

i

Pattern Formation by Autonomous Robots
without Chirality

Graphs. Congr.
. and Computing

‘ommunication in
1y, 79-133.
PAOLA FLOCCHINI

ood Gossiping in University of Ottawa, Canada

-195.

GIUSEPPE PRENCIPE

.ions. Laboratoire Universita di Pisa, Italy

NICOLA SANTORO

n the Star Graph, Carleton University, Canada

ation Complexity PETER WIDMAYER

ETH Ziirich, Switzerland

in the Star Graph,

AL. A Survey of:
rks. Networks 18

Abstract

Consider a set of anonymous mobile robots, and the patterns they can
collectively form in the plane. If each robot has a compass needle that indi-
cates North but there is no agreement on East and West (i.e., no chirality),
it is known that every arbitrary pattern given in input can be formed if and
only if the number of robots is odd. In this paper we study what patterns
can be formed by an even number of such robots, and provide a complete
characterization. We identify the class of patterns which cannot be formed
by an even number of anonymous robots without chirality, regardless of ad-
ditional capabilities. We then construct a set of rules (distributed algorithm)
which leads the robots to form any of the other patterns in finite time. The
algorithm is collision-free, completely oblivious and fully asynchronous.

>, R. Dissemination 8§
ing and Gossiping).

25-212.

ioussiniere, BP 92208,

te 1a Libération, 33405 "

Keywords

Mobile computing, robots, distributed algorithms, oblivious computations, chirality.

1 Introduction

In this paper we consider a collection of identical anonymous mobile robots, and
the patterns they can collectively form in the plane.

Following the current trend in robotics research, our robots are anonymous,
have minimal capabilities, and exhibit an extremely simple behavior. Their ac-
tions consist in autonomously observing the environment, computing a destina-
tion point, and moving towards it. Their behavior is a simple continuous cycle of
sensing, computing, moving and being inactive.

147

148 Sirocco 8

The ability to form geometric patterns is a fundamental one; it is usually an
initial step which allows the robots to decide on their respective roles in a sub-
sequent, coordinated action (e.g., forming a circle around an object which has to
be removed, arranging themselves in a line so to sweep the terrain in formation,
etc.).

Pattern formation by a collection of such robots has been studied by research-
ers in robotics and in artificial intelligence (e.g., see [1, 3, 4]). Concerns on com-
putability and complexity of the problem have recently motivated also algorithmic
investigations [2, 6, 7, 8]; the basic difference is that in [7, 8], any action by the
robots, including moving, is instantaneous. In this paper, like in [2, 6], there is no
such an assumption.

The capacity to solve the pattern formation problem seems to depend not only
to the robots’ (computing and motorial) capabilities but also and especially on the
level of agreement they have on the coordinate system.

In fact, if the robots have complete agreement on a common coordinate sys-
tem! (e.g., each robot has a compass), they can form any arbitrary pattern given
in input; they can do so even if they are totally asynchronous in their actions
(and inactions), and are completely oblivious (i.e., they do not remember any pre-
vious observation, computation, or action) {2]. On the other hand, if the robots
have no agreement on the coordinate system, then the arbitrary pattern formation
is unsolvable regardless of their capabilities (unbounded memory, instantaneous
actions [2].

More interesting is the case when there is a limited agreement among the
robots; that is, when they agree on the direction and orientation of one axis, but do
not have a common understanding of the handedness (chirality) of the coordinate
systemz; thus knowing North does not distinguish East from West. In this case,
an odd number of anonymous asynchronous oblivious robots can still form any
arbitrary pattern given in input; on the other hand, if the number of robots is
even, the arbitrary pattern formation problem is unsolvable regardless of their
capabilities [2].

Since, with limited agreement, an even number of anonymous robots cannot
form every pattern, the natural immediate questions are what patterns, if any, can
they form?, what capabilities they need to do so?, how can they do it? In this paper
we provide a complete constructive answer to these questions.

