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Abstract. The Rendezvous of anonymous mobile agents in a anonymous network
is an intensively studied problem; it calls for k anonymous, mobile agents to gather
in the same site. We study this problem when in the network there is a black hole:
a stationary process located at a node that destroys any incoming agent without
leaving any trace. The presence of the black hole makes it clearly impossible for all
agents to rendezvous. So, the research concern is to determine how many agents
can gather and under what conditions.
In this paper we consider k anonymous, asynchronous mobile agents in an anony-
mous ring of size n with a black hole; the agents are aware of the existence, but not
of the location of such a danger. We study the rendezvous problem in this setting
and establish a complete characterization of the conditions under which the prob-
lem can be solved. In particular, we determine the maximum number of agents
that can be guaranteed to gather in the same location depending on whether k or
n is unknown (at least one must be known for any non-trivial rendezvous). These
results are tight: in each case, rendezvous with one more agent is impossible.
All our possibility proofs are constructive: we provide mobile agents protocols
that allow the agents to rendezvous or near-gather under the specified conditions.
The analysis of the time costs of these protocols show that they are optimal.
Our rendezvous protocol for the case when k is unknown is also a solution for the
black hole location problem. Interestingly, its bounded time complexity is Θ(n);
this is a significant improvement over the O(n log n) bounded time complexity
of the existing protocols for the same case.

Keywords: Mobile Agents, RendezVous, Gathering, Black Hole, Harmful Host,
Ring Network, Asynchronous, Anonymous, Distributed Computing.

1 Introduction

In networked systems that support autonomous mobile agents, a main concern is how
to develop efficient agent-based system protocols; that is, to design protocols that will
allow a team of rather “simple” agents to cooperatively perform complex system tasks.A
main approach to reach this goal is to break a complex task down into more elementary
operations. Example of these primitive operations are wakeup, traversal, gathering,
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election. The coordination of the agents necessary to perform these operations is not
necessarily simple or easy to achieve. In fact, the computational problems related to these
operations are definitely non trivial, and a great deal of theoretical research is devoted
to the study of conditions for the solvability of these problems and to the discovery of
efficient algorithmic solutions; e.g., see [1,2,3,4].

At an abstract level, these environments, which we shall call distributed mobile
systems, can be described as a collection E of autonomous mobile entities located in a
graph G. Depending on the context, the entities are sometimes called robots or agents;
in the following, we use the latter. The agents have computing capabilities and bounded
storage, execute the same protocol, and can move from node to neighboring node. They
are asynchronous, in the sense that every action they perform takes a finite but otherwise
unpredictable amount of time. Each node of the network, also called host, provides a
storage area called whiteboard for incoming agents to communicate and compute, and
its access is held in fair mutual exclusion. The research concern is on determining what
tasks can be performed by such entities, under what conditions, and at what cost.

In this paper, we focus on a fundamental task in distributed mobile computing,
rendezvous in the simplest symmetric topology: the ring network. We will consider its
solution in presence of a severe security threat: a black hole, a network site where a
harmful process destroys all incoming agents without leaving a trace.

1.1 Rendezvous

The rendezvous problem consists in having all the agents gather at the same node; upon
arriving there, each agent terminally sets its variable to arrived; there is no a priori
restriction on which node will become the rendezvous point.

This problem (sometimes called gathering, point-formation, or homing) is a funda-
mental one in distributed mobile computing both with agents in graphs and with robots
in the plane.

In the case of agents in the graph, the rendezvous problem has been extensively inves-
tigated focusing on more limited settings (e.g., without whiteboards) with two agents;
e.g., see [5,6,7,3,8,9,10]. Almost from the start it became obvious that the possibility
(and difficulty) of a solution is related to the possibility (and difficulty) to find or create
an asymmetry in anonymous and symmetric settings, like the one considered here; to
break symmetry in the problem, and thus ensure rendezvous solutions, researchers have
used randomization (e.g., [6]), or different deterministic protocols for the two agents
(e.g., [10]), or indistinguishable tokens [9]. The case of more than two agents has been
investigated in [11,12,13], with only [11] providing a fully deterministic solutions for
anonymous ring networks.

Let us stress that all these investigations assume synchronous agents and this as-
sumption is crucial for the correctness of their solutions.

