Searching for a Black Hole in Arbitrary Networks: Optimal
Mobile Agent Protocols

Stefan Dobrev.
Paola Flocchini
University of Ottawa

sdobrev @site.uottawa.ca
flocchin @ site.uottawa.ca

ABSTRACT

Protecting agents from host attacks is a pressing security

concern in networked environments supporting mobile agents.

In this paper, we consider a black hole: a highly harmful host
that disposes of visiting agents upon their arrival, leaving no
observable trace of such a destruction. The task to identify
the location of the harmful host is clearly dangerous for the
searching agents. We study under what conditions and at
what cost a team of autonomous asynchronous mobile agents
can successfully accomplish this task; we are concerned with
solutions that are generic (i.e., topology-independent). We
study the size of the optimal solution (i.e., the minimum
number of agents needed to locate the black hole), and the
cost of the minimal solution (i.e., the number of moves per-
formed by the agents executing a size-optimal solution pro-
tocol). We establish tight bounds on size and cost depend-
ing on the a priori knowledge the agents have about the
network, and on the consistency of the local labellings. In
particular, we prove that: with topological ignorance A +1
agents are needed and suffice, and the cost is ©(n?), where
A is the maximal degree of a node and n is the number of
the nodes in the network; with topological ignorance but in
presence of sense of direction only two agents suffice and
the cost is ©(n?); and with complete topological knowledge
only two agents suffice and the cost is O(nlogn). All the
upper-bound proofs are constructive.

Keywords
Mobile Agents, Black Holes, Distributed Computing

1. INTRODUCTION

In a networked environment that makes use of mobile
agents, security is a pressing concern, and possibly the most
difficult one to address. Actually, even the most basic se-
curity issues, in spite of their practical urgency and of the
amount of effort, must still be effectively addressed. The

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

PODC 2002, July 21-24, 2002, Monterey, California, USA.

Copyright 2002 ACM 1-58113-485-1/02/0007...$5.00.

Giuseppe Prencipe
University of Pisa

prencipe @di.unipi.it.

153

Nicola Santoro
Carleton University

santoro @scs.carleton.ca.

causes of this situation are not lack of interest and effort,
but rather the (unexpected) difficulties found when devel-
oping solutions; the nature of these obstacles is varied, most
are technological, some computational. Witness, for exam-
ple, the large effort to determine how to protect a network
site (a host) from malicious agents, as well as to protect
agents from host attacks (e.g., see [1, 5, 8, 10, 12]).

In this paper we consider the issue of host attacks; that
is, the presence in a site of processes that harms incom-
ing agents (e.g., see [6, 7, 9, 11, 13]). Obviously, the first
step in any solution to such a problem must be to identify,
if possible, the harmful host; i.e., to determine and report
its location; following this phase, a “rescue” activity would
conceivably be initiated to deal with the destructive pro-
cess resident there. The task to identify the harmful host is
clearly dangerous for the searching agents and, depending
on the nature of the harm, might be impossible to perform.

In this paper, we consider a highly harmful process: a sta-
tionary process that disposes of visiting agents upon their
arrival, leaving no observable trace of such a destruction.
Due its nature, the site where such an item is located is
called a black hole [2]. The task is to unambiguously deter-
mine and report the location of the black hole, and will be
called black hole search. The research concern is to deter-
mine under what conditions and at what cost mobile agents
can successfully accomplish this task. The searching agents
start from the same safe site and follow the same set of rules;
the task is successfully completed if, within finite time, at
least one agent survives and knows the location of the black
hole.

Black hole search is a non trivial problem, its difficulty is
aggravated by the simultaneous presence of asynchrony of
the agents and absence of any trace of destruction (outside
the black hole). The problem has been investigated when
the network is an anonymous ring (i.e., a loop network of
identical nodes sites) [2]. For such networks, an in-depth
characterization of the problem was given. The results es-
tablished there are however topology-dependent; in fact, in
their solution protocols, the agents exploited the properties
of the ring to derive the location of the black hole.

In this paper we are interested in the black hole search
problem in its more general setting, and in particular we
are concerned with generic solutions, i.e. solutions that are
topology-independent.

We ask computational questions regarding the size of the
optimal solution (i.e., the minimum number of agents needed
to locate the black hole), and the conditions for their ex-

istence. Some answers are immediate. For example, the
problem is clearly unsolvable if the graph G representing
the network topology is not 2-connected, so we will only
consider 2-connected graphs. Similarly, a single agent is in-
capable of performing the task, so the size is at least two;
how realistic is this bound? how many agents suffice? We
are also interested in the cost of the minimal solution (i.e.,
the number of moves performed by the agents executing a
size-optimal solution protocol).

In this paper we provide specific answers to these ques-
tions. We show that the answers vary depending on the a
priori knowledge the agents have about the network, and on
the consistency of the local labellings.

We consider first the situation of topological ignorance;
that is when the agents have no a priori knowledge of the
topological structure of G. We show that any generic solu-
tion needs at least A + 1 agents, where A is the maximal
degree of G, even if the agents know A and the size n of G.
We further prove that, in any minimal generic solution, the
agents will perform Q(n?) moves in the worst case. Both
these bounds are tight. In fact we construct a protocol that
correctly locates the black hole in O(n?) moves using A +1
agents that know A and n.

We then consider the case of topological ignorance in sys-
tems where there is sense of direction[3]; informally, sense
of direction is a labelling of the ports that allows the nodes
to determine whether two paths starting from a node lead
to the same node, using only the labels of the ports along
these paths. We show the surprising result that, if this is the
case, two agents suffice to locate the black hole, regardless
of the (unknown) topological structure of G. The proof is
constructive, and the proposed algorithm has a O(n?) cost.
We further show that this cost is optimal; in fact we prove
that any two agents algorithm for locating a black hole in ar-
bitrary networks with neighbourhood SD (a particular type
of sense of direction) has a Q(n?) cost in the worst-case.