In fact, we first identify a class of patterns { that, with partial agreement,
cannot be formed by an even number of anonymous robots, regardless of their
capabilities. The impossibility result holds even allowing the robots to remem-
ber the past and to perform synchronous and instantaneous computations. We
then present a set of rules (distributed algorithm) which, when executed (asyn-

lie., on the direction and orientation of the two axes but not necessarily on their origin nor on a
common unit length.

2chirality allows to consistently infer the orientation of the ¥ axis once the orientation of the X
axis is given.

Flocchinietal.: P.
T

chronously and independent
in finite ime. The pattern fo:
not require any knowledge
fully asynchronous (i.e., it
putation time of the robots).
the same position in the pla;

2 Model and Bas

2.1 The Robots

We consider a system of at
sensing its immediate surrot
and moving towards the cor
of sensing, computing, mov:

The robots are viewed :
capabilities, which are able
sensors that let each robot
cal view of the world. This
will assume w.l.g. to be the
a Cartesian coordinate syst.
axes, referred to as X and Y
on the two axes direction, b
be axis ¥). Notice that such
distance nor on the location

The robots are obliviou
previous observation nor co:

The robots are anonymo
their appearances, and they
be used during the computc
communication.

The robots are fully as:
the amount of time spent ir
inaction is finite but otherw:

The robots execute the
the observed positions of t
destination point towards w:

A robot is initially in a
dently from the other robo
its sensors which will retur:

3i.e., activating the sensors and
4We do not require the robots L

chronously and independently) by the robots leads to form any input pattern P ¢)
in finite time. The pattern formation algorithm is completely oblivious (i.e., it does
not require any knowledge by the robots of past computations or observations),
fully asynchronous (i.e., it does not make any assumption on the speed or com-

putation time of the robots), and collision-free (i.e., two robots will never occupy
the same position in the plane).

2 Model and Basic Properties
2.1 The Robots

We consider a system of autonomous mobile robots. Each robot is capable of
sensing its immediate surrounding, performing computations on the sensed data,
and moving towards the computed destination; its behavior is an (endless) cycle
of sensing, computing, moving and being inactive.

The robots are viewed as points, and modeled as units with computational
capabilities, which are able to freely move in the plane. They are equipped with
sensors that let each robot observe the positions of the others and form its lo-
cal view of the world. This view includes a unit of length, an origin (which we
will assume w.1.g. to be the position of the robot in its current observation), and
a Cartesian coordinate system (comprising the directions of the two coordinate
axes, referred to as X and Y, and their orientations). We assume the robots agree
on the two axes direction, but on the orientation of only one of them (w.l.g, let it
be axis ¥). Notice that such an agreement does not imply agreement on the unit
distance nor on the location of the origin.

The robots are oblivious, meaning that they do not need to remember any
previous observation nor computations performed in the previous steps.

The robots are anonymous, meaning that they are a priori indistinguishable by
their appearances, and they do not need to have any kind of identifiers that can
be used during the computation. Moreover, there are no explicit direct means of
communication.

The robots are fully asynchronous: there is no common notion of time, and
the amount of time spent in observation?, in computation, in movement, and in
inaction is finite but otherwise unpredictable.

The robots execute the same deterministic algorithm, which takes as input
the observed positions of the robots within the visibility radius, and returns a
destination point towards which the executing robot moves.

A robot is initially in a waiting state (Wair). Asynchronously and indepen-
dently from the other robots, it observes the environment (Look) by activating

its sensors which will return a snapshot* of the positions of all other robots with
3

i.e., activating the sensors and receiving their data.
*We do not require the robots to be able to detect multiplicity (i.e. whether there is more than one

Flocchini et al.: Pattern Formation by Autonomous Robots 149

150 Sirocco 8

—

respect to its local coordinate system. (Since robots are viewed as points, their

positions in the plane is just the set of their coordinates). The robot then cqy.
culates its destination point (Compute) according to its deterministic, oblivigyy -

algorithm, based only on the observed locations of the robots. It then moves tg.
wards that point (Move); if the destination point is the current location, the robgg

stays still (null movement). After the move, the robot becomes waiting again. The :

sequence Wait - Look - Compute - Move forms a cycle of a robot.
There are two limiting assumptions excluding the infinite: 1. The amount of

time required by a robot to complete a cycle is not infinite, nor infinitesimally :
small. 2. The distance traveled by a robot in a cycle is not infinite, nor infinitesj.

mally small (unless it brings the robot to the destination point).

