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Abstract. Consider a set of n > 2 simple autonomous mobile robots
(decentralized, asynchronous, no common coordinate system, no identi-
ties, no central coordination, no direct communication, no memory of the
past, deterministic) moving freely in the plane and able to sense the posi-
tions of the other robots. W e study the primitive task of gathering them
at a point not fixed in advance (Gathering Problem). In the literature,
most contributions are simulation-validated heuristics. The existing al-
gorithmic contributions for such robots are limited to solutions for n ≤ 4
or for restricted sets of initial configurations of the robots. In this paper,
w e present the first algorithm that solves the Gathering Problem for
any initial configuration of the robots.

1 Introduction

W e consider a distributed system of autonomous mobile robots that are able to
freely move in the two-dimensional plane. Due to their autonomy, the coordina-
tion mechanisms used by the robots to perform a task (i.e., solve a problem) must
be totally decentralized, i.e., no central control is used. The problem we consider
is gathering (or rendez-vous, or point-formation): all robots must gather at one
point; the choice of the point is not fixed in advance.

Gathering is one of the basic interaction primitives in systems of autonomous
mobile robots, and has been studied in robotics and in artificial intelligence [4,9,
11]. Mostly, the problem is approached from an experimental point of view: al-
gorithms are designed using mainly heuristics, and then tested either by means
of computer simulations or with real robots. Neither proofs of correctness of
the algorithms, nor any analysis of the relationship between the problem to be
solved, the capabilities of the robots employed, and the robots’ knowledge of the
environment are given. Recently, concerns on computability and complexity of
coordination problems have motivated algorithmic investigations, and the prob-
lems have also been approached from a computational point of view [2,7,8,12,
14].

The solution to the Gathering Problem obviously depends on the capabil-
ities of the robots. The research interest is on a very weak model of autonomous
robots: the robots are anonymous (i.e., identical), have no common coordinate
system, are oblivious (i.e., they do not remember previous observations and cal-
culations), and have no means of direct communication. Initially, they are in
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a waiting state. They wake up independently and asynchronously, observe the
other robots’ positions, compute a point in the plane, move towards this points
(but may not reach it1), and become waiting again. Details of the model are
given in Section 2. For these robots, the Gathering Problem is defined as
follows:

Definition 1. Given n robots r1, . . . ,rn, arbitrarily placed in the plane, with

no two robots at the same position, make them gather at one point in a finite

number of cycles.

This Gathering Problem is unsolvable for such weak robots [13]; this is
rather surprising considering the fact that a variety of other tasks (e.g. forming
a circle) are solvable. Also, if the robots are asked only to move “very close” to
each other, this task is easily solved: each robot computes the center of gravity2

of all robots, and moves towards it.

The reason the same solution (i.e., moving towards the center of gravity)
does not work for the Gathering Problem is because the center of gravity
is not invariant with respect to robots’ movements towards it. Recall that the
robots act independently and asynchronously from each other, and that they
have no memory of the past; once a robot makes a move towards the center of
gravity, the position of the center of gravity changes; hence a robot (even the
same one) observing the new configuration will compute and move towards a
different point.

An obvious solution strategy would then be to choose as destination a point
that, unlike the center of gravity, is invariant with respect to the robots’ move-
ments towards it. The only known point with such a property is the Weber (or
F ermat or T orricelli) point: the unique point in the plane that minimizes the
sum of the distances between itself and all positions of the robots [10,15]. This
point does not change when moving any of the robots straight towards it. Un-
fortunately, it has been proven in [3] that the Weber point is not expressible as
an algebraic expression involving radicals since its computation requires finding
zeroes of high-order polynomials even for the case n = 5 (see also [6]). In other
words, the Weber point is not computable by radicals for n ≥ 5 [3], and thus it
cannot be used to solve the Gathering Problem.

The problem becomes solvable if we change the nature of the robots: if we
assume a common coordinate system, gathering is possible even with limited
visibility [8]; if the robots are synchronous and movements are instantaneous,
gathering has a simple solution [14] and can be achieved even with limited visi-
bility [2]. On the other hand, without changing the robots’ nature, they clearly
must have some additional ability to solve the Gathering Problem. One such
ability is multiplicity detection: a robot can detect whether at a point there is
none, one, or more than one robot; if there is more than one robot, we say that

1 That is, a robot can stop before reaching its destination point, e.g. because of limits
to the robot’s motion energy.

2 F or n points p1, . . . ,pn in the plane, the center of gravity is c = 1

n

∑
n

i=1
pi.
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there is strict multiplicity at that point. In the following, we will assume that
the robots can detect multiplicities.