Finally, we consider the case of complete topological knowl-
edge of the network; that is, the agents have a complete
knowledge of the edge-labelled graph G, the correspondence
between port labels and the link labels of G, and the lo-
cation of the source node (from where the agents start the
search). In this case, not surprisingly, two agents suffice. We
constructively prove that, in this case, the cost of a minimal
protocol can be reduced to O(nlogn), and furthermore this
is optimal.

2. DEFINITIONS AND BASIC PROPERTIES

Framework
Let G = (V,E) be a simple 2-connected graph; let n =
|V be the size of G, E(z) be the links incident on z € V,
d(z) = |E(z)| denote the degree of z, and A denote the
maximum degree in G. If (z,y) € E then = and y are said
to be neighbours. The nodes of G can be anonymous (i.e.,
without unique names). At each node z there is a distinct
label (called port number) associated to each of its incident
links (or ports); let A, (z, 2) denote the label associated at z
to the link (z, z) € E(z), and A; denote the overall injective
mapping at z. The set A = {\;|z € V'} of those mappings is
called a labelling and we shall denote by (G, A) the resulting
edge-labelled graph.

Let P{z] denote the set of all paths with = as a start-
ing point, and let Plz,y] denote the set of paths start-
ing from node z and ending in node y. Let A be the ex-

154

tension of the labelling function A from edges to paths.
A coding function ¢ of a system (G,)) is a function such
that: Vz,y,z € V, Vm € Plz,y], m2 € Plz, z] ¢(Az(m1))
c(Ax(m2)) iff y = z Thus, for any two paths 71 and 72
from z to y, ¢(Az(m)) = c(Az(m2)); we shall denote this
value (3.(y) and call it the local name of y at x. Given
a coding function ¢, a decoding function d for ¢ is such
that Vz,y,z € V, such that (z,y) € E(z) and 7= € Ply, 2],
A0 (2,9), ¢(Ay (1)) = c(ha(,y) © Ay (r)), where o is the
concatenation operator. In other words, by definition of
decoding function we have that d(A(z,y),8y(2)) = B=(2).
Given a coding function ¢ of (G, \) and a decoding function
d for c, the couple (c,d) is called a sense of direction for
(G, N B3l

Operating in (G,) is a set A of r distinct autonomous
mobile agents. The agents can move from node to neigh-
bouring node in G, have computing capabilities and bounded
computational storage (O(logn) bits suffice for all our algo-
rithms), obey the same set of behavioral rules (the “proto-
col”). The agents are asynchronous in the sense that every
action they perform (computing, moving, etc) takes a finite
but otherwise unpredictable amount of time. Initially, all
agents are in the same node h, called home base.

Each node has a bounded amount of storage, called white-
board; O(logn) bits suffice for all our algorithms. Agents
communicate by reading from and writing on the white-
boards; access to a whiteboard is gained fairly in mutual
exclusion.

Black Hole Search

A black hole is a node where resides a stationary process that
destroys any agent arriving at that node; no observable trace
of such a destruction will be evident to the other agents. The
location of the black hole is unknown to the agents. The
Black-Hole Search (BHS) problem is to find the location of
the black hole. More precisely, BHS is solved if at least one
agent survives, and all surviving agents know the location
of the black hole.

A solution protocol is generic if it solves BHS regardless
of G; in this paper we will only consider generic protocols.
The main measure of complexity of a solution protocol P is
the size, that is the number of agents used by P. We will
also consider the total number of moves performed by the
agents, and call it the cost of P.

We will study generic solutions and their complexity de-
pending on the type of topological information the agents
might have a priori available; we always assume they all
know n. If no additional topological information is avail-
able, the agents operate with topological ignorance. If the
system (G, \) has sense of direction (c,d) that is known to
the agents, we say the agents operate with sense of direction.
Finally, the agents have complete topological knowledge of
(G, \) if the following information is available to all agents:
(1) Knowledge of the labelled graph (G,)); (2) Correspon-
dence between port labels and the link labels of (G, A); (3)
Location of the home base in (G, X).

Basic Limits
Due to the asynchrony of the agents and to the nature of
the black hole, the following basic properties simply hold.

LEMMA 2.1. [2]

1. At least two agents are needed to locate the black hole.

2. It is impossible to determine the location of the black
hole if the size of G is not known.

3. It is impossible to verify whether or not there is a black
hole.

Thus, we assume that there are at least two agents; further-
more, the existence of the black hole and the size of G is
common knowledge to the agents.

Cautious Walk

At any moment of the execution of a protocol, the ports will
be classified as unezplored — no agent has been sent /received
via this port, ezplored — an agent has been received via this
port or active — an agent has been sent via this port, but no
agent has been received via it. Obviously, an explored port
does not lead to a black hole; on the other hand, both un-
explored and active ports might lead to it. To minimize the
number of casualties (i.e., agents entering the black hole), we
will not allow any agent to leave through an active port. To
prevent the execution from stalling, we will require any ac-
tive port not leading to the black hole, to be made explored
as soon as possible.

This is accomplished as follows: Whenever an agent a
leaves a node u through an unexplored port p (transforming
it into active), upon its arrival to the node v, and before pro-
ceeding somewhere else, a returns to u (transforming that
port into explored). We call this technique Cautious Walk.

3. COMPUTING WITH TOPOLOGICAL
IGNORANCE

3.1 Lower Bounds

The lower bounds we are going to prove are for algorithms
that know n and work on all 2-connected graphs of maximal
degree at most A. (The algorithm knows A, but the graph
does not necessarily has a vertex of degree A.)

