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Abstract. W e consid er a collection of rob ots wh ich are id entical (anony-
m ou s), h ave lim ited visib ility of th e environm ent, and no m em ory of th e
p ast (ob liviou s); fu rth erm ore, th ey are totally asynch ronou s in th eir ac -
tions, com p u tations, and m ovem ents. W e sh ow th at, even in su ch a to-
tally asynch ronou s setting , it is p ossib le for th e rob ots to g ath er in th e
sam e location in fi nite tim e, p rovid ed th ey h ave a com p ass.
K e y w o rd s: D istrib u ted alg orith m s, coord ination, control, m ob ile
rob ots.

1 Introduction

In cu rrent rob otics re search, b oth from eng ine e ring and b ehav ioral v ie w p oints,
the trend has b e en to m ov e aw ay from the d e sig n and d e p loy m ent of fe w , rather
com p le x , u su ally e x p ensiv e , ap p lication-sp ecifi c rob ots. Instead , the inte re st has
shifte d tow ard s the d e sig n and u se of a larg e nu m b e r of “ g ene ric” rob ots w hich
are v e ry sim p le , w ith v e ry lim ite d cap ab ilitie s and , thu s, re lativ e ly ine x p ensiv e .

In p articu lar, each rob ot is only cap ab le of sensing its im m e d iate su rrou nd ing ,
p e rform ing com p u tations on the sense d d ata, and m ov ing tow ard s the com p u te d
d e stination; its b ehav ior is an (end le ss) cy cle of sensing , com p u ting , m ov ing and
b e ing inactiv e (e .g ., se e [2 ,7 ,8 ,9 ]). O n the other hand , the rob ots shou ld b e ab le ,
tog e the r, of p e rform ing rathe r com p le x task s. E x am p le s of ty p ical b asic task s
are gathering, lead er electio n, pattern fo rm atio n, scattering, e tc.

A v e ry im p ortant set of q u e stions re fe r to d ete rm ining the rob ots cap ab ilitie s;
that is how “ sim p le ” the rob ots can b e to p e rform the re q u ire d task [3 ]. In
com p u tational te rm s, this q u e stion is to id entify the factors w hich infl u ence
solv ab ility of a g iv en p rob le m (the task ).

T he se q u e stions hav e b e en e x tensiv e ly stu d ie d b oth e x p e rim entally and the -
ore tically in the u nlim ited v isib ility se tting , that is assu m ing that the rob ots are
cap ab le to sense (“ se e ” ) the entire sp ace (e .g ., se e [4 ,6 ,1 0 ,1 2 ]). In g ene ral and
m ore realistically , rob ots can sense only a su rrou nd ing w ith a rad iu s of b ou nd e d
siz e . T his se tting , calle d the lim ited v isib ility case , is u nd e rstand ab ly m ore d iffi -
cu lt, and only fe w alg orithm ic re su lts are k now n [1 ,1 1 ].

In this p ap e r w e are inte re ste d in gathering: the b asic task of hav ing the
rob ots m e e t in a sam e location (the choice of the location is arb itrary ). S ince
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the robots are modeled as points in the plane, the task of robots gathering is
also called the point formation problem. Gathering (or point formation) has been
investigated both experimentally and theoretically. In particular, in the limited
visibility setting, Ando et al. [1] presented a gathering algorithm for indistin-
guishable robots which are placed on a plane without any common coordinate
system; their algorithm does not require the robots to remember observations nor
computations performed in the previous steps. Their result implies that gather-
ing can be performed with limited visibility by very simple robots: anonymous,
oblivious and disoriented.

Their solution, however, is based on a very strong “atemporal” assumption
on the duration of the robots’ actions: their robots must be capable in every
cycle to perform all the sensing, computing and moving instantaneously.

This assumption has many consequences crucial for its correctness. For exam-
ple, since movement is instantaneous, a robot can not be seen by the others while
moving (and its temporary position mistaken for a destination location); since
sensing and computing is instantaneous, a robot always has available the correct
current situation of its neighborhood. Note that, since instantaneous movement
is not physically realizable, their solution is only of theoretical interest.

In this paper, we study the gathering problem in the most general case of an
asynchronous system of robots with limited visibility, where both their computa-
tions and their movement requires a fi nite but otherwise unpredictable amount
of time. The question motivating our investigation is whether point formation is
possible in such a system. Since in these systems gathering is unsolvable if the
robots are disoriented (i.e., have no common system of coordinates), we shall
restrict ourselves to systems with sense of direction (i.e., the robots share the
same coordinate system).