Even with multiplicity detection, the problem is surprisingly difficult and
was, up to now, unsolved. It is actually unsolvable for n = 2 robots [13,14].
Simple solution algorithms exist for n = 3 and n = 4 robots. For n ≥ 5 there are
two partial solutions [5], i.e., algorithms that work for restricted sets of initial
configurations. In particular, the first one works if the robots are initially in a
biangular configuration (i.e., there exists a point c, and ordering of the robots,
and two angles α, β such that the angles between adjacent robots w.r.t. c are
either α or β, and the angles alternate; refer to Section 2 and Figure 2); the
second algorithm works if in the initial scenario the positions of the robots do
not form a regular n-gon (i.e., all robots are on a circle and the distances between
each two adjacent robots are equal). Although the two sets of configurations
together cover all possible input configurations, the two algorithms can not be
integrated nor combined to solve the Gathering Problem in general.

In this paper, we present the first algorithm that solves the Gathering

Problem for any initial configuration of the robots; all calculations performed
by the robots can be computed by radicals. Due to space limitations, we only
sketch the algorithm and the main ideas for its correctness. The complete algo-
rithm and detailed proofs can be found in the full version of this paper.

2 Terminology , Notation, and Basic Tools

In this section, we introduce terminology and notation, and define the basic
concepts used in our algorithm.

Autonomous Mobile Robots

A robot is a mobile computational unit provided with sensors, and it is viewed
as a point in the plane. Once activated, the sensors return the set of all points in
the plane occupied by at least one robot. In particular, for each such point the
sensor outputs whether one or more than one robot is located there (multiplicity
detection). This forms the current local view of the robot. The local view of each
robot also includes a unit of length, an origin (which we assume w.l.o.g. to be
the position of the robot in its current observation), and a coordinate system
(e.g. Cartesian). There is no a priori agreement among the robots on the unit of
length, the origin, or the coordinate systems.

A robot is initially in a waiting state (Wait). Asynchronously and indepen-
dently from the other robots, it observes the environment (L ook) by activating
its sensors. The sensors return a snapshot of the world, i.e., the set of all points
that are occupied by at least one other robot, with respect to the local coordinate
system. The robot then calculates its destination point (Compute) according to
its deterministic algorithm (the same for all robots), based only on its local view
of the world. It then moves towards the destination point (Move); if the destina-
tion point is the current location, the robot stays still. A move may stop before
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Fig. 1. (a) Conv ex angle α = �(a,c,b). (b) Arc (thick line) and (c) sector (grey part)
defined by �(a,c,b). (d) Tw o robots, r and r′, on the same radius.

the robot reaches its destination, e.g. because of limits to the robot’s motion
energy. The robot then returns to the waiting state. The sequence Wait - L ook
- Compute - Move forms a cycle of a robot.

The robots are fully asynchronous, i.e., the amount of time spent in each state
of a cycle is finite but otherwise unpredictable. In particular, the robots do not
have a common notion of time. As a result, robots can be seen by other robots
while moving, and thus computations can be made based on obsolete observa-
tions. The robots are oblivious, meaning that they do not remember any observa-
tion nor computations performed in previous cycles. The robots are anonymous,
meaning that they are a priori indistinguishable by their appearance, and they
do not have any kind of identifiers that can be used during the computation.
Finally, the robots have no means of direct communication: any communication
occurs in a totally implicit manner, by observing the other robots’ positions.

There are two limiting assumptions concerning infinity: (A1) The amount
of time required by a robot to complete a cycle is not infinite, nor infinitesimally
small. (A2) The distance traveled by a robot in a cycle is not infinite, nor
infinitesimally small (unless it brings the robot to the destination point). As no
other assumptions on space exist, the distance traveled by a robot in a cycle is
unpredictable.

Notation and Definitions

Basic Notation. In general, r indicates any robot in the system (when no am-
biguity arises, r is used also to represent the point in the plane occupied by
that robot). A configuration of the robots at a given time instant t is the set of
positions in the plane occupied by the robots at time t.