We follow an approach common in lower bound proofs
by viewing the execution as a game between an algorithm
and an adversary. The goal of the algorithm is to locate
the black hole and to terminate. The adversary tries to
either force the algorithm to behave incorrectly, or make
it costly. The adversary has the power (1) to choose the
graph (with port labels), (2) to place the black hole and (3)
to set (navigational) delays. The first two points are due
to the fact that the algorithm does not know the network,
neither the location of the black hole. The fact that agents
are asynchronous gives the adversary the third power.

Because of the asynchrony, we can limit ourselves to reac-
tive algorithms: If an algorithm uses timeouts, the adversary
can make all timeouts expire without allowing any agent to
arrive to its destination. This means that an agent at a node
must either wait for the arrival of an agent, or to depart via
one of the incident ports.

We further simplify matters by turning an active port p
into explored at the moment the agent that departed via
p arrives to its destination. This essentially gives any al-
gorithm the power of cautious walk, without requiring that
an agent must return to mark an active port as explored.
Clearly, this only strengthens the algorithm and makes the
lower bound result stronger. Since for every algorithm there
is an equivalent one using cautious walk, we can limit our-
selves to algorithms that avoid sending an agent via an active
port.

155

The above discussion narrows the possible actions the al-
gorithm can specify for available (not in transit and not
waiting) agents to (1) departure via an unexplored port, (2)
departure via an explored port and (3) waiting until another
agent arrives, or a port status changes.

The adversary applies its power to set delays by being
able to specify at any moment of the execution which of the
agents in transit arrive to their destination, and which of
them remain travelling.

We say a configuration is stable if there are no agents
in transit over explored links. Since an explored link does
not lead to a black hole, whenever there are some agents in
transit over such links, the adversary must eventually allow
all these agents to arrive to their destinations. This suggest
the following rule used by our adversary:

o Jfthere are agents travelling via explored links, block all
active and unezxplored ports until a stable configuration
is reached.

Applying this rule allows us to focus on the behaviour of the
adversary in stable configurations only.

At any moment of the execution the maximal information
the algorithm can have about the underlying graph can be
described by a graph Ge induced by the explored nodes,
together with the information about their degree and the
labels of the incident ports in the underlying graph. (We will
denote this graph together with the additional information
by G3.)

The power of the adversary to choose the graph and the
port labelling comes into play in stable configurations, when
the adversary allows some agents to arrive to their destina-
tion. At that moment, the adversary chooses a witness graph
G = (V, E) (together with its port labelling) in which these
freed agents arrive to their destination. The graph G must
be consistent with the previous execution of the algorithm.
This consistency means that G is an induced subgraph of G
and for all nodes in G. the information (degree and port la-
bels) contained in G matches these values in G. Note that
G must be 2-connected, of order n and should have maximal
degree at most A. In the rest of this section we restrict our-
selves only to such graphs, without explicitly stating these
properties. Observe that there are usually many possible
witness graphs consistent with the current knowledge G,
and the adversary’s choices of the witness graph can vary
during the execution.

Since the adversary can permanently block only links lead-
ing to the black hole, we immediately get the following ob-
servation:

OBSERVATION 3.1. If, for a stable configuration, there does
not ezxist o graph G and a node u from G such that G s
consistent with G; and all active ports lead to u, then the
adversary must allow at least one agent to arrive to its des-
tination.

The following corollary describes in detail some conditions
under which such witness graph and node do not exist:

COROLLARY 3.2. If any of the following conditions hold
in a stable configuration, then the adversary must unblock at
least one agent.

a) A node has two incident active ports.

b) There are at least A + 1 active ports.

home base

black hole

home base

n-2

n-1

black hole

Figure 1: The lower bound graphs for A > n — 4(left) and A <n —4 (right) .

¢) There are A active ports, at most one open node (ez-
plored node with an unezplored port) and at most n—2
ezplored nodes.

d) There are some active ports, no open node and at most
n — 2 explored nodes.

PrOOF. For each case we prove that there is no witness
graph G and a node u from G, such that all active ports
lead to u.

a) Since G does not contain multiple edges, there can be
at most one link from any node to u.

b) The maximal degree of u is A.

c) Suppose all active ports lead to u. Because there are A
active ports, all A links of the node u are used. Hence
the unexplored part of G must be connected directly to
the explored part (via unexplored ports). Since there
is at most one open node where it can be connected,
there is no way G to be 2-connected.

The same as ¢), but now the unexplored part can be
connected only to the node u, which again contradicts
the 2-connectedness of G.

g

Note that although avoiding conditions from Corollary 3.2
is necessary for the adversary to be consistent, it is not suffi-
cient: Consider the following G: a) G contains n—2 nodes,
b) A = 3, c) there are three explored nodes v, vs, v3, each
one having one active and zero unexplored ports d) there
is one open node vs with two unexplored links. Clearly, it
is not possible to have all active ports leading to the same
node u, because v4 also has to be connected to u, violating
A=3.

Another technique often used is to apply adversary’s power
to ’direct’ the agents leaving via unexplored ports: When
the algorithm specifies that an agent leaves a node via an
unexplored port, it chooses the port based on the port la-
bels. Since the adversary can permute the port labels of the
unexplored ports, this means that the adversary can choose
via which port the agent will leave.

The following theorem gives us the main lower bound,
binding the number of agent needed to the maximal degree
of the network:

156

THEOREM 3.3. There is an n node graph G with the high-
est degree A < n—4 such that any algorithm for locating the
black hole in arbitrary networks needs at least A + 1 agents
m G. In addition, if n—4 < A < n then any such algorithm
needs at least A agents.

ProoF. We first prove the second part for A = n — 1.
Consider the left graph from Figure 1, with the black hole
at node 0. The first agent departing the home base 1 is sent
via link leading to 0 (and blocked). Therefore there must
be an agent moving to the node 2. Again, the first agent
departing node 2 via unexplored link is sent to 0; the same
is applied for nodes 3,4,..., A —1, resulting in A — 1 agents
being blocked before the algorithm can reach the node n—1
and terminate. If A = n — 2, the adversary chooses the
same graph, except that node 2 is not connected to 0. If
A =n—3, also 3 is not connected to 0. It is easy to see that
the previous approach can be applied also in these cases.