In contrast, in our setting, both nodes and agents, besides being anonymous, are also
fully asynchronous. The only known results for this setting are about the relationship be-
tween sense of direction and possibility of rendezvous [3]; interestingly, the link between
rendezvous and symmetry-breaking is even more clear: rendezvous is in fact equivalent
to the election problem [3].
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1.2 Black Hole Location

Among the severe security threats faced in systems supporting mobile agents, a particu-
larly troublesome one is a harmful host; that is, the presence at a network site of harmful
stationary processes. The problem posed by the presence of a harmful host has been in-
tensively studied from a programming point of view (e.g., see [14,15,16]), and recently
also from an algorithmic prospective [17,18]. Obviously, the first step in any solution
to such a problem must be to identify, if possible, the harmful host; i.e., to determine
and report its location. Depending on the nature of the danger, the task to identify the
harmful host might be difficult, if not impossible, to perform.

A particularly harmful host is a black hole: a host that disposes of visiting agents upon
their arrival, leaving no observable trace of such a destruction. The task is to develop a
mobile agents protocol to determine and report the location of the black hole; the task
is completed if, within finite time, at least one agent survives and knows the location
of the black hole. The research concern is to determine under what conditions and at
what cost mobile agents can successfully accomplish this task, called the black hole
location problem. Note that this type of highly harmful host is not rare; for example, the
undetectable crash failure of a site in a asynchronous network transforms that site into
a black hole.

The black hole location problem has been investigated focusing on identifying con-
ditions for its solvability and determining the smallest number of agents needed for its
solution [17,18,19]. In particular, a complete characterization has been provided for ring
networks [17].

1.3 Our Contributions

In this paper we consider the rendezvous problem in a more difficult setting: k asyn-
chronous anonymous agents dispersed in a totally symmetric ring network of n anony-
mous sites, one of which is a black hole.

Clearly it is impossible for all agents to gather since an adversary (i.e., a bad sched-
uler) can immediately direct some agents towards the black hole. So, the research concern
is to determine how many agents can gather. We study this problem and establish a com-
plete characterization of the conditions under which the problem can be solved. The
possibility results are summarized in the table shown in Figure 1; these results are tight:
in each case, rendezvous with one more agent is impossible. It is interesting to observe
that at least one of k and n must be known to the agents; however, knowledge of both is
not necessary.

Some of these results are unexpected. For example, in an oriented ring all but one
agents can indeed rendezvous even if the ring size n is not known, a condition that
makes black hole location impossible [17]. In an unoriented ring, at most k − 2 agents
can rendezvous; surprisingly, if they can not, there is no guarantee that more that (k−2)/2
will. It is however always possible to bring all k − 2 within distance 1 from each other.

All our possibility proofs are constructive: we provide mobile agents protocols that
allow the agents to rendezvous or near-gather under the specified conditions.

Our rendezvous protocol, for the case when k is unknown, is also a solution for the
black hole location problem. Interestingly, its bounded time complexity is O(n); this is



Multiple Agents RendezVous in a Ring 37

n unknown, k known n known, k unknown

ORIENTED ∀k RV (k − 1) ∀k RV (k − 2)

k odd RV (k − 2) k odd or n even RV (k − 2)
UNORIENTED k even RV ( k−2

2 ) k even and n odd RV ( k−2
2 )

∀k G(k − 2, 1) ∀k G(k − 2, 1)

Fig. 1. Summary of possibility results.

a significant improvement over the O(n log n) bounded time complexity of the existing
protocols for the same case [17].

Due to space limitation all the proofs are omitted, and can be found at
http://sbrinz.di.unipi.it/˜peppe/prencipeLNCSopodis03.pdf.

2 Definitions, Basic Properties, and Techniques

2.1 The Framework

The network environment is a ring R of n anonymous (i.e., identical) nodes. Each node
has two ports, labelled left and right; if this labelling is globally consistent, the ring
will be said to be oriented, unoriented otherwise. Each node has a bounded amount of
storage, called whiteboard.

In this network there is a set a1, . . . , ak of k anonymous (i.e., identical) mobile agents.
The agents can move from node to neighboring node in R, have computing capabilities
and bounded storage, obey the same set of behavioral rules (the “protocol”), and all their
actions (e.g., computation, movement, etc) take a finite but otherwise unpredictable
amount of time (i.e., they are asynchronous). Agents communicate by reading from and
writing on the whiteboards; access to a whiteboard is done in mutual exclusion. The
agents execute a protocol (the same for all agents) that specifies the computational and
navigational steps. Initially, each agent is placed at a distinct node, called its homebase,
and has a predefined state variable set to available. Let us denote by xi the homebase of
agent ai. Each homebase is initially marked by the corresponding agent.