For the following definitions, refer also to Figure 1. Given two distinct points
a and b in the plane, [a,b) denotes the half-line that starts in a and passes through
b, and [a,b] denotes the line segment between a and b. Given two half-lines [c,a)
and [c,b), we denote by �(a,c,b) the convex angle (i.e., the angle that is at most
180◦) centered in c and with sides [c,a) and [c,b). The intersection between the
circumference of a circle C and an angle α at the center of C is denoted by arc(α),
and the intersection between α and C is denoted by sector(α).

Given a circle C with center c and radius R ad, and a robot r, we say that r

is on C if dist(rc) = R ad, where dist(ab) denotes the Euclidean distance between
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Fig. 2. (a) General biangular and (b) degenerated biangular configuration of 8 points.
(c) General equiangular configuration. (d) The smallest enclosing circle of 10 points on
the plane.

point a and b (i.e., r is on the circumference of C); if dist(rc) <Rad, we will say
that r is inside C. Given two distinct robots r and r′, with r inside C, let q be
the intersection between the circumference of C and [c, r). W e say that r and r′

are on the same radius if r′ ∈ [c, q].

Biangular Configurations. A set of n robots is in general biangular configuration
if there exists a point b, the center, an ordering of the robots, and two angles
α, β > 0, such that each two adjacent robots form an angle α or β w.r.t. b, and
the angles alternate (see Figure 2.a). The robots are in degenerated biangular

configuration if there is a robot r, an ordering of the other robots, and two
angles α, β > 0, such that each two adjacent robots (without r) form an angle α

or β w.r.t. r, and the angles alternate, except for one “gap” where the angle is
α + β (see Figure 2.b). A general biangular configuration becomes degenerated
if one of the robots, namely r, moves to the center b.

Similarly, we say that the robots are in a general equiangular configuration if
there exists a point e, the center, an ordering of the robots, and an angle α such
that each two adjacent robots form an angle α w.r.t. e (see Figure 2.c). Note
that equiangular configurations can be “almost” considered a special case of
biangular configurations: the only difference is that in a biangular configuration
there is always an even number of robots, while in an equiangular configuration
there can be an odd number of robots. Hence, from now on we will only refer to
biangular configurations.

If a set of n ≥ 3 points P is in general or degenerated biangular configuration,
then the center of biangularity b is unique, can be computed in polynomial time,
and is invariant under straight movement of any of the points in its direction;
that is, it does not change if any of the points move towards b [1].

Smallest Enclosing Circles. Given a set of n distinct points P in the plane, the
smallest enclosing circle of the points is the circle with minimum radius such
that all points from P are inside or on the circle (see Figure 2.d). W e denote
it by SEC (P ), or SEC if set P is unambiguous from the context. The smallest
enclosing circle of a set of n points is unique and can be computed in polynomial
time [16].
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Obviously, the smallest enclosing circle of P remains invariant if we remove
all or some of the points from P that are inside SEC (P ). In fact, the following
lemma shows that we can even remove all but at most three points from P

without changing SE C (P ).

Lemma 1. Given a set P of n points, there exists a subset S ⊆ P such that

|S| ≤ 3 and SEC (S) = SEC (P ).

String of A ngles. Given n distinct points p1, . . . , pn in the plane, let SEC be the
smallest enclosing circle of the points, and c be its center. For an arbitrary point
pk, 1 ≤ k ≤ n, we define the string of angles SA (pk) by the following algorithm
(refer to Figure 3.a):

Compute SA(pk)

p := pk, i := 1;
While i �= n + 1 Do

p′ := Succ(p);
SA [i] := �(p, c, p′);
p := p′; i := i + 1;

Return SA .

Here, all angles are oriented clockwise (note that the robots do not have a
common coordinate system; however, each robot can locally distinguish between
a clockwise and counterclockwise orientation). The successor of p, computed by
Succ(p), is (refer to Figure 3.b)

- either the point pi �= p on [c, p), such that dist(c, pi) is minimal among all
points pj �= p on [c, p) with dist(c, pj) > dist(c, p), if such a point exists; or

- the point pi �= p such that there is no other point inside sector(�(p, c, pi)),
and there is no other point on the line segment [c, pi].