The case A < n — 4 is played on the right graph from
Figure 1. The same arguments as before apply until a node
d —1is reached. Again, the first agent leaving A — 1 via un-
explored link is directed towards 0 and blocked. The second
such agent is sent to A. There are two possibilities: Either
the agent departs A via unexplored link (and is sent to 0),
or it returns back to A —1, explores the last unexplored link,
arrives to A 41 and explores an unexplored link from there.
In the first case there are A blocked agents and the theorem
is proven, in the second case the adversary switches A and
A +1 (as they look the same to the algorithm) and the A-th
agent is sent to 0 as well. [J

In the rest of this subsection we show a lower bound of
(n?) moves, if the optimal number A + 1 of agents is used.

Let us call basic cell the graph obtained from a mesh (A +
2) X 2 by collapsing the outermost pairs of nodes. The game
is played on an |n/(2A + 2)| node ring having each node
replaced by a basic cell (see Figure 2). If n is not divisible
by 2A + 2, an appropriate number of nodes is connected to
the basic cell opposite to the starting node to yield an n
node graph G.

Overview description. At any moment of an execution
the explored part of the network can be divided into three
parts (see Figure 3):

E: The middle, fully explored part, consisting of fully ex-
plored basic cells.

Figure 2: The graph G for A = 3.

Explored

Closed

Figure 3: An example of explored part of the net-
work. The arrows correspond to agents in transit.

QO:

Open border, containing a single partially explored ba-
sic cell.

C: Closed border, consisting of a single blocked link lead-
ing to the next (yet unexplored) basic cell.

The idea is to force the agents to repeatedly migrate be-
tween the opposite ends of the explored subgraph, crossing
the ever increasing middle part. This migration is forced by
“closing” the open border part by blocking the horizontal
link to the next basic cell, and simultaneously “opening”
the closed border part. Eventually, all unexplored ports in
the newly closed part will be explored and there will be no
exploration work left there. If the agents do not move to the
open part (i.e. they start waiting for the blocked link to be-
come unblocked), the adversary chooses a witness graph in
which all active ports lead to the black hole. Once all agents
(except the agent blocked at the horizontal link) have mi-
grated, the closed part is opened, the open part is closed and
the process is repeated until (almost) the whole network is
explored.

Detailed description. In order to reduce the cases we
must consider, we give the algorithm the following power:
Whenever an agent arrives to a node with an active port,
all remaining unexplored ports are revealed (explored) at no
cost. Clearly, this modification only strengthens our lower
bound.

From the top level perspective, the only action an avail-
able agent can do between two stable configurations is to
(possibly) move over explored links to some other node and
either depart via an unexplored port or start waiting. We
describe the adversary’s actions as responses to such meta-
actions of the algorithm. In particular, we specify how the
adversary acts (1) at the beginning of the execution, until
a closed and open border parts are formed, (2) in an open
border part, until it is closed and (3) in a closed border part,
until it is opened. The adversary actions are described as
reaction to arrival of an agent to the particular part. Note
that although there could be several available agents (e.g.
at the beginning of the execution), the adversary can han-
dle them sequentially by allowing only one of them to move,
while blocking all others. The adversary reacts to awakening
of an agent in the same way as if the agent has just arrived.

Initialization. The adversary chooses a graph with the

157

Open Closed
Figure 4: The initial configuration.

start node at the right border of a basic cell. The initial-
ization is achieved by sending the first agent to the right
and blocking it there. In addition, the two left links are re-
vealed to the algorithm without any cost. (This is done to
simplify presentation, clearly it only strengthens our lower
bound.) This terminates initialization, with the right bor-
der part being closed and the left border part being open.
(Consult Figure 4.)

Open part. Whenever an agent arrives (either from the
closed segment, or being awaken) to an open part and de-
parts anode v via an unexplored port, the adversary directs
it to the vertical line incident to v. This ensures that, in
general, an open part looks like in Figure 3; the only free-
dom the algorithm has is to choose whether to explore from
the top line or from the bottom one.

When the number of agents traversing the active links in
the open part reaches A, the adversary switches the open
and closed parts as follows.

The open part is closed by blocking the link leading to
the next basic cell. Moreover, all agents that have been
blocked in this part are unblocked and all remaining unex-
plored links in this basic cell are revealed at no cost to the
algorithm. (This again only strengthens our lower bound.)
The resulting fully explored basic cell is then added to the
middle (explored) part.

The closed part is opened by unblocking the bridge link
and revealing the two incident links of the neighbouring un-
explored basic cell.

Closed part. The adversary keeps the bridge link blocked.
Since there are no unexplored ports in this part, all agents
will either start waiting or leave for the open part.

LEMMA 3.4. If an open part does not switch to closed,
and the number of explored nodes is at most n — 2, then the
algorithm does not locate the black hole.

PRrROOF. We show that, in such a case, the adversary can
construct a witness graph in which all active ports lead to
a single node. This means the algorithm can no longer
progress nor locate the black hole among the remaining un-
explored nodes.

First note that an open part has two open nodes — the
last ones in each horizontal line. Since the open part does
not switch to closed, there are at most A — 1 active ports
there. However, there is at most one active port in the closed
part. Since there are no active ports in the middle segment,
at most A agents are blocked in active ports. The witness
graph is constructed from G. (the currently explored graph
- the subgraph of G the algorithm has seen so far) by adding
a new node u connected to all active ports; in addition a loop
of nodes is connected to G. at the two open nodes. (Some
additional edges may be necessary, see Figure 5.) If there
is a single active port, u is also connected to this loop, to
ensure 2-connectivity. [

black hole

Figure 5: The adversary’s response to a stable con-
figuration with 3 agents on active links (one at the
closed part, and two on the vertical links from v and
v; the vertical and left port of w were unexplored),
and others waiting. The white nodes are added in
order to make the graph have n vertices.