As no other assumptions on time exists, the resulting system is truly asyn.
chronous and the duration of each activity (or inactivity) is unpredictable. As g
result, robots can be seen while moving, and computations can be made based

on obsolete observations. As no other assumptions on space exists, the distance

traveled by a robot in a cycle is unpredictable.

2.2 The Pattern Formation Problem

We study the pattern formation problem for arbitrary geometric patterns, where
a pattern P is a set of points pp, p, (given by their Cartesian coordinates) in
the plane. The pattern is known initially by all robots in the system. Initially, the

robots are in arbitrary positions, with the only requirement that no two robots be

in the same position, and that, of course, the number of points prescribed in the -

pattern and the number of robots are the same.

Let a configuration (of the robots) at time 1 be a set of robots’ positions at
time ¢, one position per robot, with no position occupied by more than one robot.
Given a pattern [P and a configuration C, let P} be the set of positions of the
robots as viewed in the local coordinate system of the robot r;. The robots are said
to have formed PP, if there exists a transformation 7, where 7 can be translation,
rotation, scaling, or flipping into mirror position, such that, Vi, ‘T(P}) =P.In
other words, the final positions of the robots must coincide with the points of
the input pattern, where the formed pattern may be translated, rotated, scaled,
and flipped into its mirror position with respect to the input pattern P in each
local coordinate system. A final configuration for P is a configuration of the
robots in which the robots form the desired pattern . The arbitrary pattern
formation problem is the problem of devising an algorithm which will lead
the robots to a final configuration in a finite number of moves for any pattern
and any configuration. Consider a set of patterns T. Given an arbitrary initial
configuration of the robots and an arbitrary pattern P € T, a pattern formation
algorithm for P is an oblivious deterministic algorithm that brings the robots in

robot on any of the observed points, included the position where the observing robot is).

Flocchini et al.: Pattern Fo

-

the system 0 a final configuration fc
a pattern formation algorithm is coll
no two robots that occupy the same -

Another problem that we will re
Problcm: the robots in the system ar
per of cycles, all the robots determi:
called the leader. A deterministic alg
a leader in a finite number of cycles
leader election algorithm.

In the following we will denote t
calligraphic letters (e.g., 0), we indic
per of robots in a given region. With .
plane, and by |- | the number of robc
some of the proofs will be omitted.

2.3 Basic Properties

First notice that two robots can trivia.
is a segment). Therefore, we will a:
the system.

Theorem 1 [2] The arbitrary patic
anonymous robots without chirality .

Interestingly, the proof of the uns
(and lack of chirality) and not on ob.
the arbitrary pattern formation algc
chronous. To better understand the .
we will re-prove it in terms of leade.

Theorem 2 When n is even, there .
the leader election problem without

which yields Theorem 1 as a coroll:

Since an arbitrary pattern can nc¢
are now interested in determining w!
this case. Thus, from now on, we w
system is even.

3 Unformable Pattern

In this section we describe a class
number of anonymous robots with 1

Flocchini et al.: Pattern Formation by Autonomous Robots 151

the system to a final configuration for P in a finite number of cycles. We say that
a pattern formation algorithm is collision-free, if, at any point in time t, there are
no two robots that occupy the same position in the plane at ¢.

Another problem that we will refer to in the following is the leader election
problem: the robots in the system are said to elect a leader if, after a finite num-
ber of cycles, all the robots deterministically agree on (choose) the same robot {,
called the leader. A deterministic algorithm that Jets the robots in the system elect
a leader in a finite number of cycles, starting from any configuration, is called a
leader election algorithm.

