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Abstract – In this paper we present a self-stabilizing
algorithm for the intruder problem. The problem can
be formulated as follows: an enemy unit, or intruder,
is trying to sneak through a field patrolled by an ar-
bitrary number of friendly autonomous (i.e. robotic)
units. These units must reach the intruder and block
it by surrounding it.

Our solution to this problem, provided as an algorithm
for the autonomous patrolling units, makes minimal as-
sumptions on their capabilities. In particular, we as-
sume they are completely asynchronous, and moreover
that they have no observable identities, no memory, and
no means to explicitly communicate with each other.
Each unit needs only to be capable of observing the cur-
rent position of its fellows and of the intruder.

All these features, while making the task harder, give
to the algorithm the nice property of self-stabilization,
thus improving its robustness. For example, if any unit
is knocked out, all the others automatically adjust their
behavior, in order to still complete the task. By concen-
trating on extremely simple units, we are also able to
investigate which capabilities are really needed to solve
this problem, with obvious cost benefits (especially if the
units are deployed in a hostile environment).

In the paper, we first present a computational model
for our robotic “cops”, followed by the description of the
algorithm we propose. We also show results of computer
simulations, providing quantitative measures on the ef-
ficiency of the algorithm.

1 Introduction

Consider a restricted area patrolled by a set of robotic
cops. Their task is to capture any hostile unit, or in-
truder, that could possibly enter the zone under surveil-
lance: the cops consider their task done when they sur-
round the intruder, so that it has no means to escape.
This problem can arise in a number of real-world situ-
ations. For example, sensible areas where little or no
traffic is expected, like airfields runways and aprons,
or logistic compounds, could be effectively patrolled by
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robotic units, thus leaving humans free to concentrate
on more high-level tasks.

Another possible setting is the automated patrolling
of hostile territory, for example in military operations.
In this case, the robots must be truly autonomous — the
problem must be solved without relying on any kind of
on-site infrastructure. Also, robots could conceivably
be knocked off by opponents, and radio communica-
tions among them could be intercepted (thus revealing
their presence) or disrupted (thus making them useless).
Hence, a good solution to the intruder problem must do
away with explicit communication, relying instead only
on the intrinsic capabilities of the robots; it must as-
sume no external help, and should be able to adapt to
a varying (i.e., decreasing) number of robots.

This problem has been extensively explored in a
graph-oriented setting [1, 5]: the robots have to patrol
an area that is described as a graph; they can move
only from node to node, following the edges connecting
them. In the graph there is also an intruder robot, and
the patrolling units must surround him: in particular,
they have to occupy all the neighborhood of the node
where the intruder is. In contrast to this kind of study,
in our approach the patrolled area is modeled as a two
dimensional plane where our agents, as well as the in-
truder, can freely move.

A related problem to ours has been analyzed in [11,
12], where the robots and the intruder could move
strictly inside a polygonal area (including its border):
each searcher robot could hold a flashlight that emits
rays of light whose direction can be changed continu-
ously. In their model, each cop can only see points lying
on one of the rays. The goal of the robots is to detect
the presence of the intruder. This is different from our
problem, in that we assume the cops can always see the
intruder, but we ask them to surround him rather than
just detecting him.

Following the motivations that prompted previous
studies ([4, 8, 9]), in this paper we adopt extremely sim-
ple units to study the problem: the cops are completely
anonymous, identical (no identities are used during the
computation), asynchronous, memoryless, and with no
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means of direct communication. We describe an algo-
rithm, the same for all the cops, that allows them to
surround the intruder, limiting his movement ability,
and to keep him surrounded until some external event
concludes the pursuit. Moreover, we present results of
computer simulations that show the effectiveness of the
proposed solution.

In Section 2 we introduce the computational model
we adopt for our cops. In Section 3 we provide a formal
definition of the intruder problem, and describe our al-
gorithm to solve it. Section 4 presents a discussion on
the evaluation of the algorithm, and provides the results
of numerical simulations of the same. Some conclusions
complete the paper.