Instead of SA (pk), we write SA if we do not consider a specific point pk.
Given pk, procedure Succ() defines unique successors, and thus Compute SA(pk)

defines a unique string of angles. Given two starting points pk and p�, then
SA (pk) is a cyclic shift of SA (p�). Given an angle α in SA , then we can associate
it with its defining point; i.e., if α = �(p, c, p′), then we say that α is associated
to p, and we write p = r(α). Alternatively, since α is stored in SA , say at
position i (i.e., SA [i] = α), we denote the point associated to α by r(i), saying
that r(i) is the point associated to position i in SA . We define the reverse string
of angles rev SA in an analogous way: it is the string of angles with all angles
counterclockwise oriented (i.e., rev SA is the reverse of SA ). We say that SA

(resp. rev SA ) is general if it does not contain any zeros; otherwise, at least two
points are on a line starting in c (a radius), and we call the string of angles
degenerated.

Given two strings s = s1, . . . , sn and t = t1, . . . , tn, we say that s is lexico-
graphically smaller than t if there exists an index k ∈ { 1, . . . , n} such that si = ti
for all 1 ≤ i < k, and sk < tk. We write s <lex t. Let LexM inString be the lex-
icographically minimal string among all strings of angles (in both orientations),
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Fig. 3. (a) String of angles computed by Compute SA(r1). With α = 25◦, β = 60◦

and γ = 70◦, we hav e S A (r1) = 〈α, β , γ, α, α, β , γ, α〉 = 〈25◦, 60◦, 70◦, 25◦, 25◦,

60◦, 70◦, 25◦〉, LexM inS tring = 〈α, α, β , γ, α, α, β , γ〉, r(S A [3]) = r(γ) = r(3) = r3,
S tartS et = {4, 8}, and rev S tartS et = ∅. (b) Routine Succ(p) with clockwise ori-
entation. The p oints are num bered according to routine Succ(); that is Succ(1)=2,
Succ(2)=3, and so on. Note that Succ(7)=1

i.e., LexM inS tring := min({S A(pi) | 1 ≤ i ≤ n} ∪ {rev S A(pi) | 1 ≤ i ≤ n}).
Let S tartS et be the set of all indices in S A where LexM inS tring starts, i.e.,
S tartS et = {i | 1 ≤ i ≤ n,S A(pi) = LexM inS tring}, and let rev S tartS et be
the set of all indices in rev S A where LexM inS tring starts.

Rob ot Motion and Critical P oints

In our algorithm, we use four different types of “move” operations; in each, when
a robot moves, it moves in a straight line.

The basic operation is moveTo(p), where a robot r moves towards point p

(recall that, although restricted by assumption A2, the robot may enter the
waiting state before reaching p).

In the operation moveToIfFreeWay(p), the robot r moves towards p only
if no other robot is between r and p; otherwise, r does not move at all. This
operation is used to avoid that the moving robot creates an (unintended) point
with strict multiplicity. Note that, if all robots in the system are moving towards
p and only this type of moves are executed, then strict multiplicity can only occur
at p.

The remaining two types of movement are crucial to control the swap of a
non-biangular configuration into a biangular one, due to robots’ movements. To
introduce them, we need the notion of critical points, defined as follows:

Definition 2. Given n robots and a point p in the plane, a point x is a critical
point for the movement of robot r towards p if x = p, or if x is on the half-line

from p to r and the configuration of the robots becomes biangular when r is at

position x.

A pair of points (y, z ) is a critical pair for the movements of robots r′ and r′′

towards destinations p′ and p′′ respectively, if (y, z ) = (p′,p′′), or if y is on the
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half-line from p′ to r′, z is on the half-line from p′′ to r′′, and the configuration

of the robots is biangular when r′ is at position y and r′′ is at position z.

The operation moveStepwiseTo(p) requires the robot r to first compute all
critical points for its movement towards p, and then to move towards the first
critical point on its way towards and stop there.

With operation moveStepwiseTo((r′, p′), (r′′, p′′)) we coordinate the move-
ment of two robots r′ and r′′ which move in the direction of points p′ and p′′,
respectively. We compare the number of critical points between the robots and
their destinations. The robot with most critical points ahead is allowed to move;
if they have the same number, they both move. Once allowed, if the robot is
between two critical points it moves to the next one; if it is already at a critical
point it moves towards half the distance to the next critical point.