In the following we will denote by r.x and r.y the coordinates of robot r. With
calligraphic letters (e.g., C), we indicate regions of the plane, and by |- | the num-
ber of robots in a given region. With capital letters (e.g., L) we indicate lines in the

plane, and by | - | the number of robots on a given line. Due to space restrictions,
some of the proofs will be omitted.

2.3 Basic Properties

First notice that two robots can trivially form any pattern (the only possible pattern

is a segment). Therefore, we will assume n > 2, with n the number of robots in
the system.

Theorem 1 (2] The arbitrary pattern formation problem is solvable by n > 2
anonymous robots without chirality if and only if n is odd.

Interestingly, the proof of the unsolvability for even relies only on anonymity
(and lack of chirality) and not on oblivicusness or asynchrony. On the other hand,
the arbitrary pattern formation algorithm for n odd is both oblivious and asyn-
chronous. To better understand the negative result for an even number of robots,
we will re-prove it in terms of leader-election.

Theorem 2 When n is even, there exists no deterministic algorithm that solves
the leader election problem without chirality.

which yields Theorem 1 as a corollary.
Since an arbitrary pattern can not be formed by an even number of robots, we
are now interested in determining which class of patterns, if any, can be formed in

this case. Thus, from now on, we will assume that the number n of robots in the
system is even.

3 Unformable Patterns

In this section we describe a class of pattern that cannot be formed by an even
number of anonymous robots with limited agreement. A pattern PP is symmetric if

e e

152 Sirocco 8
0, K (21
'2_1 22
rap ’
Y Vi ’
v rse/
/5 ~~ ~
ey S r,
1%
a b. c d

Figure 1: (a) An unachievable asymmetric pattern. In this example, the sorted
sequence of pairs of robots from the proof of Lemma 3 is the following: (ry,r),
(r0,0), (r3,0), (rs,0), (5,0), (r6,r7), (rg.ro). In this case ro would be elected as
the leader. (b) An achievable pattern with one empty axis. (¢) An unachievable
pattern. (d) An achievable pattern that has three empty axes. Note that this pattern
has also axes of symmetry passing through vertices. In this case, following the
procedure in Footnote 6, the routine Choose (IP) of Algorithm 1 chooses Ss.

it has at least one axis of symmetry S; that is, for each p € I there exists exactly
another point p’ € P such that p and p' are symmetric with respect to S (see Figure
1.b, c and d).

The proof of the unsolvability result of Theorem 2 is useful to better under-
stand which kind of patterns can not be formed, hence which kind of pattern
formation algorithm can not be designed. In fact, the ability to form a particular
type of patterns would imply the ability to electa robot in the system as the Jeader.
More formally,

Theorem 3 There exists no pattern formation algorithm that lets the robots in the
system form (a.) an asymmelric pattern, or (b.) a symmetric pattern that has all
its axes of symmetry passing through a vertex.

Proof.

Part a. By contradiction, let 4 be a pattern formation algorithm, and let P be an
arbitrary asymmetric pattern of n points. We now show that 4 is a leader
election algorithm. Let ¥ be the final configuration after they execute the
algorithm, starting from an arbitrary initial configuration. Since the robots
in the system agree on the direction and orientation of the Y axis, it is pos-
sible for them to elect a leader. In fact, let Oy and O; be respectively the
vertical axis passing through the outermost robots in ¥ (all the robots must
agree on these two axis, since they agree on the orientation of ¥), and let
K be the vertical axis equidistant from O; and O (e.g., see Figure 1.b).
K splits the plane in two regions, 51 and 5. If some robots are on K, the

Flocchini et al.: Pattern Form.

highest on K can be elected as a I
can distinguish two cases:

1. |5l! # |52/. In this case, the
region as the positive side o

figuration, it is possible to el
one).