The agents are aware of the fact that in the network there is a black hole (Bh);
its location is however unknown. In this environment, we are going to consider the
Rendezvous problem and the Near-Gathering problem defined below.

The Rendezvous problem RV (p) consists in having at least p ≤ k agents gathering in
the same site. There is no a priori restriction on which node will become the rendezvous
point. Upon recognizing the gathering point, an agent terminally sets its variable to
arrived. We consider a solution algorithm terminated when at least p agents become
arrived (explicit termination).

The Near-Gathering problem G(p, d) consists in having at least p agents within
distance d from each other. As for the Rendezvous problem we consider the algorithm
terminated when at least p agents know that they are within distance d from each other
and change their state to a terminal state. Clearly, G(p, 0) = RV (p).
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The efficiency of a solution protocol is obviously first and foremost measured in the
size of the solution, i.e. the number of agents that the algorithm will make rendezvous
at the same location. A secondary but important cost measure is the amount of time
elapsed from the beginning to the termination of the algorithm. Since the agents are
asynchronous, “real” time cannot be measured. We will use the traditional measure of
bounded time, where it is assumed that the traversal of a link takes at most one time unit.
During the computation some agents will disappear in the black hole, some will survive
and eventually gather; for the purposes of bounded time complexity we will consider that
the overall computation starts (i.e., we will start to count time) when the first surviving
agent starts the algorithm.

2.2 Cautious Walk

In the following we describe a basic tool, first introduced in [17], that we will use in all
our protocols to minimize the number of agents that disappear in the back hole.

In our algorithms, the ports (corresponding to the incident links) of a node can be
classified as (a) unexplored – if no agent has moved across this port, (b) safe – if an agent
arrived via this port or (c) active – if an agent departed via this port, but no agent has
arrived via it. Clearly, both unexplored and active links are dangerous in that they might
lead to the black hole; the difference is that active links are being traversed, so there is in
general no need for another agent to go through that link until the link is declared safe.

The technique we use, called cautious walk, is defined by the following two rules:
Rule 1. Whenever an agent moves from node u to node v via an unexplored port (turning
it into active), upon its arrival to v and before proceeding somewhere else, it immediately
returns to u (making the port safe), and then it goes back to v; Rule 2. no agent leaves
via an active port. In the following, agents will either move only on safe links or move
using cautious walk.

2.3 Basic Results

Theorem 1. In an anonymous ring with a black hole: 1. RV (k) is unsolvable; 2. If the
ring is unoriented, then RV (k − 1) is unsolvable.

RV (p) is said to be non-trivial if p is a non-constant function of k.

Theorem 2. If k is unknown, non-trivial rendezvous requires locating the black hole.

In view of the fact that knowledge of n is necessary for locating a black hole [17],
it follows that

Theorem 3. Either k or n must be known for non-trivial rendezvous.

3 Characterization and Tight Bounds

3.1 RendezVous When n Is Unknown

An immediate consequence of the fact that n is unknown is that, by Theorem 3, k must be
known for non-trivial rendezvous to occur. Hence, in the rest of this section we assume
that k is known. Let us now examine under what conditions the problem can be solved
and how.
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Oriented Rings

Theorem 4. RV (k − 1) can be always solved, and this can be achieved in time at most
3(n − 2).

To prove this theorem, consider the following protocol GoRight!; agents are in two
states: explorer and follower.

PROTOCOL GoRight!

1. Initially, everybody is an explorer.
2. An explorer moves right using cautious walk. If it enters a node visited by another

agent, it becomes a follower.
3. A follower moves right, traversing only safe links.
4. If there are k − 1 followers in one node, the agents there terminate the execution of

the protocol.

Lemma 1. Protocol GoRight! solves1 RV (k−1)and terminates in time at most3(n−2)
since the start of the leftmost agent.

There are situations in which the 3(n−2) time bound is indeed achieved: Consider a
scenario where there are agents in the two sites neighboring the black hole. The leftmost
(with respect to the Bh) agent wakes up first and all other agents join the execution only
when an agent arrives to their node. Clearly, the left most agent must wake-up all other
agents, and every edge must be traversed using cautious walk.

Unoriented Rings. Since the ring is not oriented, by Theorem 1, RV (k − 1) can not
be solved as two agents can immediately disappear in the black hole. Hence, the best
we can hope for is RV (k − 2). The result we obtain is rather surprising. In fact, either
k − 2 can gather or no more that (k − 2)/2 can, with nothing in between.