Finally, given a circle C with center c, we extend our four types of move
operations and allow robots to move onto or away from C. In particular,
we say that a robot moves to circle C (moveTo(C), moveToIfFreeWay(C),
moveStepwiseTo(C)) if the destination point of the robot is the intersec-
tion of C and the half-line starting from the center of C and going through
the position of the robot (note that the robot does not move at all if it
is already at this intersection point). Moreover, we define what a movement
into the inside of circle C is (moveTo(into C), moveToIfFreeWay(into C),
moveStepwiseTo(into C)): if the robot is already inside C, it does not move
at all. Otherwise, it moves to the point p that is half on its way towards c, the cen-
ter of the circle. For two robots r′ and r′′, we define moveStepwiseTo(r′, r′′, C)

and moveStepwiseTo(r′, r′′, into C) accordingly.

3 The Solution Algorithm

In this section, we describe the algorithm that solves the Gathering Problem

for arbitrary initial configurations of n ≥ 5 robots, and discuss its correctness.

3.1 Description

A t a high level, the strategy of the algorithm is as follows. Initially all robots are
in distinct locations; that is, in the initial configuration, there is no point with
strict multiplicity. Our algorithm ensures that at any time during the execution
there is at most one point with strict multiplicity; moreover, such a point will
eventually be generated. Once this occurs, the robots that are already at that
point remain there, while all other robots move towards this unique point.

If the (initial) configuration is biangular, then all robots move towards the
center of biangularity. The future configuration remains biangular until two (or
more) robots reach the center. When this occurs, a unique point with strict
multiplicity has been created.

In all other configurations, we select a strict subset of the robots; the selection
is done using the string of angles of the robots w.r.t. the center of their smallest
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enclosing circle. If we can elect a unique robot, it will go to some other robot
creating a unique point with strict multiplicity. Otherwise, the selected robots
move towards the center of the smallest enclosing circle, ensuring that the circle
does not change because of these movements. If no biangular configuration is
created during these movements, two (or more) robots reach the center of the
circle, and we have a unique point with strict multiplicity.

One of the difficult and crucial components of the algorithm is the use of ap-
propriate move operations to ensure the following: if a biangular configuration
is created during the movements of some robots, then all robots have to become
aware of it in their next L ook state, ensuring that they will gather at the center
of biangularity. The difficulty arises from the asynchrony, obliviousness and au-
tonomy of the robots; the component is crucial to avoid that some robots move
towards the center of biangularity while others still move towards the center of
the circle (possibly destroying biangularity).

The main algorithm is shown in Algorithm 1. In the algorithm we use four
different subroutines; their behavior differs depending on the value of s, the
cardinality of the set StartSet ∪ revStartSet (therefore, s denotes the number
of starting positions of LexMinString in SA and revSA).

Algorithm 1 Algorithm Gather

Z := Observed Configuration;
SEC := Smallest Enclosing Circle of all robots;
c := Center of SEC ;

InnerC := Circle with center c and radius radius of SEC

2
;

5: Case Z Is Such That:

•There is One point m with strict multiplicity:
moveToIfFreeWay(m).

•The robots are in general (resp. degenerated) biangular configuration:
b := Center of general (resp. degenerated) biangularity;

10: moveToIfFreeWay(b).
•default:

If No robot is at c Then

SA := (Compute SA); %String of angles of all rob ots%

StartSet,rev StartSet := Indices Where Lex. Minimal String Starts;

15: s := |StartSet ∪ rev StartSet|;
If SA is general Then Routine1. Else Routine2.

Else %One rob ot r is at c%

r := rob ot at c;

SA − := String of angles of all rob ots except r;

20: StartSet−, rev StartSet− := Indices Where Lex. Minimal String Starts;

If SA − is general Then Routine3. Else Routine4.

In the following, we first discuss the main properties of LexM inS tr ing, and

then we sk etch the correctness proof of the algorithm.
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3.2 Prop erties of LexM inS tr ing

1. One Starting Position of LexMinString (s = 1): Let StartSet ∪
revStartSet = {x} and SA (x) = α1, . . . ,αn; then revSA (x) = αn, . . . ,α1,
and the following holds:

Lemma 2. If StartSet∪revStartSet={x}, then either SA (x)=LexMinString

or revSA (x) = LexMinString.