In this paper we show that indeed anonymous oblivious robots with limited
visibility can gather within a finite number of moves even if they are fully asyn-
chronous. In fact, we describe a new algorithm for solving the point formation
problem in the asynchronous setting by anonymous oblivious robots with limited
visibility. We then prove its correctness showing that the robots will gather in
a point within a finite amount of time. This result holds not only allowing each
activity and inactivity of the robots to be totally unpredictable (but finite) in
duration, but also making their movement towards a destination unpredictable
in length (but not infinitesimally small). In other words, we show that gathering
can be performed by simpler robots with fewer restrictions than known before,
provided they have a common coordinate system.

From a theoretical point of view, this result proves that, with respect to the
gathering problem, ”sense of direction” has the same computational power as
”instantaneous actions”. From a practical point of view, this result has funda-
mental consequences. In fact, it allows to substitute a theoretically interesting
but physically unrealizable motorial and computing capability requirement (in-
stantaneous actions) with a property (sense of direction) which is both simple
and inexpensive to provide (e.g., by a compass).
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The paper is organized as follows. In Section 2 the model under study is
formally presented. In Section 3 the notations used in the paper and some useful
geometric lemmas are introduced. The gathering algorithm is described in Sec-
tion 4, and in Section 5 its correctness is proven. D ue to space limitations, some
of the proofs are omitted and can be found in [5 ].

2 The Model

We consider a system of autonomous mobile robots. Each robot is capable of
sensing its immediate surrounding, performing computations on the sensed data,
and moving towards the computed destination; its behavior is an (endless) cycle
of sensing, computing, moving and being inactive.

The robots are modeled as units with computational capabilities, which are
able to freely move in the plane. They are viewed as points, and are equipped
with sensors that let each robot observe the positions of the others with respect
to its local coordinate system. Each robot can see only a portion of the plane;
more precisely, it can observe whatever is at most at a fixed distance V from it
(limited visibility).

Each robot has its own local view of the world. This view includes a local
C artesian coordinate system with origin, unit of length, and the directions of two
coordinate axes, together with their orientations, identified as the positive and
negative sides of the axes. In this paper we assume that the robots share the same
coordinate system (sense of direction); however, they do not necessarily agree
on the location of the origin (that we can assume, without loss of generality, to
be placed in the view of a robot in its own current position), nor on the unit
distance.

The robots are oblivious, meaning that they do not remember any previous
observation nor computations performed in the previous steps. The robots are
anonymous, meaning that they are a priori indistinguishable by their appear-
ances, and they do not have any kind of identifiers that can be used during the
computation. M oreover, there are no explicit direct means of communication:
the communication occurs in a totally implicit manner. Specifically, it happens
by means of observing the change of its fellows’ positions in the plane while they
execute the algorithm.

Summarizing, the robots are oblivious, anonymous, and with limited visibil-
ity; they do however have a common coordinate system.

They execute the same deterministic algorithm, which takes as input the
observed positions of the robots within the visibility radius, and returns a des-
tination point towards which the executing robot moves. A robot is initially in
a waiting state (W ait); at any point in time, asynchronously and independently
from the other robots, it observes the environment in its area of visibility (L ook),
it calculates its destination point based only on the current locations of the ob-
served robots (C ompute), it then moves towards that point (M ove) and goes
back to a waiting state. The sequence: W ait (W ) - L ook (L ) - C ompute (C ) -
M ove (M ) will be called a computation cycle of a robot.
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The robots are fully asynchronous. In particular, the amount of time spent
in a computation, in a movement, and in inactivity is finite but otherwise un-
predictable. Moreover, a robot moving towards the computed destination can
stop after an unpredictable amount of space, provided is neither infinite, nor
infinitesimally small (unless it reaches its destination). More precisely, the only
assumptions made are the following:

Assum ption A1. Any robot will complete its cycle in an amount of time which
is finite and bounded from below.

Assum ption A2. The distance traveled by a robot in a move is finite and
bounded from below (unless the destination is closer than the bound).

As a consequence, the (global) time that passes between two successive move-
ments of the same robot is finite; furthermore, while a robot is moving, it can
be seen an unpredictable but finite number of times by another robot.

3 Notations and Geometric Lemmas

We first define sets related to which state a robot is at a given time during the
computation.