2 The Computational Model
We consider1 a system of autonomous mobile robots

(cops) that have to patrol a given area, modeled as an in-
finite plane. A distinguished kind of agent, the intruder,
is also on the plane. The intruder acts independently
from the cops. The goal of the cops is to surround the
intruder, while keeping at a certain distance from him,
in order to reduce the leeway of the intruder. In partic-
ular, the cops must place themselves as to minimize the
maximum distance that the intruder can place between
himself and the nearest cop along any escape route.

Each cop is capable of observing its surrounding, com-
puting a destination based on what it observed, and
moving towards the computed destination; hence it per-
forms an (endless) cycle of observing, computing, and
moving.

Each cop has its own local view of the world. This
view includes a local Cartesian coordinate system hav-
ing an origin (that without losing generality we can as-
sume to be the position of the robot), a unit of length,
and the directions of two coordinate axes, together with
their orientations, identified as the positive and nega-
tive sides of the axes. Notice that there is no agreement
among the cops on the chirality of the respective coor-
dinate systems (i.e., the robots do not share the same
concept of where North, East, South, and West are).

The cops are modeled as units with computational
capabilities, which are able to freely move in the plane.
They are equipped with sensors that let each robot ob-
serve the positions of the others with respect to their
local coordinate system. Each cop is viewed as a point,
and can see all the other fellow cops in the patrolled
area, as well as the intruder.

The cops act totally independently and asyn-
chronously from each other, and do not rely on any cen-
tralized directives, nor on any common notion of time.
Furthermore, they are oblivious, meaning that they do

1The model we adopt is based on the Corda model described
in [10]. It has been adapted by taking into account the existence
of a distinguished agent, the intruder.

not remember any previous observation nor computa-
tions performed in the previous steps. Note that this
feature, while making the capture task harder, gives to
the algorithms designed in this model the nice property
of self-stabilization [4]: in fact, every decision taken by a
cop cannot depend on what happened in the system pre-
viously, and hence cannot be based on corrupted data
stored in its local memory.

The cops are anonymous, meaning that they are a
priori indistinguishable by their appearances, and they
do not have any kind of identifiers that can be used dur-
ing the computation. They can only distinguish the in-
truder from a fellow cop. Moreover, there are no explicit
direct means of communication; hence the only way they
have to acquire information from the fellow cops is by
observing their positions. Note that the obliviousness
of the cops also renders the observations weaker. In
fact, nothing observed in the past can be remembered,
hence used in order to let the cops organize themselves
to accomplish their task.

They execute the same algorithm, which takes as
input the observed positions, and returns a destina-
tion point towards which the executing cop moves. A
cop, asynchronously and independently from the other
robots, (i) observes the environment (Look), by taking a
snapshot of the positions of all other cops and of the in-
truder with respect to its local coordinate system (since
each cop is viewed as a point, its position in the plane is
given by its coordinates); (ii) It computes a destination
point p according to its oblivious algorithm (Compute);
the local computation is based only on the current (i.e.,
at the time of the previous Look) locations observed by
the robot. (iii) Finally, the cop moves an unpredictable
amount of space towards p (Move), which is however
assumed to be neither infinite, nor infinitesimally small
(see Assumption A2 below), and goes back to the Look
state.

The life of a cop consists in repeating an endless cycle
of states (i)–(iii). Moreover, the only assumptions made
in the model are the following:

(A1) The time for a robot to complete a Look-
Compute-Move cycle is neither infinite nor infinites-
imally small (i.e., is finite and bounded from be-
low).

(A2) For each cop f , there exists an arbitrary (small)
constant δf > 0, representing the minimum dis-
tance it travels in the Move state; if the computed
destination point is closer than δf , f will reach it.

(A3) Since we need to model robots that “continu-
ously” move, we assume that the time spent in
looking and computing is negligible compared to
the time spent in moving.