This implies that there is a unique starting position and a unique direction
for LexMinString, yielding a unique ordering of the robots. If all robots are
on SEC , then we can use this ordering and Lemma 1 to define operation
ElectOne() to elect the first robot r such that SE C remains inv ariant if r

is mov ed to the inside of SEC . If more than one robot is inside SEC , then
ElectOneInside() is used to elect a unique robot that is already inside SEC
(again, using the uniqueness of LexMinString).

2. Two Starting Positions of LexMinString (s = 2 ): Let StartSet ∪
revStartSet = {x,y}. The following lemma shows that LexMinString can start
in each position in only one direction.

Lemma 3. If StartSet ∪ revStartSet = {x,y}, then it is not possible that
SA (x) = revSA (x) = LexMinString or SA (y) = revSA (y) = LexMinString.

If LexMinString starts in x and y in the same direction, then the angle
between these two positions w.r.t. c is 180◦. Moreov er, for ev ery robot there is
a partner such that their angle is 180◦. Recall that r(x) is the robot associated
with index x. Using the starting positions and the direction of LexMinString,
we define ElectTwo() as follows: if r(x) and r(y) are on SEC , then we elect the
“next” pair of robots with an angle of 180◦; otherwise we elect r(x) and r(y)
themselv es.

If LexMinString starts in x and y in opposite direction, say x ∈ StartSet

and y ∈ revStartSet, then let γ be the angle between r(x) and r(y) w.r.t.
c. If γ = 180◦, then ElectTwo() elects the first two robots, according to the
starting positions and directions of LexMinString, that are not both on SEC .
If γ < 180◦, we define the opposite robots of r(x) and r(y) to be one or two
robots in the half of SEC where r(x) and r(y) are not (see Figure 4): let # be
the line that bisects γ. Then # is a symmetry line for the angles of the robots
w.r.t. c. W e choose either the robot r that is on line #, if such a robot exists,
or we choose the two robots u and v that are closest to # (in terms of their
angles w.r.t. c). Observ e that the construction of the opposite robots guarantees
that c is inside the conv ex hull of r(x), r(y) and their opposite robot(s). Thus,
ElectTwo() can elect two appropriate robots such that SEC remains inv ariant
if they mov e (using Lemma 1).

Finally, we define routine ElectPairInside() that elects the “first” pair of
robots that is inside SEC . Again, the ordering of the robots is giv en by the
starting positions and orientations of LexMinString.
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Fig. 4. (a) The line � that runs through c and bisects γ = �(r(x), c, r(y)) = 2ε +
2γ is a symmetry axis for the angles that the robots form w.r.t. c. In the depicted
example, x ∈ S tartS et, y ∈ revS tartS et, and S A (x) = revS A (y) = LexM inS tring =
〈α , γ, γ, α , δ , γ, ε, ε, γ, δ 〉. (b) One robot r opposite to r(x) and r(y). (c) Two robots u

and v opposite to r(x) and r(y).

3. Many Starting Positions of LexM inS tring (s > 2): Let S tartS et =
{x1, . . . ,xl}. Then S A and rev S A are periodic. Moreover, if k is the minimum
length of a period of S A , then we can divide S A into n

k
equal periods, and the

angles in each period sum up to γ = 360
◦

n

k

. If the period length is one or two, then

the configuration is biangular; hence we can exclude this case in the following,
since it is covered in Lines 8–10 of the main algorithm.

W e say that two robots r and r′ are equivalent (modulo periodic shift) if they
have the same position in different periods, i.e., if �(r,c,r′) is a multiple of γ

(see the example depicted in Figure 5). If all robots are on SEC , then for any
robot r, there are n

k
−1 equivalent robots, and they form a regular n

k
-gon with c

inside. Thus, if at least one robot and all its equivalent robots remain on SEC ,
then SEC remains invariant (using Lemma 1).

Lemma 4. If S tartS et �= ∅, all robots are on SEC, and the minimum period
length of S A is k ≥ 3, then SEC remains invariant when all robots r(x), with
x ∈ {S tartS et ∪ rev S tartS et}, move inside SEC .

Observe that if all robots are on SEC , then equivalent robots cannot be dis-
tinguished, hence they act in the same way. In the case of one or two starting
positions of LexM inS tring, we were able to elect one or two robots to move, and
we used stepwise movements to ensure that these robots stop when the configura-
tion becomes biangular. If there are many starting positions of LexM inS tring,
we do not need to apply stepwise movements, as shown by the following lemma.