2. |81 = |$2|. In this case, for e:
x € 510, as follows. Let 4
px(r) indicates the proximir.
distance between r and K. It
h(rj), and pg (r;) = px(r;), th
we build pairs for each ries$
if (rj,r;) is defined, we can so
respect to the height and the
(e.g., see in Figure 1.b):

(r,<,0) > (r,,@) < h(r
(hy
(ri,0) > (rj,rs) < h(r,
(h:
(ri,rj) > (r4,0) < h(r
(h(
(ri,rj) > (ru,re) & h(r,
(A

We observe that the set of pair:
entation of the X axis; moreo:
hypothesis, there must exist at 1.
can elect as a leader the robot ir

Hence, 4 would be a leader election

Partb. By contradiction, suppose there e»
that lets the robots form a symmetric
metry passing through some vertices
configuration. After the robots run 4
whose positions correspond to the ver
hence, ¥ must be symmetric with all
some vertices (robots’ positions). We

1. ¥ is not symmetric w.r.t. any a

same argument of Part a. can be
elected.

Flocchini et al.: Pattern Formation by Autonomous Robots 153

e

highest on K can be elected as a leader. Suppose that no robot is on K. We
can distinguish two cases:

1. |81 # |S2]. In this case, the robots can agree on the most populated
region as the positive side of X; hence, starting from any initial con-

figuration, it is possible to elect a leader (e.g., the topmost rightmost
one).

2. |51] = [S21. In this case, for each robot r; € $;, we build a pair (r;,x),
x € 50, as follows. Let h(r) indicates the height of robot r, and
pk{r) indicates the proximity of robot r to K, that is the horizontal
distance between r and K. If there exists r; € § such that h(r;) =
h(r;), and pg(r;) = pg(r;), then x = r;; otherwise x = 0. Analogously,
we build pairs for each r; € . Given that (r;, r;) is defined if and only
if (rj,r;) is defined, we can sort all the pairs in descending order, with

respect to the height and the proximity of the robots to K. Namely,
(e.g., see in Figure 1.b):

(ri,0) > (r,-,@) [=4 h(r,-) > h(rj) \%

(h(ri) = h(r;) A px(ri) < pk(rj))
(r,-,@) > (rj,r;,) =4 h(r,-) > h(rj) \%

(h(ri) = h(r;) A px(ri) < pg(r;))
(riyrj) > (rp,0) < h(ri) > h(ry) V

(h{ri) = h(ry) A px(ri) < px(ra))
(ri,rj) > (rnyric) < h(ri) > h(rp) V

(h(ri) = h(ra) A pk(ri) < px(ra))

We observe that the set of pairs obtained is independent from the ori-
entation of the X axis; moreover, since ¥ is asymmetric w.r.t K by
hypothesis, there must exist at least a pair with an 0. It follows that we
can elect as a leader the robot in the first pair that has 0 as an element.

Hence, A would be a leader election algorithm, contradicting Theorem 2.

Partb. By contradiction, suppose there exists a pattern formation algorithm 4
that lets the robots form a symmetric pattern P that has all its axes of sym-
metry passing through some vertices in [P, starting from an arbitrary initial
configuration. After the robots run A4, they are in a final configuration ¥
whose positions correspond to the vertices of IP (up to scaling and rotation);
hence, ¥ must be symmetric with all its axes of symmetry passing through
some vertices (robots’ positions). We distinguish two cases.

1. P is not symmetric w.r.t. any axis Y’ parallel to Y. In this case, the

same argument of Part a. can be used to conclude that a leader can be
clected.

154 Sirocco 8

2. ¥ is symmetric w.r.t. some ¥’ parallel to Y. Since by hypothesis ¥’
must pass through a vertex, a leader can be elected (e.g., the topmost
robot on Y').

Hence, 4 would be a leader election algorithm, contradicting Theorem 2.