W (t) and L(t) are the set of all the robots that are respectively in state W and
L at time t.

C(t) = C∅(t) ∪ C+(t) is the set of all the robots that at time t are computing.
The set C∅ contains those robots whose computation’s result is to stay still
(we say that they execute a null movement), while C+ contains those robots
whose computation’s result is some destination point (we say that they will
execute a real movement).

M(t) = M∅(t) ∪ M+(t) is the set of all the robots that at time t are executing
a movement. The set M∅(t) contains the robots executing a null movement
(they stay still); M+(t) contains those executing a real movement (they are
eff ectively moving towards a destination).

We define circle of visibility Ci(t) of a robot ri at time t the circle of radius V

centered in ri, if ri ∈ L(t). Otherwise Ci(t) = Ci(t
′), where t′ = max{t|ri ∈ L(t)}.

In other words, if a robot is O bserving, its circle of visibility is the circle of
radius V centered in itself; otherwise, it is the circle of radius V centered in the
location of its most recent Look phase. Where no ambiguity arises, the parameter
t in Ci(t) will be omitted.

We now introduce some notations and geometrical lemmas which will be
needed later. L et A and B be two points; with AB we will indicate the segment
starting in A and terminating in B. When no ambiguity arises we will also use
the notation AB to denote the length of such a segment. L et A and B be two
points on a circle; with arc(AB ) we indicate the smallest arc on the circle passing
through A and B. r indicates a generic robot in the system (when no ambiguity
arises, r is used also to represent the point in the plane occupied by robot r);
capital italic letters indicate regions (e.g. L, R); given a region, we denote by | · |
the number of robots in that region.
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Lemma 1. Every internal chord of a general triangle has length less or equal
to the longest side of the triangle.

Lemma 2. Let Q be a convex quadrilateral. If all the sides and the two internal
diagonals have length less or equal to V then every internal chord of Q is less
or equal to V .

Lemma 3 . Let OB be the radius of a circle centered in O and D be a point on
the circle such that BÔD = β, with 0 ≤ β ≤ 90◦. T hen pC ≤ BC, ∀p ∈ a rc(BD)
and ∀C ∈ OD. (see figure 1 .b)

4 The Algorithm

Let us call U niverse (U ) the smallest isothetic rectangle containing the initial
configuration of the robots and let us call R ight and B ottom respectively, the
rightmost and the bottom most side of U .

The idea of the algorithm is to make the robots move either towards the
bottom or towards the right of the U niverse (a robot will never move up or to
its left), in such a way that, after a finite number of steps, they will gather at
the bottom most lower most corner of the U niverse.

A robot r can move only if it does not see any robot neither to its left
nor above on its vertical axis. Several situations could arise depending on the
positions of the robots in its area of visibility:

– If r does not see any robot, it does not move;
– If r sees robots only below on its vertical axis, it moves down towards the

nearest robot;
– If r sees robots only to its right, it moves horizontally towards the vertical

axis of the nearest robot
– If r sees robots both below on its axis and on its right, it computes a desti-

nation point and performs a diagonal move towards the right.

R ecall that Ci is the circle of visibility of robot ri. Let AA′ be the vertical
diameter of such region; let Ri and Li denote the regions to the right and to the
left of ri, respectively (see Figure 1). Let Sp = riA′ and So = riA.

Alg orith m 1 (Gathering).

E x tre m := (|Li| = 0 ∧ |Sp| = 0);
If I am ¬E x tre m T h en
Do nothing();

E lse
If (|Ri| = 0 ∧ |So| = 0) T h en
Do nothing();

If |Ri| = 0 T h en
rj := nearest visible robot on So;
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Fig. 1. (a) The Notation Used in Algorithm 1; (b) Lemma 3; (c) Lemma 6.

Move(rj).
If (|Ri| 6= 0 ∧ |So| = 0 ) T h e n

Ii := Nearest();
Hi := H Destination(Ii);
Move(Hi).

If |Ri| 6= 0 T h e n
Ii := Nearest();
Diagonal Movement(Ii).

Nearest() retu rns the v ertical ax is on w hich the robot in Ri w ith the nearest
ax is to ri lies.

H Destination(Ii) retu rns the intersection betw een Ii and a line p arallel to
the x direction and p assing throu gh ri.

Move(p) terminates the local comp u tation of the calling robot and mov es it
tow ards p.