Now we are ready for the theorem:

THEOREM 3.5. There exists a graph G such that any A+1
agent algorithm working on all 2-connected n-node networks
of mazimal degree at most A > 3 needs Q(n?) moves to
locate the black hole in G.

PRroOF. During each change (or, flip) of open/closed parts,
A — 1 agents cross the middle explored part and this part
grows by one basic cell. Since A + 3 moves are needed to
cross a basic cell, the number of moves between the ¢-th and
1+ 1-th flip is at least (A —1)(¢ — 1)(A +3). Summing until
there is only the last basic cell left yields the result of the
theorem:

ln/(2442)] -1

>

i=1

(A - 1) —1)(A +3) = n?/8 + o(n?)

O

Note that the graph we used is of maximal degree 3. The
possibility that the graph can have a node of degree A is
sufficient to drive the cost of a A + 1 agent algorithms to
Q(n?). Observe also that this lower bound does not hold for
A = 2 (i.e. ring networks), as there is a black hole location
algorithm for rings of complexity O(nlogn) [2].

3.2 Optimal Protocols

In this section we will show that the established lower
bounds are tight. Consider the case when A < n — 3; by
Theorem 3.3, A + 1 agents are necessary. The following
protocol shows that they are also sufficient.

Call a node v expanded if all its ports are explored or
active. Starting from the home base, each node (except
the black hole) will be visited and subsequently expanded.
|E(h)| = outy, agents are assigned to expand the home base,
and (at most) two to each other node; this limitation is
imposed so to reduce the total number of movements.

Also to reduce the number of movements, during the ex-
pansion process, the agents construct a spanning tree T of
G rooted in h; this tree will be used for their travel to and
from the home base.

To ensure these properties, the protocol uses a counter
co(u) (“asking”) at each node u; it also uses two other coun-
ters at the home base: ¢, (“agents-needed”) and c. (“nodes-
expanded”). T will be a tree rooted at the home base, span-
ning all visited nodes, distributively stored at its nodes (at a
node, ports corresponding to the tree edges will be marked,

158

as well as the port leading to the parent node). Initially, at
the home base, ca(h) := ¢n 1= outs, ce 1= 0; h is marked as
visited; all agents are waiting at A and T contains just h.

At any time, an agent will be either expanding a node, or
searching for a node to expand, or waiting at the home base
for an assignment, or destroyed by the black hole.

ALcORITHM 1 (IGNORANCE: A <n —4).
Waiting for Assignment - Let agent a be waiting
at h.

1. If ¢, > O then a sets ¢, := ¢, — 1 and starts
searching for a node to expand.

Searching - Let agent a be searching for a node
to expand.

1. a traverses! T until a node u with cq(u) > 0
is found.

2. It sets cq(u) := cau) — 1.

3. a starts expanding wu.

Node Expansion - Let agent a be at v to expand
it.

1. It leaves through an unexplored port p of
u, making it active. If the incident node v
had already been visited, a returns to u to
continue its expansion. Otherwise

(1) a sets cq(v) := 2, updates T by adding
v and (u,v), and returns to v (making
p explored).

(2) a goes to h where it sets ¢p = cn + 2
(to register that another node has been
visited and two agents must be assigned
to its expansion);

(8) Tt returns ? to u to continue its expan-
sion.

2. If no port of u is unexplored (a has finished
its expansion of u): if u is already marked as
expanded, a returns to h to wait; otherwise,
a marks u as expanded, returns to h, sets
Ce 1= ce + 1, and waits.

Termination - When ¢, = n— 1, then T includes
every node except the black hole; furthermore, at
that time, every port p that is still active leads
to the black hole. <>

THEOREM 3.6. Algorithm 1 correctly locates the black ho-
le, in O(n®) moves using A + 1 agents.

1A “right-hand-on-the-wall” rule for traversing mazes is
used (the ports at a node are cyclically ordered, after ar-
riving by port p, an agent leaves using the next port in the
tree), as it does not require additional memory at the agent
and/or nodes.

21t is sufficient for @ to remember the identifier of u and
traverse T' until u is found. If the nodes did not have unique
identifiers at the beginning, the algorithm can be modified
to assign to each node a unique identifier when it is first
visited.

PROOF. Correciness. Since Algorithm 1 uses cautious
walk, at most one agent will enter each link incident to the
black hole. As the maximum degree of G is at most A, at
least one agent, say r, never enters a links leading to the
black hole. Moreover, since the graph is 2-connected, there
is a path from A to every node v in G not passing through
the black hole. That means that every node except the black
hole will eventually be visited (because at least r survives),
and the black hole located.

Cost. The O(n?) overall cost follows from the fact that the
cost of expanding one vertex v is O(n): When v is visited for
the first time, the cost (O(n)) of returning to the home base
to update the “nodes-visited” and “agents-needed” counters
is charged not to the node being expanded, but directly to
v. At most two agents will then come from the home base
to v to expand it, at a cost of O(n). Finally, the cost of
expanding v is O(deg(v)). O

The Algorithm 1 is not optimal for n —4 < A < n —1,
when A agents are sufficient. The main idea of the algorithm
for n —3 < A < n—1is to look at a configuration with
exactly A — 1 expanded nodes and carefully choose which of
the remaining nodes to expand first. The details are quite
technical due to the distributed nature of the algorithm and
can be found in the full paper.

THEOREM 3.7. Ifn—3 < A <n-—1, A agents can locate
the black hole with cost O(n?).