Lemma 5. Given a non biangular configuration of the robots such that S A is
periodic, then moving any subset of the robots towards c cannot make the con-
figuration become biangular.

To see this, observe that c is the W eber point of the robots, and that the
center of biangularity, if it exists, is the W eber point as well. Thus, since the
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α2

r(x1)

α12

α9

α6 = α3

α3

α10

α8

α11

α7

r(x3)

r(x4)
r(x2)

P
er
io
d

r′′′
r

r′

r′′

s′′′

α5 = α2

s

s′

s′′

α1

α4 = α1

Fig. 5. Example with |StartSet|=4, SA(x1) = SA(xi) = LexMinString =
α1, . . . , α12, and the period of SA(x1) is 〈α1, α2, α3〉. There are

n

k
= 12

3
periods, and

γ = α1 + α2 + α3 =
360

◦

4
. Thick lines represent the starting points of each of the four

periods. Robots r, r′, r′′ and r′′′ are equivalent, as well as r(x1), r(x2), r(x3) and r(x4),
and s, s′, s′′ and s′′′.

Weber point is unique, the robots cannot swap into a biangular configuration
if there was none before. This lemma implies that the robots cannot create a
biangular configuration while they move towards or away from c, hence we do
not need to introduce a stepwise movement in this case.

Correctness Proof (Sk etch)

The first thing a robot does when it starts its computation is to check whether
there is a point p in the plane with strict multiplicity. If this is the case, the
robot simply moves there. P oint p will be the final gathering point (Lines 6–7).

Otherwise, the robots check whether the observed configuration of the robots
is biangular. In this case, the center of biangularity b is computed, and the robots
move there using moveToIfFreeWay(b). As long as none of the robots reaches

b, the configuration remains general biangular; hence the algorithm continues to

move all robots towards b. By Assumptions A1 and A2, in a finite number of

cycles, at least one robot reaches b. If only one robot reaches b, then the config-

uration becomes degenerated biangular. In this case, the center of degenerated

biangularity3 is again b, and all robots continue moving towards b. As soon as

two robots reach b, there is a unique point with strict multiplicity, and all robots

will gather there.

If the observed configuration is not biangular, then the S E C and its center

c are computed. The algorithm distinguishes four cases.

3 If a general biangular configuration with center b turns into a degenerated biangular

configuration because one of the robots reaches b, then the center of the degenerated

biangular configuration is again b.
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(A) There is no rob ot at c, and SA is general. Routine1 is called, which
behaves differently depending on the value of s, the cardinality of StartSet∪
rev StartSet.

If s = 1, then a unique robot r is elected, and it moves stepwise4 towards
c. Robot r is chosen such that SEC does not change during its movement.
When the movement stops, either the configuration is biangular, and Line
8 of the main algorithm applies; or Routine1 is called again (with r – the
only robot inside SEC – again elected), until r reaches c, and Routine3

applies.

If s = 2, at first all robots that are inside SEC move to the circumference of
SEC (by repeatedly calling ElectPairInside()). Afterwards, only the two
robots elected by ElectTwo() are allowed to move, and they move towards
c. All movements are stepwise, and there are always at most two moving
robots, either the robots run into a biangular configuration and stop (Line 8
of the main algorithm then applies), or one of them reaches c and Routine3

is called, or the two elected robots reach c simultaneously, and c becomes
the unique point with strict multiplicity. In the last two cases, c will be the
final gathering point.

If s > 2, first all robots associated to indices in StartSet ∪ rev StartSet

are elected. Then, all robots that are not elected and that are inside SEC
are moved towards the circumference of SEC . Afterwards, all elected robots
(and only these) move towards5 c (without changing SEC, by Lemma 4),
with the only restriction that an elected robot can reach c only if all
other elected robots are already inside SEC (note that two robots in-
side SEC would be sufficient). This is achieved by first calling routine
moveTo(into C). In a finite number of cycles at least two robots reach
c, creating strict multiplicity there.

(B) There is no rob ot at c, and SA is degenerated. Routine2 is called.
Recall that, if SA is degenerated, then there is at least one radius of SEC
with more than one robot on it. Therefore, due to our definition of SA , the
lexicographically minimal string of angles always start with zeros. Moreover,
on each radius with at least two robots, one robot is already inside SEC.
Similarly to previous cases, different actions are tak en depending on the
value of s.