Theorem 5. (1) If k is odd, RV (k − 2) can always be solved. (2) If k is even, RV (p)
can not be solved for p > (k − 2)/2; however, RV ((k − 2)/2) can always be solved.
(3) G(k − 2, 1) can always be solved.

To prove this theorem, we will logically partition the entities in two sets, “clockwise”
(or blue) and “counterclockwise” (or red), where all entities in the same set have a
common view of “right”. Notice that each agent, although anonymous, can easily detect
whether a message on a whiteboard has been written by an agent in the same set or not
(e.g, each message contains also an indication of which of the two local ports the writer
considers to be “right”). Consider first the case when k is odd (recall k is known).

1 The rendezvous site is not necessarily next to the black hole.
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PROTOCOL GR-Odd.

1. The agents of each set first of all execute the rendezvous algorithm GoRight! for
oriented rings, independently of and ignoring the agents of the other set, terminating
as soon as (k−1)/2 follower agents of the same set gather in the same node. (Notice:
this will eventually happen, and only to one set, as there is only one set with at least
(k + 1)/2 agents, and eventually only one of those agents will remain explorer).
Without loss of generality, let this happens to the red agents.

2. The node where the (k − 1)/2 red followers have gathered becomes the collection
point, and one of the followers is selected as left-collector.

3. Every follower or blue explorer arriving at the collection point joins the group.
4. The left-collector x travels (using cautious walk when necessary) left and tells every

follower and red explorer it encounters to go to the collection point; it does so until
it reaches the black hole or the last safe node explored by a blue explorer. In the
latter case, the left-collector leaves a message for the blue explorer y informing it of
the meeting point, and instructing it to become left-collector; it then returns to the
collection point. If/when the explorer y returns to that node, it finds the message,
becomes left-collector and acts accordingly.

5. A red explorer returning to the collection point during its cautious walk (notice:
there is only one) becomes now a right-collector.

6. The rules for the right-collector are exactly those for the left-collector, where “left”
is replaced by “right”, and viceversa.

Since k is odd, we get

Lemma 2. There is only one collection point.

By construction of algorithm GR-Odd we have

Lemma 3. Every edge non-incident to the black hole will be traversed by a collector.

Because of cautious walk, at most 2 agents will enter the black hole; this fact,
combined with Lemma 3, yields the following:

Lemma 4. k − 2 agents will gather in the collection point.

Hence, by Lemmas 2 and 4, Point (1) of Theorem 5 holds. Before proceeding with the
proof of the other parts of Theorem 5, let us examine the time costs of ProtocolGR-Odd.

Theorem 6. Protocol GR-Odd terminates in time at most 5(n − 2).

Consider now the case when k is even (recall k is known). To prove part (2) of
Theorem 5 we first observe that RV ((k−2)/2) can always be solved by trivially having
each set execute the rendezvous algorithm GoRight! for oriented rings, and terminating
it when at least k/2 − 1 follower agents of the same set gather in the same node. To
complete the proof, we need to show that, when k is even, rendezvous of a greater number
of agents can not be guaranteed.

Lemma 5. If k is even then RV (p) can not be solved for p > (k − 2)/2.
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We now show that, although we cannot guarantee that more than half of the surviving
agents rendezvous, we can however guarantee that all the surviving agents gather
within distance 1 from each other. To prove this, we use the following protocol GR-Even.

First of all, each set executes the rendezvous algorithm GoRight! for oriented rings,
independently of and ignoring the agents of the other sets, and terminate it when (at
least) k/2 − 1 follower agents of the same set gather in the same node. Notice that it is
possible that two (but no more than two) such gathering points will be formed; further
notice that they could be both made of agents of the same color!

Let us concentrate on one of them and assume, without loss of generalitazion, that it
is formed of red agents. By definition, associated with it, there is a red explorer that will
become a right-collector once it realizes the collection point has been formed; among the
followers gathered there, a left-collector has also been selected. Both collectors behave
as in GR-Odd except that, now, each of them could encounter a collector from the other
group (if it exists). Therefore, we need to add the following rules:

1. a collector keeps the distance from its collection point. When passing the role of
collector to an explorer, it passes also the distance information.

2. when a collector meets another collector (notice: they must be from different groups;
further notice, they might actually “jump” over each other):

a) if they are of the same color, then they agree on a unique site (e.g., the rightmost
of the two ones) as the final common collection point;

b) if they are of different colors, if the distance between the collection points is odd,
they agree on the middle node as the final common collection point; otherwise,
each chooses the closest site incident on the middle edge as the final collection
point of its group.

c) each goes back to its group and notifies all the agents there of their final collection
point.