O

Letus call T the class containing all the arbitrary patterns, and R C T the class
containing only patterns with at least one axis of symmetry not passing through
any vertex (e.g., see Figures 1.b and 1.d); let us call empry such an axis. Theorem
3 states that if P € T\ 'R, then [P can not be formed; hence, according to Part b. of
the previous theorem, the only patterns that might be formed are symmetric ones
with at least one empty axis. In the following, we prove that all these patterns can
actually be formed. In particular, we present an algorithm that lets the robots form
exactly these kind of patterns, if local rotation of the pattern is allowed.

4 Forming Formable Patterns

4.1 The Algorithm

In this section we present an algorithm that let the robots form symmetric patterns
with at least one empty axis. The idea behind the algorithm is as follows. First,
the robots compute locally an empty axis say S, of the input pattern P, and then
rotate I’ so that § is parallel to the common understanding of the orientation of
Y. Second, the robots elect the two topmost outermost’ robots in the observed
robots’ positions, Outer; and Outer,. If this is not possible (i.e., all the robots are
on the same vertical axis), the second topmost robot on this axis moves to its right,
so that Outer) and Outer; can be correctly computed. Then, Outer; and Outer,
move until they are at the same height: these two robots will never move again.
When this happens, the vertical axis X is computed: it is the median between the
vertical axis passing through the positions of Outer; and Outers; K splits the plane
in two halves, called Le ft and Right. At this point, it is possible to compute the set
of final positions of the robots: these are the positions that the robots must occupy
in order to correctly solve the problem. In order to compute these positions, [P is
scaled with respect to the distance between Outer; and Outers, and is translated
with respect to the positions of these two robots. We note that, by definition of P,
the number of final positions in Left and in Right is n/2. The robots’ positions
in each half can be sorted using the ordering defined in the proof of Theorem 3.
Thus, the first n/2 robot in Left are directed towards final positions in Left, and
the first n/2 robots in Right towards final positions in Right. If in one half there
are more robots than final destination, the extra robots are directed towards K.

That is, among the outermost robots, the two topmost ones.

Flocchini et al.: Pattern Formatio;

Once there are no extra robots neither in L.
directed, from the topmost to the bottomm
do not have any robots on them yet.

The routine Choose (P) locally choos
input pattern P; since this is a local operatio:
every robot can be made to choose the same

Rotate (P,S) locally rotates P in suc
§ chosen with Choose (P) is parallel to {
performed clockwise.

Pattern Length (P) returns the hori
local unit distance, measured as the distance
axes tangent to P,

As already stated previously, the algorithr
most robots, so that the input pattern can be
them. Unfortunately, if all the robots are on :
robots can not be located. In Line 5, the algo
lar, routine Same Vertical Axis (H) let
right, so that there are exactly two outermost {
Same.Vertical Axis (H)

d:=dist (top (H), bottom(H));

Case |H|

on
If I Am The Second Topmost Robot ¢
5: P := Point To My Right At Horizo
Move (p).
Else
donothing().
on—1
10: r := Robot Not On H;
If I Am r Then
If I Am Not At Horizontal Distance
P := Closest Point To Me At Hor
Move (p).
15: Else
return.
Else

If r Is Not At Horizontal Distance ¢
domnothing.
20: Else

return,
—_—

6 For instance, starting from the point (1,0} on the unit
co.ordmate system, the first empty axis that is hit moving ¢
onennlauon of the X axis), after having translated the empty ¢
the origin. In the example depicted in Figure 1.e, the axis \Y)

Flocchini et al.: Pattern Formation by Autonomous Robots 155

Once there are no extra robots neither in Left nor in Right, the robots on X are

directed, from the topmost to the bottommost, towards the final destinations that
do not have any robots on them yet.

The routine Choose (P) locally chooses an empty axis of symmetry in the

input pattern I; since this is a local operation, and IP is the same for all the robots,
every robot can be made to choose the same axis of symmetry 6.