The proof of Theorem 3.7 is omitted; it is a quite tedious
case analysis of how the remaining n — A + 1 unexpanded
nodes can be connected to each other and to the graph in-
duced by the already expanded nodes.

As a final remark, we note that the amount of space
required by Algorithm 1 is O(|E(x)|) at each node z (to
store its portion of the tree and the “asking” counter), plus
an additional O(logn) at h (to store the counters “agents-
needed”, and “nodes-expanded”). For each agent, O(log n)
bits suffice.

4. COMPUTING WITH SENSE OF DIREC-
TION

Sense of direction is a well known property of labelled
graphs that has been extensively studied in the context of
distributed computing and has been shown to have an im-
pact in reducing the communication complexity of several
problems (for a survey, see [4]).

In this section we show that, even in a situation of topo-
logical ignorance, if there is sense of direction, two agents
suffice to locate the black hole, regardless of the topology of
G. We do so constructively, by designing a solution proto-
col that requires only two agents. We further prove that the
proposed solution is also cost-optimal.

The idea of the algorithm is similar to the one of Algo-
rithm 1: the graph is traversed, expanding the encountered
nodes and constructing a spanning tree T of G rooted at h.
Unlike the previous solution, only two agents a and b will
be employed.

Using only two agents, the crucial and difficult task is to
prevent both of them entering the black hole. Clearly, if they
are expanding the same node v, no such a danger exists (as
only one of the v’s neighbours can be the black hole). The
problem exists only while expanding different nodes, since

159

both of them might be neighbouring the black hole. Our
algorithm makes the agents expand the same node while it
is possible. The only situation when this is not the case
is when one agent (say b) is exploring the last port p of v
(leading to a node w), while the other agent a has already
left v searching to expand other nodes (as it had no more
work to do at v). In this situation, we must prevent a from
entering a port leading to w, since w may contain the black
hole. This is achieved using sense of direction: a maintains
a variable danger, containing the local name of w. Initially,
danger is set to 3, (w) = ¢(p). Whenever a moves from node
z to node y, danger is updated to By (w) = d(A(z, y), B=(w)).
This allows a to check at y whether a port p’ leads to w by
simply comparing 8, (w) with d(c(p’)). When (if) b explores
w, it follows the agent a to inform it that w is no longer
dangerous and to join it in expanding the node it is currently
expanding. This following is easily accomplished by having
a leave a trail (marked ports).

At any time, an agent will be either expanding a node, or
searching for a node to expand, or following the other agent,
or destroyed by the black hole. In the first two cases, the
agent might carry with it information, the variable danger,
about the dangerous node to be avoided. As before, we
will use a spanning tree T of all visited nodes; initially, T
contains just h.

ALGORITHM 2 (SD).

Node Ezpansion - Let a be the agent expand-
ing node u; let z be the current dangerous node
(if any) and danger = B.(z) be the informa-
tion known to a (if there is no dangerous node,
danger = nil).

1. If there is an unexplored port p of u not
leading to the dangerous node: a leaves u
through p making it active, and returns to
u (making p explored). If the incident node
v had not been previously visited, a updates
T by adding v and (u,v) to it.

2. If all ports not leading to the dangerous
node are explored:

(1) If there is a note from b indicating that
b is searching, a removes the note, be-
comes a follower and moves following
the navigational instructions left by b.

(2) If there are no notes from b, a marks u
as expanded and starts a traversal of T
searching for another node to expand,
leaving a navigational instruction® for

b.

3. If one port p, leading to node w, is active
and all the others are explored (b is cur-
rently exploring link (u,w) and the dan-
gerous node is w), a will: set danger =
Bu(w) = c(A(u,w)) = ¢(l), where [is the la-
bel of p; mark u as expanded; start a traver-
sal of T searching for another node to ex-
pand; and leave a navigational instruction
for .

3a pebble marking the port over which a leaves the current
node is sufficient

Searching - Let a be moving from node u to node
v searching for a new node to expand. Let z
be the current dangerous node (if any); thus,
danger = B.(z).

Upon arriving at v:

1. It sets danger = B,(z) = d(A(v,u), Bu(2))
updating the information about the danger-
ous node.

2. If v has been already expanded, a contin-
ues its traversal of T searching for another
node to expand, and leaves a navigational
instruction for b.

3. If v is unexpanded, a starts the expansion
of v.

Following - Let a arrive at v while following b. If v
is not expanded, a joins b in the expansion; oth-
erwise a follows the navigational command left
there by b.

Termination - When the searching agent finds
that all nodes in 7" are expanded, the node iden-
tified by danger is the black hole. <

THEOREM 4.1. In an arbitrary network with sense of di-
rection, the black hole can be located by two agents with cost

O(n?).

PRrROOF. Correctness: We start by showing that at most
one agent will enter the black hole. First, note that a fol-
lowing agent does not enter an unexplored port. Second, if
both agents are expanding the same node, at most one of
them will enter the black hole. Finally, the only possibility
for the agents to expand different nodes u and v is when
one (say b) is exploring the last unexplored port p of a node
u, while a has already left u in a search of the next node v
to expand. In such a case, a remembers that p leads to a
dangerous node w and will not enter port leading to w.

That means that at least one agent survives; it will eventu-
ally explore n— 1 nodes and terminate, correctly identifying
the remaining node as the black hole.

Cost: The total cost for expanding the nodes is O(m)
(each link is visited at most twice). The cost of one following
is bounded by O(n) (the follower will visit each node at
most once). An agent becomes follower only when the last
port of a node is explored, hence the total cost following is
O(n?). The cost of finding the next node to expand is O(n)
(traversal of the tree T'). The total cost of finding is again
O(n?), as for a given node at most one agent (the first one to
not find a unexplored port leading to non-dangerous node)
leaves it in a search for the next node to expand. [

We will now show that the quadratic bound on the cost is
tight in the worst case. We prove it for a particular type
of sense of direction called neighbourhood SD (note that
such lower bound applies to all algorithms assuming noth-
ing about SD), which is equivalent to each node knowing
for each port the label of the node on the opposite site (we
assume here that the nodes have unique labels, this only
strengthens the lower bound) [3].