Lemma 6. Protocol GR-Even guarantees that (k − 2) agents will either rendezvous in
the same node or gather within distance 1.

This completes the proof of Theorem 5. The time efficiency of Protocol GR-Even
can be easily determined:

Theorem 7. Protocol GR-Even terminates in time at most 5(n − 2).

3.2 RendezVous When k Is Unknown

An immediate consequence of the fact that k is unknown is that, by Theorem 3, the ring
size n must be known for any non-trivial rendezvous to be possible.

Another consequence is that, by Theorem 2, if we want to rendezvous we must locate
the black hole! Let us examine under what conditions and how the problem can be solved.
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Oriented Rings

Theorem 8. Let k ≥ 4. Then RV (k − 2) can always be solved.

To prove this theorem we design a protocol, called Shadow, quite different from
the ones used when k is known. We associate with each contiguous block of explored
nodes a group of agents expanding that block until either (1) the explored block contains
n − 1 nodes (in which case a final collection phase is initiated, collecting the agents
into a designated collection point) or (2) the block merges with a neighboring explored
block (in which case the corresponding groups of agents are combined into one group
expanding the new, bigger block).

The group of agents expanding a block consists of at least one and at most four
agents. The agents associated with a block are of two kinds: explorers and shadows (at
most one of each type for each direction). The task of the explorers is to expand the
explored block in the opposite directions. The shadows travel between the explorers:
their goal is to detect when the block contains n − 1 explored nodes. Each node keeps
information on which types of agents have visited it so far.

At the beginning, each explored block consists of a single node containing an agent
starting as a right explorer. As the blocks grow, they eventually touch and their agents
are combined forming one of the following block types.

– A two-agent block (i.e., created by merging two one-agent blocks) has one right-
and one left- explorer.

– A three-agent block (i.e., created by merging a two-agents with one-agent block)
has two explorers and a right shadow.

– A four-agent block has two explorers and two shadows (one in each direction).

When merging a k-agents block with a j-agents block, if k + j > 4, then all additional
agents in the block become passive. The activities performed by the agents are quite
simple:

explorer: It moves in its assigned direction using cautious walk until either it enters
the black hole or it detects a neighbor block (by entering a node already visited by
a different explorer).

right (resp., left) shadow: It travels inside the explored block from the rightmost (resp.,
leftmost) safe node to the leftmost (resp., rightmost) safe node, and count the dis-
tance. If the travelled distance is n − 1, it becomes a collector. If it the distance is
less, it returns to the rightmost (resp., leftmost) safe node. If the right (resp., left)
boundary of the block has moved in the meanwhile, it repeats the process; otherwise,
it waits until a new rightmost (resp., leftmost) node is explored.

collector: A collector agent traverses the explored part and collects all the agents on
the way (if an agent meets a collector, it stops its activity and follows the collector).
Once the whole explored part has been traversed (i.e., the collector counts n − 1
links), all agents have been collected and have gathered at the same place. There is
a technical detail: it can happen that both shadows can become collectors. In that
case, the gathering point is the node where they meet (or, if they crossed each other
on a link, the right endpoint of that link).

passive: It waits to be collected by the collector.
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Fig. 2. The Shadow Protocol, where the ring is assumed to be oriented clockwise. The empty
circles represent active agents; the white squares are the explorers, the grey squares the shadows,
and the black squares the passive agents. The fat line evidences the segments delimited by the
explorers. The numbers are placed only to clarify how the agents move, and are not used at all
during the computation.

The main technical difficulty arises from the fact that the whole process is distributed
and the agents are not immediately aware when their block collides with another block.
In addition, both ends of a block might collide with neighboring blocks at about the
same time, complicating the coordination between the agents of the block. First, let us
examine how blocks can collide. There are only few possibilities:

– A right explorer a arrives to a node already visited by a right explorer, but not by a
left explorer.

– A right and left explorer of different blocks arrive at the same node v, i.e. they find a
mark of an explorer in the opposite direction. (Since cautious walk is used, this need
not to occur simultaneously. Instead, the second explorer might arrive to v while the
first is busy marking the last link as safe.)

– A right and left explorers of different blocks cross each other over the link separating
these blocks.