In the last case of the Algorithm 1, ri sees somebody below it and somebody
to its right, therefore, to av oid losing some robots, it has to mov e diagonally , as
indicated by the follow ing rou tine.

A lgo rith m 2 (Diagonal Movement(Ii)).

1: B := u p p er intersection betw een Ci and Ii;
2 : A := p oint on So at distance V from me;
3 : 2β = Ar̂iB;
4 : If β < 60 ◦ T h e n
5 : B := Rotate(ri,B).
6 : Hi := D Destination(V,Ii,A,B);
7 : Move(Hi).

Rotate(ri,B) rotates the segment riB in su ch a w ay that β = 60 ◦ and
retu rns the new p osition of B.
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With D Destination(V, Ii, A, B), ri computes its destination in the follow-
ing way: the direction of its movement is given by the perpendicular to the seg-
ment AB; Hi = min{ V , the distance of Ii according the direction of movement}.

5 Correctness

In this section we will prove the correctness of the algorithm by fi rst showing
that the robots which are mutually visible at any point of the computation, will
stay mutually visible until the end of the computation, and concluding that at
the end of the computation all robots will gather in one point. We fi rst introduce
some lemmas. F rom Assumptions A1 and A2 it directly follows that:

Lemma 4. Let ri a n d rj be tw o gen eric ro bo ts a n d let t a n d t′ > t tw o m o m en t

o f th e co m p u ta tio n . If ri ∈ L(t), ri ∈ L(t′), rj ∈ M(t), rj ∈ M(t′), rj ∈ Ci(t)
a n d rj ∈ Ci(t

′), th en rj ca n n o t be in th e sa m e po in t in t a n d t′.

M oreover, from the G athering algorithm it follows that:

Lemma 5 . Let rj a n d ri tw o a rbitra ry ro bo ts, w ith ri to th e righ t o f rj a t tim e

t. If rj ∈ L(t) a n d rjri ≤ V , th en rj ca n n o t pa ss ri in o n e step .

Let us consider a generic robot ri executing the algorithm. Let β be the
angle between the vertical axis of ri and the direction of its movement (Ar̂iHi

in F igure 1.c).

Lemma 6 . T h e segm en t riHi is a lw a y s sm a ller o r equ a l to V . M o reo ver, BHi =
AHi = V a n d pHi ≤ V , ∀ p ∈ riA.

Thus, 3(A, ri, B, Hi) is a parallelogram. We now introduce the defi nition of
visibility graph. The visibility gra p h G = (N, E) of the robots is a graph whose
node set N is the set of the input robots and, ∀ri, rj ∈ N , (ri, rj) ∈ E iff rj and
rj are initially at distance smaller than the visibility radius V . We fi rst show that
the visibility graph must be connected in order for the algorithm to be correct.

Lemma 7 . If th e visibility gra p h G is d isco n n ected , th e p ro blem is u n so lva ble.

Thus, in the following we will always assume that G is connected.

5 .1 P reserv ed V isibility

In this section we prove that the visibility graph is preserved during the entire
execution of the algorithm. We prove so by introducing the notion of mutual
visibility and by showing that the robots which are connected in the visibility
graph (i.e., those which are initially within distance V ) will eventually become
mutually visible, and that two robots that are mutually visible at some point in
the algorithm will stay mutually visible until the end of the computation.

Informally speak ing, we say that two robots are mutually visible if each
robot includes the other one in its computation, namely each of them had seen
the other one during its observation phase. F ormally, two robots r1 and r2 are
m u tu a lly visible at time t iff
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- r1 ∈ (L(t) ∪ C∅(t) ∪ M∅(t)) ∧ r2 ∈ C1(t) ∧ r2 ∈ (W (t) ∪ L(t)), or
- r2 ∈ (L(t) ∪ C∅(t) ∪ M∅(t)) ∧ r1 ∈ C2(t) ∧ r1 ∈ (W (t) ∪ L(t)).

S ince all the robots at the beginning are in W , from the above definition we
have that the robots that at the beginning are within distance V will become
mutually visible in finite time. That is, the following lemma holds:

Lemma 8. Let ri and rj be two robots that at the beginning are within distance
V . R obots ri and rj will become mutually visible in a fi nite number of steps.