THEOREM 4.2. Any two agent algorithm for locating black
hole in arbitrary networks with neighbourhood SD has Q(n?)
cost in the worst-case.

160

\R home base ’/"

Figure 6: The lower bound graph.

Figure 7: Directing the eagerly exploring agents to
the black hole.

ProoF. (sketch) The lower bound is based on the obser-
vation that, although SD tells an agent what is on the other
side of an incident unexplored link, it gives no information
about what is deeper inside the unexplored part.

We view the execution as a game between the adversary
and the algorithm, played on the graph from Figure 6 (a
ring with each vertex except the home base replaced by a
triangle). The game proceeds in rounds. At the beginning
of each round both agents are leaving the explored part in
opposite directions over the “ring edges” (the edges coming
from the original ring; the edges of the triangles are called
triangle edges). The beginning of the first round is reached
by the adversary blocking both edges incident to the home
base and waiting until both agents depart in the opposite
direction (they must do so, otherwise the algorithm does not
correctly handle the situation with a black hole incident to
the home base).

During a round, the adversary performs two tests: (1) If
the left blocked edge is unblocked, will the agent return to
the middle node of the explored part before entering a tri-
angle edge of the next unexplored triangle? (2) The same
test on the right side. Note that these tests are only virtual,
by examining the algorithm. An affirmative answer to both
tests means that the agents proceed (without communicat-
ing) to explore parts of the graph about which they have no
knowledge. In such a case, the adversary forces the algo-
rithm to behave incorrectly by directing both agents to the
black hole (see Figure 7).

Hence, at most one agent will enter a triangle edge with-
out returning to the middle of the explored part. The ad-
versary unblocks the agent a that would return there. Then
the whole next triangle is revealed and the next unexplored
ring edge is blocked (the other agent remains blocked all the
time on the ring edge on the opposite side). Eventually, the
freed agent will enter the blocked ring edge and the next
round will start. (Otherwise the algorithm will not locate
the black hole, as there will be more then one unexplored
node remaining.)

Note that, since during round p the explored subgraph G%
contains p—1 triangles, the freed agent performs Q(p) moves.
Because the arguments above apply for all rounds with at

least one unexplored triangle (ie. p < n/4 — 1), summing
over all such rounds results in an Q(n?) lower bound. [J

5. COMPUTING WITH COMPLETE
KNOWLEDGE

In this section we consider the case of an arbitrary sys-
tem where the agents have complete topological knowledge
of (G,). In this case, not surprisingly, two agents suffice,
even if there is no sense of direction. In fact, with com-
plete topological knowledge, each agent can unambiguously
determine the node being visited by the other agent, and
thus avoid that node. In other words, we can employ the
solution strategy for systems with sense of direction, even if
there is no sense of direction. This will yield, by Theorem
4.1, a two-agents solution with O(n?) cost.

We will now show how, using a different approach and
making full use of the available knowledge, the two agents
can locate the black hole with at most O(nlogn) moves,
which is optimal. The proposed algorithm does not use col-
laborative “expansion” of the nodes, employed by all previ-
ous protocols. Instead, it is based on the notion of individual
“working sets” and of “safe” nodes, using an approach simi-
lar to the one for ring networks [2]. The safe nodes are those
in the subgraph induced by the explored links.

Informally, the protocol is as follows. Let G. be the ex-
plored part of the network (i.e., the set of safe nodes); ini-
tially it consists only of the home base k. The two agents, a
and b, will partition the unexplored area into disjoint sub-
graphs G, and Gy, such that there is a link from G. to G,
and from G. to G (we will show that this is always possi-
ble); G, will be the working set of a, and G} that of . Each
agent will traverse its working set using cautious walk on a
tree spanning it, and avoiding the working set of the other
agent.

Let b be the first agent to terminate the exploration of its
working set; when this happens, & will go to find a. It will
do so by: first going to the node u, from which a departed
towards its working set, using optimal path and avoiding
Ga; then following the explored links of the tree spanning of
Ga used by a; finally reaching the last safe node w, reached
by a.

It will then compute the new subgraph G, containing all
non-safe nodes. If G, contains a single node, that node
is the black hole. Otherwise b computes the new working
sets for itself and a; it leaves a note for a at w, indicating
the new working set GG, for a, and goes to explore its new
assigned area avoiding the (new) working set of a. When
(if) a returns to wa, it finds the note and starts exploring
its new working set.

ALGORITHM 3 (COMPLETE KNOWLEDGE).
Computing the Working Sets - Let a be the agent
computing the working sets, and let w be the
node where this is done (initially w = h).

1. a partitions G, into disjoint subgraphs, G,
and Gs, such that there is a link (uq,v,)
from G. to G, as well as a link (up, vp) from
Ge to Gy. If this is not the first assignment
of working sets, then (us,vs) is fixed to be
the link from which b last left w.

161

2. a leaves a note for b informing it of the new
working set G4, and leaves to explore its
working set G,.

Ezxploring the Working Set -

1. a goes to u, using the shortest possible route
in Ge.

2. Starting from u,, a explores G, using cau-
tious walk on a tree spanning G, and avoid-
ing Gb.

3. During the cautious walk, if a finds at node
w a note from b informing it of the new
working sets G, and Gy, a will start the ex-
ploration of the (new) G, starting from the
(new) uq (notice that, in this case, u, = w).

4. If a completes the exploration of its work-
ing set, it will search for b to recompute the
working sets.

Searching for the other agent - Let a be searching
for b.

1. a goes to up (the node from which b de-
parted towards its working set) using an op-
timal path avoiding Gs.