Summarizing, each cop moves totally independently
and asynchronously from the others, not having any
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bound on the time it needs to perform a Move, hence
a cycle (it has to be, however, finite by Assumption
A1); therefore, a robot can be seen while it is moving;
in addition, they are oblivious, and anonymous. More-
over, no one of the cops knows in advance the path that
the intruder will follow, nor can it derive it at run-time
(e.g., by observing the position of the intruder at differ-
ent times or his heading in order to estimate the current
direction). Their only task is to observe where the in-
truder and the other cops are, reach an agreement —
without communicating — on how to surround the in-
truder, and move to positions such that the intruder is
kept in a confined area.

3 The Problem and the Algo-

rithm

The intruder problem. The problem is formally de-
fined as follows. Given f1, . . . , fn cops and the intruder
I, let C1 and C2 be the two circles centered in I and hav-
ing radius r1 and r2, respectively, where r1 and r2 are
given constants of the problem, with r2 > r1. The cops
must place themselves in the capture area K, defined as
follows:

K = C2 \ C1.

In other words, the cops have to reach positions in the
plane such that

∀ 1 ≤ i ≤ n, r1 ≤ dist(fi, I ) ≤ r2, (1)

where dist(a, b) denotes the Euclidean distance between
a and b.

Moreover, the cops must evenly foreclose any escape
route to the intruder. In formal terms, let p be a point
on the plane such that dist(I , p) > r2 (i.e., p lies outside
of C2, and hence outside of K). An escape route ep for
I to p is the segment [I , p]. The capture distance cep

for
ep is

cep
= min

1≤i≤n
dist(ep, fi),

where we have extended dist() to segments in the usual
way. Intuitively, the capture distance cep

is the min-
imum distance that the intruder would place between
himself and the nearest cop, if he tried to escape K along
ep. Hence, the goal of the cops is to place themselves
such that

max
p

cep
is minimal. (2)

It is easy to see that Condition (2) is satisfied when
the cops place themselves spaced evenly on the inner
border of the region allowed by Condition (1), thus
forming a regular polygon of characteristic angle φ =
2π/n and radius r1 (refer to Figure 1).

I

fj

cep

fi p

r2

r1
φ

ep

Figure 1: The geometric layout of the problem.

Limitations. Since the intruder keeps moving, it is
impossible for the cops to maintain a perfect solution.
In the following we will consider sub-optimal solution
acceptable, as long as they are indefinitely maintained
once first reached at time t0. In this context a sub-
optimal solution is defined as having, at each time t >
t0,

∀ 1 ≤ i ≤ n, r1 − ε1 ≤ dist(fi, I ) ≤ r2 + ε2,

and maxp cep

c̃
≤ 1 + ε3,

where c̃ is the minimal value from Condition (2) above.
The various constants ε1,2,3 are also tied to the tem-

poral features of the asynchronous behavior of the cops.
In fact, the longer the time between two consecutive
Looks of a cop, the more outdated the snapshot taken
of the other agents’ positions becomes. Hence, compu-
tationally slow cops will only be able to guarantee a
sub-optimal solution for relatively large values of ε1,2,3,
while faster cops will be able to better approximate the
optimal solution 2.

Finally, it is worthwhile to observe that the cops have
no hope of reliably capturing an intruder faster than
themselves. Therefore, a necessary condition for the
solvability of the problem is that the intruder is slower
than the slowest of the cops, i.e.

vI < min
i

vfi
,

where vk denotes the linear velocity of k.

The algorithm. As discussed above, the life cycle of
each robot consists in an endless loop of Look, Compute,
and Move phases. Since Look and Move are fixed, and
do not depend on the particular problem that is being
considered, the behavior of the cops is completely spec-
ified by defining an algorithm for the Compute phase.

2Space constraints prevent us from providing here a complete
formal treatment of this problem. See [6] for a full treatment of
a related problem.
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In our case, the algorithm has in input the positions
of all the other cops at the time of the last Look, and
the position of the intruder, expressed as set of points
in the local coordinate system of the cop. In particu-
lar, (I .x, I .y) will denote the coordinates of I , and Me
the current position of the cop executing the algorithm,
that is (0, 0) in its local coordinate system.