We now introduce a couple of lemmas which will be useful to prove that
mutually visible robots will stay so until the end of the algorithm. Let ri be a
generic robot on an axis S. Let S′ and S′′ be two vertical axes to the right of S.
We will denote by SS′ and SS′′ the distances between the corresponding axis.
Then we have:

Lemma 9 . SS′ < SS′′ ⇔ βS′ > βS′′ , where βS′ and βS′′ are respectively the
angles computed by the routines Diagonal Movement(S′) and Diagonal Move-
ment(S′′) (F igure 2 .a).
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Fig. 2. (a) Lemma 9 ; (b) and (c) Lemma 10.

Lemma 10 . Let us consider the situation depicted in F igure 2 .b, where F is a
point at distance ≤ V from ri on its ax is (with F 6= ri), Hi is the destination
point of ri. Let ps be a segment in 4(F, M, K ), with s to the right of p, and s′

the projection of s over riHi. Then we have ll′ ≤ V , ∀ l ∈ ps, ∀ l′ ∈ s′Hi.

We are now ready to show that, as soon as two robots becomes mutually
visible, they will stay mutually visible. We first prove that this property holds
when two mutually visible robots lie on the same vertical axis; and then we prove
that it holds for two robots lying on different vertical axes. In the next lemma
we will refer to the notation introduced in Figure 1.a and Lemma 10.
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Lemma 11. Let ri and rj be robots which are mutually visible at time t; more-
over, let they lie, at time t, on the same vertical axis with rj being below ri.
There is a time t′ > t when ri and rj are mutually visible. Moreover, between t

and t′ rirj ≤ V .

P roof. Let us first consider the case when Ri is empty. In such a case, ri would
clearly move towards rj (shortening their distance), while rj would not move.
Since by Algorithm 1 ri can not pass rj , the first time ri stops while it is moving
towards rj the mutual visibility definition holds, and the lemma follows.

Let us now consider the more interesting case when Ri is not empty. In the
following we shall consider several situations:

C ase i: rj does not look until ri reaches its destination Hi. We have that ri ∈ W

while ri is moving towards Hi. Since AHi = V (Lemma 6) and riHi ≤ V

(Lemma 6), we have that, by Lemma 1 on 4(riAHi), the distance between
ri and rj is always ≤ V while ri is moving. Therefore, the first time ri stops
along its path (at most on Hi), the mutual visibility definition applies and
the lemma follows.

C ase ii: rj looks while ri is moving towards its destination Hi. Since ri is on
rj ’s right, rj can not perform a V ertical Move. H ence, rj can either decide
not to move (because it sees some robots above ) or to move. In the first
case the proof reduces to the one of C ase i. O n the other hand, rj can decide
to move after having looked. From C ase i we know that rj can see ri on its
right. Moreover, it might also see some other robots below it, that can be
either on the same axis (rj perform a D iagonal Move) or not (rj performs
an H orizontal Move). The following applies to both situations (Figure 3).

L

Hi

ri

M

K
p1

pw

S = I
0

j I
w
j Ii

A

F = rj

I
1

j . . .

Fig. 3. Case ii of Lemma 11.

Let u s call Iw
j th e wth ax is, cou n tin g from S, from w h ere rj look s w h ile ri

is still on its w ay tow ard s Hi, an d pw th e p oin ts on th is ax is from w h ere

rj p erforms th e look p h ases. Clearly I0

j = S an d F = p0 coin c id es w ith th e

p osition of rj on S. In th e follow in g w e w ill p rov e b y in d u c tion th at
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a. Iw
j is to the left of Iw+1

j ,
b. T he destination point dw+1 that rj computes when it is on Iw

j is inside
4(F,K ,M),

c . pw+1ri ≤ V , and Iw+1

j is to the left of ri.

B asis. Let d1 be the fi rst destination point rj computes. S ince ri is on its
right, rj can only decide to perform a D iagonal M ovement, therefore d1

must be to the right of I0
j , and as a conseq uence I0

j is to the left of I1
j .

M oreover, by Lemma 9 we know that rjd1 must lie above rjM , hence p1

(that is on rjd1) must be within 4(F,K ,M). F inally, rj can see ri by
hypothesis and at the beginning I0

j is to the left of ri, and the basis of
the induction follows.

In d u c tiv e S te p . Let us assume that all the statements are true for 1, . . . ,w.
S ince by inductive hypothesis Iw

j is to the left of ri and rj can see ri

from Iw
j , rj can only decide to perform a D iagonal M ovement, therefore

dw+1 must be to the right of Iw
j and can not be after ri (because of how

Diagonal Movement(·) works), and, as a conseq uence, Iw
j is to the left

of Iw+1

j , and a. follows.