2. Starting from w, a follows the safe links
of the tree spanning G, used by b, until it
reaches the last safe node w reached by b.

3. a computes the new working sets.

Termination - When computing the working set,
if G contains a single node, that node is the
black hole. <

The following lemma shows that the agents can indeed
perform the actions specified in step 1. of part Computing
the Working Sets of Algorithm 3.

LemMma 5.1. Let G = (V,E) be a graph of vertex con-
nectivity at least two and let {Ve,V,} be a partition of V
such that G. (the graph induced by V.) is connected. Let
(u,v) € E, where u € Ve and v € Vy,, and let 1 < k < |Vi|.
Then V., can be partitioned into Vo and Vi such that |V3| = k,
v € V, and there is a link between Ve and V,. (See figure 8)

Existence of a link between V. and V, means that a can
safely reach the part (subgraph G, induced by V,) it has to
explore. The lemma is more general then strictly needed, as
only the case k = |V4|/2 is used by the algorithm.

The proof of Lemma 5.1 is omitted; it is technical and
pure graph theory.

THEOREM 5.2. The black hole can be located by two agents
with full topological knowledge in arbitrary networks of ver-
tex connectivity 2 with cost O(nlogn), and this is optimal.

ProoF. (sketch) Correctness: Since G, and G} are dis-
joint, one agent always survives. This, together with the
fact that agents never wait for each other, ensures progress.
The Lemma 5.1 used with k& = |V,,|/2 allows to halve in
each round (iteration of the main loop) the size of the unex-
plored area. This means after O(log n) rounds the algorithm
terminates.

S em T N
7.0 G
;0 SN
I"- P) Ga N “
et T Y
I: Gy |
' ';Zé /
. I R ~
.- ..
AN v, 7 N
T NNy L7y]
! \:\:’ y
\ /
\ u Ve
\ 7
Ge "~ -7
~ -

Figure 8: Splitting the unexplored subgraph G, into
G. and Gs.

Cost: Note that the each action an agent performs within
one round is either (1) local computation (2) moving to an-
other node of G. or (3) traversing a spanning tree of some
subgraph of G.. Clearly, the cost of each of these actions is
O(n). Since the number of such actions per round is con-
stant, and there are only two agents, the total cost of one
round is O(n). As the number of rounds is o(log n), the total
cost of Algorithm 3 is O(nlogn).

The cost optimality follows from the £2(n log n) lower bound
for ring networks by [2]. [

Note that the analysis above uses very weak arguments to
prove that the cost of one round is O(n). Nevertheless, they
can not be improved in general — the cost of communication
(an agent finding the other agent, and leaving a message) in
the ring network is O(|G.|), which over all rounds sums to
O(nlogn).

6. CONCLUDING REMARKS

We have studied conditions under which a team of au-
tonomous asynchronous mobile agents can identify the lo-
cation of the harmful host. We have shown that the size
and the cost of an optimal solution depend on the a priori
knowledge the agents have about the network, and on the
consistency of the local port labellings. In particular, we
have provided tight bounds when computing with topolog-
ical ignorance, in presence of sense of direction, and with
complete topological knowledge.

Topological ignorance and complete topological knowl-
edge represent the two extreme levels of possible knowledge.
Interesting natural questions are about the intermediate lev-
els. For example, can two agents locate the black hole with
O(nlogn) cost with less than complete knowledge?

We have shown that the presence of sense of direction al-
lows two agents to overcome any ignorance about the topol-
ogy. Are there other consistency properties capable of sim-
ilar results?

7. REFERENCES
[1] D. M. Chess. Security issues in mobile code systems.
In Proc. Conf. on Mobile Agent Security, LNCS 1419,
pages 1-14, 1998.
[2] S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro.
Mobile agents searching for a black hole in an

162

(3]

[4]

[5]

[6]

[7]

(8]
9

[10]

(11]

[12]

(13]

anonymous ring. In Proc. of 15th Int. Symposium on
Distr. Computing (DISC 2001), pages 166-179, 2001.
P. Flocchini, B. Mans, and N. Santoro. Sense of
direction: definition, properties and classes. Networks,
32(3):165-180, 1998.

P. Flocchini, B. Mans, and N. Santoro. Sense of
direction in distributed computing. Theoretical
Computer Science, (to appear), 2002.

M. Greenberg, J. Byington, and D. G. Harper. Mobile
agents and security. IEEE Commun. Mag., 36(7):76 —
85, 1998.

F. Hohl. Time limited blackbox security: Protecting
mobile agents from malicious hosts. In Proc. of Conf
on Mobile Agent Security, LNCS 1419, pages 92-113,
1998.

F. Hohl. A framework to protect mobile agents by
using reference states. In Proc. of the 20th Int. Conf.
on Distr. Computing Systems (ICDCS 2000), 2000.
N. R. Jennings. On agent-based software engineering.
Artificial Intelligence, 117(2):277-296, 2000.

S. Ng and K. Cheung. Protecting mobile agents
against malicious hosts by intention spreading. In
Proc. 1999 Int. Conf. on Parallel and Distributed
Processing Techniques and Applications (PDPTA’99),
pages 725-T729, 1999.

R. Oppliger. Security issues related to mobile code
and agent-based systems. Computer Communications,
22(12):1165 — 1170, 1999.

T. Sander and C. F. Tschudin. Protecting mobile
agents against malicious hosts. In Proc. of Conf on
Mobile Agent Security, LNCS 1419, pages 44-60, 1998.
K. Schelderup and J. Ones. Mobile agent security -
issues and directions. In Proc. 6th Int. Conf. on
Intelligence and Services in Networks, LNCS 1597,
pages 155-167, 1999.

J. Vitek and G. Castagna. Mobile computations and
hostile hosts. In D. Tsichritzis, editor, Mobile Objects,
pages 241-261. University of Geneva, 1999.