The algorithm must return as output the point q to-
wards which the robots should move, also expressed
in the local coordinate system. This is denoted by
moveTo(q) in the code below.

Algorithm 1 The Intruder Capture Algorithm

Chief := Closest Cop to I;
If I Am Chief Then

If dist(Me, I ) > r1 Then
moveTo(I).

5: Else
moveTo(Me).

Else
r := max(r1, dist(I ,Chief ));
sortByAngle(Cops, I ,Chief );

10: k :=myRank();
φ = 2π/n;
θ :=angle([I ,Chief ),MyX );
α := k · φ + θ;
r′ := r · (1 + ε);

15: target := (I .x + r′ · cos(α),
I .y + r′ · sin(α));

C := Circle Centered in I ,
With Radius r′;

If [Me, target ] ∩ C 6= ∅ Then
20: target :=NonIntersTarget(I , target, r′);

moveTo(target).

The idea of the algorithm is as follows. First, the clos-
est cop to the intruder is located (call it chief). The chief
simply moves towards the intruder, trying to maintain
a distance r1 from him (Lines 2–6). All the other cops
aim to reach the vertices of the regular n-gon inscribed
in the circle Cr of radius r = max(r1, dist(I ,Chief )) and
centered in the observed intruder’s position. Once they
reach such vertices, and r1 ≤ r ≤ r2, the cops’ task
is achieved. In order to reach an agreement on which
vertex is assigned to each cop, the cops are sorted by
routine sortByAngle(): in particular, the chief is con-
sidered to be the first cop in the order; the other cops
are sorted, in increasing order, according to the angle
each of them forms with the intruder and the chief (Line
9). At this point, the targets (i.e. the positions they
have to reach in order to complete the task) of the cops
are computed (Line 15): these are the vertices of the
regular polygon having characteristic angle φ = 2π/n,
with the first vertex being on the chief’s position, and
inscribed in the circle C centered in I and having radius
r′ = r(1 + ε) (Line 14). The target of the i-th cop in

I

target

target ′

fj

Chief

Figure 2: Sideway stepping in NonIntersTarget() rou-
tine.

the ordering is the i-th vertex of the polygon (the rank
of the executing cop is returned by routine myRank() in
Line 10). Routine angle() in Line 12 returns the angle
between the half-line [I ,Chief ) and the x axis in the lo-
cal coordinate system of the executing cop: this angle is
used to rotate the polygon to be formed so that the first
vertex coincides with the Chief (Line 13). The reason
for the targets being computed with respect to C and
not with respect to Cr, is to reduce cases where another
cop becomes chief, displacing the previous chief: in fact,
such displacements would introduce some instability in
the algorithm, slowing down convergence.

Also, it is possible that a cop f , to reach its target,
crosses C. This too would introduce instability in the
algorithm, since in so doing f could come closer to I
than the current chief, thus becoming chief itself. To
avoid this effect, Line 20 of the algorithm invokes routine
NonIntersTarget(), that forces f to take a route out-
side C, so that no crossing is possible: f moves sideways
until a straight path from its current position to its as-
signed target does not cross C (see the example depicted
in Figure 2). In this routine, the constant δ represents
the length of the sideway step, and (target .x, target .y)
the coordinates of the target given in input. The cop
will keep stepping sideway until necessary to reach its
real target without crossing C.

Routine NonIntersTarget(I , target, r′)

β := arctan(target .y/target .x);
γ :=angle(Me, I , target);
If γ > π Then

β := beta + π/2;
Else

β := beta− π/2;
target := (δ · cos(β), δ · sin(β));
Return target .

As a final remark, note that a requirement of the in-
truder algorithm is that the cops must have common
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knowledge [7] of the unit of measure. This is needed
to allow them to have a common understanding of con-
stants r1 and r2, and to agree on the distance they have
to be to surround the intruder: in fact, the algorithm
does not specify any strategy for deriving a shared unit
of measure that can be maintained invariant at each cy-
cle (remember that in our model the cops are completely
oblivious).