M oreover, since Iw
j Ii < SIi and , by Lemma 9 , we have that dwpd+1

must be above FM but cannot be above FK (because the algorithm
does not allow ” up” movements). T herefore the point b. follows.
F urthermore, since b. holds and Iw+1

j can not be after dw+1, by Lemma
10 c. follows, and the induction is proved.

N ow we know that all the stop rj does while ri is moving towards Hi are
inside 4(F,K ,M), hence, by Lemma 10 , within distance V from ri. T hus
we have that, when ri reaches Hi, it can see rj on its left, therefore, it can
not move further. It follows that, until rj is before it, ri can be only in L(·),
C∅(·), or M∅(·). T herefore, the fi rst time that rj stops after ri reached Hi,
say at time t′ > t, ri and rj will be mutual visible. M oreover, between t and
t′, by Lemma 10 rirj ≤ V , and the lemma follows. ut

In the following lemma we show that if a robot sees some robots on its right,
then it will never lose them during the computations. Let ri be a robot in the
system, R be the set of robots which are mutually visible with ri at time t and
that are located to the right of Ii, and rk a robot in R (F igure 4 ). M oreover,
let B and C be respectively the upper and lower intersection between Ii and Ci,
and H ′

i be the intersection between Ci and the line passing through riHi.

L e m m a 1 2 . There exists a time t′ > t after w hich ri w ill be alw ay s mu tu ally

v isib le w ith the robots in R. M oreover, rir∗ ≤ V , ∀ r∗ ∈ R.

P roof. F rom A lgorithm 1, we know that robots in R cannot perform any move-
ment while ri is on their left. Let t∗ the time when ri enters its Look phase and
p be the destination point it computes. Clearly, p can not be to the right of any
robot in R. In the following, we fi rst prove that lr∗ ≤ V , ∀ r∗ ∈ R and ∀l ∈ rip.

F rom Lemma 3 , it follows that: ∀p ∈ a rc(BH ′
i),pHi ≤ BHi = V (1).

M oreover, HiC = BC − BHi ≤ 2V − V = V and from Lemma 2 we have:
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Fig. 4. Lemma 12.

∀p ∈ arc(H ′
iC), pHi ≤ HiC ≤ V (2). P lugging (1) and (2) we obtain: ∀p ∈

arc(BC), pHi ≤ V (3).
Let us now consider a robot rk ∈ se cto r(BCB) (that is in the area to the

right of Ii and in Ci) and let s′ be the intersection between arc(BC) and the
line passing through Hi and rk. W e have that Hirk ≤ His′ ≤ V (from (3)),
rirk ≤ V , and riHi ≤ V . Therefore, applying Lemma 1 to 4(ri, rk, Hi) we have
that qrk ≤ V , ∀q ∈ riHi. In conclusion, when ri stops in p, say at time t′ > t, it
will see all the robots in R, that can only be in L(t′), C∅(t

′), or M∅(t
′), and the

lemma follows. ut

B y Lemma 8 , 11 and 12 we can conclude that:

T heo rem 1. The visibility graph G is preserved d uring the execution of the

algorithm.

5 .2 Finiteness

In this section we will prove that, after a finite number of steps, the robots will
gather in a point.

Lemma 13. L et us suppose to have several robots on a vertical axis A and no

robots to the left of A. If r is the topmost robot on A that can see a robot to the

right of A, then, in a fi nite number of steps, either all the robots above r on A

will reach r, or one of them will leave A.

The next two lemmas show that all the robots in the system converge to the
Rig h t axis of the U niverse, and actually reach it.

Lemma 14. F or any given vertical axis I before Rig h t which is at any d istance

d > 0 from it, all the robots that are on the left of I at the beginning of the

algorithm, will pass I in a fi nite number of steps.
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Lemma 15. After a finite number of steps, all the robots in the system reach

Right.

The following lemma states what happens when all the robots lie on the
same vertical axis: they will reach the bottom most robot on that axis in a finite
number of steps.

Lemma 16 . If all the robots of the system lie on the same vertical axis A, then

in a finite number of steps all the robots will reach the bottom most robot on A.

We can finally conclude that:

Theorem 2. In a finite number of steps, all the robots in the system gather in

a point; the rightmost and bottom most corner of the universe.
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