If s = 1, then the subroutine elects a unique radius rad that has at least
two robots lying on it. Let StartSet = {x} (the case rev StartSet = {x}
is handled similarly), and radx be the radius where r(x) lies (i.e., [c, r(x)]).
Then rad can be chosen as the first radius with at least two robots on it,
starting from radx and according to the ordering of the robots established
by SA . Let r and r′ be the first two innermost robots on rad. Then r moves
stepwise towards r′, while all other robots do not move. In a finite number of
cycles, either a biangular configuration is reached (r stops at the first critical

4 Recall that stepwise movement implies that r stops at its first critical point.
5 Some of them can already be inside S E C , and others are still on the circumference

of S E C .
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point on its path towards r′) and Line 8 of the main algorithm applies, or
r reaches r′ and a unique point with strict multiplicity is created.

If s = 2, the algorithm works similar to Case (A), except that all operations
are done with respect to InnerC instead of SEC . In particular, first the
robots that are inside InnerC move out of InnerC . If we would move these
robots simply to the circumference of InnerC , we could obtain unintended
points with strict multiplicity, since all robots on the same radius would end
up at the same point on InnerC . Therefore, we define a sufficient number of
distinct positions ”just outside” InnerC (using the radius of SEC ) where we
move the robots that are on the same radius. Thereby, we ensure that the
innermost robots will end up on InnerC . Afterwards, the two robots elected
by ElectTwo() are allowed to move, and they move stepwise towards c, and
in a finite number of cycles at least one of them reaches c.

If s > 2, then SA is periodic (see paragraph on s > 2). Again, the algorithm
works similar to Case (A), except that all operations are done with respect
to InnerC instead of SEC .

(C) There is exactly one robot r at c, and SA− (the string of angles of
all robots except r) is general. Routine3 is called. If r is the only robot
inside SEC, then r chooses an arbitrary robot q on SEC and moves stepwise
towards it. By this movement, the string of angle becomes degenerated, since
r and q are on the same radius. Hence, by (B), r continues to move towards
q. If no critical points are on its path towards q, in a finite number of cycles r

reaches q and a unique point with strict multiplicity is obtained. Otherwise,
r stops at the first critical point it meets. Then a biangular configuration is
obtained, and Line 8 of the main algorithm applies.

If there are only two robots r and r′ inside SEC (with r at c), then r′

moves stepwise towards c. The argument follows similarly to the previous
paragraph.

If more than two robots are inside SEC and SA− is periodic except for
one gap6, then all robots inside SEC move towards c. By Lemma 5, no
biangularity can occur.

If more than two robots are inside SEC and SA− is not periodic except for
one gap, then the routine behaves similarly to Routine1. The only difference
is that in this case all the operations are done using SA− instead of SA;
that is, robot r is ignored.

(D) There is exactly one robot r at c, and SA− (the string of angles
of all robots except r) is degenerated. Routine4 is called. If r is not
the only robot inside InnerC , then this routine is similar to Routine 3,
except that all operations refer to InnerC instead of SEC . Otherwise, if r

is the only robot inside InnerC , then it chooses some an arbitrary index q

in StartSet− ∪revStartSet−. Note that q is always associated to a position
in SA where LexM inString starts. Robot r moves stepwise towards r(q),
while all other robots do not move. As soon as r leaves c, a unique starting

6 That is, the string would be periodic if r — the robot at c — would not be at c, but

somewhere inside SEC.
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position of LexMinString is obtained in the positions associated to r, since
an angle with 0◦ has been added. Thus, SA is degenerated with no robot
at c, and r will be chosen again to move on to q due to Case (B) above.

4 Conclusion

We have presented a deterministic algorithm for the Gathering Problem

for n ≥ 5 robots that works for all initial configurations of the robots. Some
interesting questions are still open. F or example, it is not known which other
abilities, other than multiplicity detection, would allow the weak robots to solve
the Gathering Problem.

It is known that changing the nature of the robots (e.g. by synchronizing
them, or by adding common knowledge on the coordinate system) enables solv-
ability. It is still not known if (and how) removing obliviousness would have the
same effect. It would be interesting to explore the relationship between mem-
ory and solvability or, for that matter, to study the impact of (weak) explicit
communication among the robots.
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