4 Evaluation of the Algorithm
Experimental setting. To assess the effectiveness of
the algorithm, we ran a number of tests using numeri-
cal simulations. Each run included a random3 number
of cops between 2 and 50; the intruder and the cops were
initially placed at random in a 256 × 256 units square.
The cops had their axes orientation and direction as-
signed randomly, and linear speed vf between 0.5 and 5
space units per time units.

The intruder’s course was determined as follows: at
all times, the intruder would move forward according to
its linear velocity. At each move, with a probability of
1/10, the intruder could start turning to its left or right,
with random angular velocity less than its maximum
angular velocity. If already turning, with probability
1/100 the intruder could stop and continue its course as
a straight line (these parameters ensured curved, irreg-
ular trajectories).

Measures. To measure the convergence features of
the algorithm, we measured three parameters. The first
one, νr, measures how many cops have reached the cap-
ture area, as a ratio of the total number of cops:

νr =
|{fi|r1 ≤ dist(fi, I) ≤ r2}|

n
.

The second one, φa, measures the largest angle be-
tween two angularly adjacent cops in the capture area,
i.e.

φa = max
i,j

{fiÎfj},

with i 6= j, such that there is no fk, i 6= k 6= j, in the
region of the plane delimited by the half-lines [I, fi) and
[I, fj) intersected with the capture area. Of course, a
given value of φa can be considered “good” or “bad”,
depending on the number of available cops n. In fact,
the optimum φa for n cops is 2π/n. To express this rel-
ative degree of optimality, we introduce a third measure
φr, as a ratio between φa and its optimal value, that is

φr =
n · φa

2π
.

Values of φr close to 1 indicate that the cops are close
to the optimal capture configuration.

3In all cases, random values were obtained from a linear dis-
tribution.
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Figure 3: (a) Average number of cops in the capture
area (νr) in the simulations. (b) Average width of the
largest angle between two angularly adjacent cops in
the capture area (φa) in the simulations. (c) Average
relative largest angle between two angularly adjacent
cops in the capture area (φr) in the simulations.
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Results. In all cases the cops were able to surround
the intruder, correctly solving the problem (although
with sub-optimal solutions, as described earlier). The
results obtained by averaging the measures above over
fifty random runs of our algorithm, with each run com-
prising 2300 Look–Compute–Move cycles, are shown in
Figures 3.(a)–(c).

As can be observed in the figures, the algorithm ex-
hibits reasonably fast and stable convergence to a good
solution.

5 Conclusions

In this paper we studied the intruder problem: a num-
ber of robotic cops that patrol a restricted area have to
capture an intruder that sneaked inside the area. The
cops are non-communicating, asynchronous, anonymous
and memoryless vehicles that can freely moves on a
plane; the intruder is an external agent whose behav-
ior is not known to the cops in advance.

We have provided an algorithm to solve the intruder
problem, that only assumes that the cops share a com-
mon unit of distance, but need not to have a common
sense of direction (i.e., a common coordinate system).

Indeed, the algorithm we proposed exhibits remark-
able robustness, and numeric simulations indicate that
the intruder is efficiently captured in a relatively short
time and kept surrounded after that, as desired. The
solution we proposed is self-stabilizing [2, 3]. In par-
ticular, any external intervention (e.g., if one or more
of the cops are stopped, slowed down, knocked out, or
simply faulty) does not prevent the completion of the
task.

Real-world applications can usually count on a richer
equipment: more powerful sensors to provide more in-
formation about the environment, on-board memory to
store past observations and plans for the future, more
sophisticated actuators, communication devices. We
have proved that certain tasks can be accomplished
without such a rich equipment. From a theoretical
point of view, this clarifies the relationship between
computability and solvability, and establishes some fun-
damental limit to what can be achieved. From a practi-
cal point of view, this allows simpler, more robust and
economically advantageous units to be used instead of
costly, complex and less fault-tolerant units for these
tasks. Furthermore, their very simplicity ensures that
the cops can be deployed also in hostile territories, since
they do not rely on any infrastructure.
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