In the first case, the right explorer a becomes the new left explorer; in the remaining
cases, each of the collided explorers becomes a shadow in its original direction. However,
this may result in having several left explorers in the block (e.g., in the first case, if the
a’s block already had a left explorer) or several shadows for a given direction (e.g., if
the joining blocks already had shadows). This is resolved in the following way:

– A new left explorer travels to the left through the explored part until it either reaches
an unexplored link (i.e., it is the leftmost left explorer of this block) or it reaches
a node already visited by a left explorer. In the first case, the explorer starts the
algorithm for left explorers, otherwise it becomes a new right shadow.

– A new right shadow travels to the right until it reaches the rightmost safe node or a
node already visited by a right shadow. In the first case, it starts the algorithm for
right shadows; in the latter case, it becomes a new left shadow.

– A new left shadow travels to the left until it reaches the leftmost safe node or a
node already visited by a left shadow. In the first case, it starts the algorithm for left
shadows, in second case, it becomes passive.

Lemma 7. (1) Within finite time there will be only one right-explorer and one left-
explorer, and they will both enter the black hole. (2) Within finite time there will be only
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one right-shadow and one left-shadow. (3) At least one shadow will become collector,
and a collector knows the location of the black hole. (4) Every edge non-incident to the
Bh will be traversed by a collector. (5) There will be a unique collection point. (6) k − 2
agents will gather in the collection point.

This completes the proof of Theorem 8. Let us now examine the time costs of this
protocol.

Theorem 9. The protocol Shadow terminates in at most 8(n − 2) time steps since the
wake-up of the leftmost agent.

Let us stress that protocol Shadows solves the black hole location problem (by
Point (3) in Lemma 7). This means that we have obtained a significant improvement
over the O(n log n) time complexity of the existing protocols for the black hole search
in oriented rings [17].

Unoriented Rings. Interestingly, we discover for the unoriented case better conditions
than those we have found when k was known instead of n.

Theorem 10. (1) If k is odd or n even, RV (k −2) can always be solved. (2) If k is even
and n odd, RV (p) can not be solved for p > �(k − 2)/2�; however, RV (�(k − 2)/2�)
can always be solved. (3) G(k − 2, 1) can always be solved.

We will again logically partition the entities in two sets, “clockwise” or blue and
“counterclockwise” red, where all entities in the same sat have a common view of
“right”.

To prove Point (1) of Theorem 10 we consider protocol Blue-Red Shadows, obtained
from protocol Shadows applying these modifications:

– Each node now keeps information on which types of agents have visited it for both
colors.

– If a left explorer finds a mark of a right explorer of the opposite color, it becomes a
right shadow.

– If a left shadow find a mark of a right shadow of the opposite color, it becomes
passive.

– A shadow always tries to travel to the furthermost explored node, regardless of the
color of the explorer that explored it.

– An agent is collected by a collector, regardless of its color.
– In all other cases, the agents of different color ignore each other.

Note that if all agents are of the same color, the protocol Red-Blue Shadows behaves
exactly as protocol Shadow and its correctness follows. Therefore, in the rest we assume
there is at least one agent of each color.

Lemma 8. (1) Within finite time there will be only one red and one blue right explorer
and they will both enter the black hole. There will be no left explorer remaining. (2)
Within finite time, there will be only two shadows remaining: Either two right shadows
of different color, or a right and left shadow of the same color (if one color has only one
agent). (3) Points (3) and (4) in Lemma 7 hold also for protocol Blue-Red Shadows in
unoriented rings.
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Lemma 9. (1) If k is odd or n is even, there will be a unique collection point; further-
more, k − 2 agents will gather in the collection point. (2) If k is even and n is odd then
RV (p) can not be solved for p > (k − 2)/2; however, RV ((k − 2)/2) can be achieved.

We now show that, although we cannot guarantee that more than half of the surviving
agents rendezvous, we can however guarantee that all the surviving agents gather within
distance 1 from each other.

Lemma 10. Protocol Blue-Red Shadows guarantees that (k − 2) agents will either
rendezvous in the same node or gather within distance 1.

Theorem 11. The modified protocol Shadow for unoriented rings terminates in at most
8(n − 2) time steps.

4 Concluding Remarks

In this paper we have established tight bounds on the number of anonymous agents
that can rendezvous in an anonymous ring in presence of a black hole. Notice that, if
there is no black hole in the network, the proposed protocols would not work; i.e., the
agents do not rendezvous. This fact is hardly surprising since the rendezvous problem
of anonymous agents in anonymous ring without black hole is generally unsolvable [3].
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