leeway” due to
several factors: first, the capture area can be large (i.e., [>> [1); second, the robots are faster
than the enemy, thus they can make up for any delay due to a fault with their higher speed. In
particular, for higher values of p, the time spent in a faulty state can be short enough that the
effects of the fault are hidden by the “leeway” effect described above. For example, this is what
happens in Figure 5(b) for Py = pr = 0.04, where the HEUR-S algorithm attains v,. = 60%
even if our reference “optimum” value would be 50%.

The data from our simulations seem to indicate that, in general, the HEUR-S algorithm is
more robust than the LAT algorithm in the presence of faults, as far as vy is concerned. In other
words, HEUR-S comes closer to the best possible performance with the given portion of faulty
robots.

Both algorithms behave much worse w.r.t. @r. In fact, in no case they come close to the
reference optimum value. For example, as can be observed in Figure 5(c) for p 7 = pr = 0.01,
the value measured for @, is around 15%, compared to a reference optimum of 50%. This is not
surprising, since we do not have for ¢r any leeway comparable to that provided for v, by the
range (l1,l). In ¢, any deviation from the “right” position causes an immediate drop of ¢,..

6. Conclusions

In this paper we studied the capture problem: a number of robotic robots that patrol a restricted
area have to capture an enemy that sneaked inside the area. The robots are non-communicating,
asynchronous, anonymous and memoryless vehicles that can freely moves on a plane; the enemy
is an external agent whose behavior is not known to the robots in advance.

We have provided two algorithms to solve the capture problem, that only assumes that the
robots share a common unit of distance, but need not to have a common sense of direction (i.e.,
a common coordinate system).

Indeed, the algorithms we proposed exhibits remarkable robustness, and numeric simula-
tions indicate that the enemy is efficiently captured in a relatively short time and kept surrounded
after that, as desired. The solution we proposed is self-stabilizing [4, 5]. In particular, any ex-
ternal intervention (e.g., if one or more of the robots are stopped, slowed down, knocked out, or
simply faulty) does not prevent the completion of the task.

Several variants of the algorithms we have presented are possible. In particular, both algo-
rithms can be made to react dynamically to the detection of faults in their fellows, either by
direct observation, or by considering as potentially faulty all the robots that are outside the cap-
ture area. These changes could improve the behavior of the robots when large number of units
at a time is faulty (e.g., p; = 0.04 and p, = 0.01 in Figures 5(b) and 5(d)).

Another aspect worth studying is which kind of algorithms can be used when a bounded
amount of memory is available to the robots, or when their observational capability is reduced
(e.g., obstructed by other robots, or limited by distance). Moreover, these aspects would com-

195

bine

i1

{2

{3]

(4]

[5)
(6]

M

[8]

1

[10]

{11]

(12}

[13]

FUN with Algorithms

with the presence of faults (e.g., can we assume that robots outside of our field of vision

are faulty?), giving rise to several complex settings. We intend to investigate these issues as part
of our future work.

References

R. C. Arkin. Motor Schema-Based Mobile Robot Navigation. International Journal of Robotics
Research, 8(4):92-112, 1989.

T. Balch and R. C. Arkin. Behavior-based Formation Control for Multi-robot Teams. IEEE Transac-
tion on Robotics and Automation, 14(6), 1998.

L. Barridre, P. Flocchini, P. Fraigniaud, and N. Santoro. Capture of an Intruder by Mobile Agents. In
14" Symposium on Parallel Algorithms and Architectures 2002 (SPAA 2002), 2002.

E. W. Dijkstra. Self-stabilizing Systems in Spite of Distributed Control. Communication of the ACM,
17(11):643-644, November 1974.

S. Dolev. Self-Stabilization. The MIT Press, 2000.

P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Distributed Coordination of a Set of Au-
tonomous Mobile Robots. In IEEE Intelligent Vehicle Symposium (IV 2000), pages 480-485, 2000.
1th

N. Foukia, J. G. Hulaas, and J. Harms. Intrusion Detection with Mobile Agents. In 11** Annual

Conference of the Internet Society (INET 2001), 2001.

V. Gervasi and G. Prencipe. Robotic Cops: The Intruder Problem. In 2003 IEEE Conference on
Systems, Man and Cybernetics (SMC 2003), pages 2284-2289, October 2003. Washington D.C,,
USA.

J. Halpern and Y. Moses. Knowledge and Common Knowledge in a Distributed Environment. In
Proceedings of the 37¢ ACM Symposium on Principles of Distributed Computing, pages 50-61,1984.

Y. Oasa, L. Suzuki, and M. Yamashita. A Robust Distributed Convergence Algorithm for Autonomous
Mobile Robots. In IEEE International Conference on Systems, Man and Cybernetics, pages 287-292,
October 1997.

G. Prencipe. CORDA!: Distributed Coordination of a Set of Autonomous Mobile Robots. In Pro-
ceedings Fourth European Research Seminar on Advances in Distributed Systems (ERSADS 2001),
pages 185-190, May 2001.

L Suzuki and M. Yamashita. Searching for a Mobile Intruder in a Polygonal Region. Siam Journal
on Computing, 21(5):868-888, 1992.

M. Yamashita, H. Umemoto, L Suzuki, and T. Kameda. Searching for Mobile Intruders in a Polygonal
Region by a Group of Mobile Searchers. Algorithmica, 31:208-236, 2001.