Rotate (P,S) locally rotates P in such a wa
§ chosen with Choose (P)
performed clockwise.

y that the axis of symmetry
is parallel to the ¥ axis. The rotation is (locally)

Pattern.Length (P) returns the horizontal length of P according to the

local unit distance, measured as the distance between the two outermost vertical
axes tangent to P,

As already stated previously, the algorithm locates the two outermost and top-

most robots, so that the input pattern can be translated and scaled wi

th respect to
them. Unfortunately,

if all the robots are on the same vertical axis H , these two
robots can not be located. In Line 5, the algorithm handles this case. In

particu-
lar, routine Same _Vertical Axis (H)

let one of the robots on H move to its
right, so that there are exactly two outermost topmost robots. Namely, we have
Same Vertical Axis (H)

d:=dist (top(H),bottom (H));
Case |H|
on
If I Am The Second Topmost Robot On H Then

p := Point To My Right At Horizontal Distance d From K;
Move (p).

Else
donothing ().
onn—1
10: r := Robot Not On H;
If 1 Am r Then

If I Am Not At Horizontal Distance d from H Then
p := Closest Point To Me At Horizontal Distance 7 From H,
Move (p).
15: Else
return.
Else
If r Is Not At Horizontal Distance d From H Then
donothing.
20: Else

return.

® For instance, starting from the point (1,0)
coardinate system, the first empty axis that is
oricntation of the X axis
the origin. In the exampl]

on the unit circle centered in the origin of the local
hit moving counterclockwise (according to the local
). after having translated the empty axes in such a way that they pass through
e depicted in Figure 1.e, the axis $» would be chosen,

156 Sirocco 8

Algorithm 1 One axis direction and orientation, n even
Input: An arbitrary pattern I* described as a sequence of points p1,... , Pn, given
in lexicographic order. P is symmetric and has at least one empty axis.
§:= Choose (P);
P:=Rotate(P,S);
P_Length:= Pattern Length (")
H := Leftmost Vertical Axis With More Robots On It;
5. If (H| = n Or |H| = n— 1) Then
Same Vertical Axis (H);
(Outery,Outery) := Outer Most ();
If Outery.y # Outery.y Then
Fix. Outermosts (Qutery, Outery).

10: Else
If I Am Outer; Or Outer; Then

do_nothing();

Else
K := Median.Axis (Outery,Outery);
15: Final _Positions := Find_Final_Positions (K,P,S,

P_Length,Outery,Outery) ;
If I Am On One Of The Final _Positions Then
do.nothing (};
(Left,Right) := Sides (K)}
20: If I Am In Left Or In Right Then
MySide .= My Side (K);
Free_Points:= {Final_Positions in MySide with no robots on rhem};
Free_Robots := {Robots' posit. in MySide not on Final Positions};
If Free_Points # © Then
25: Go_To_Points (Free Robots, Free Points) ;
Else
Choose_On_K (Free Robots K); ¥l am a Free_Robots but there
are no Free_Pointsin MySide*
If 1 Am On K Then
30: If There Are Robots In (Left U Righr) Not On Final Destinations
Then
donothing ().
Else
r:=Highest (K);
p := Point In Final Positions Closest To r With No Robot On It;
35 Go.To_Points ({r}.{p}).

Flocchini et al.: Pattern Forn

where Move {p) terminates the local ¢
it towards the point p, using a straigh
4 between the topmost (returned by t
bottom (H)) robot on H is computc
there are exactly n robots on H, the s
right until it is at an horizontal distan
|Hl=n-1 forces all the other robots

Outermost () returns the curren
Since there is no agreement on the orie;
Outery and Outer.

Then, the algorithm calls the routi
that moves Outer| and Outer; until they
all the other robots are not allowed to n

The function Median_Axis (Qui
which is the median axis between the
Outery.

Find.Final Positions(X, P,
tes the scaling and the translation of P
Outer,. These positions are computed
empty axis S computed in Line 1; furth-
the way it has been rotated in Line 2,
points in [P that are symmetric with re:
Outer, and Outer; (which are symmetr:
of the input pattern is defined by ident’
distance between Outer; and Outer; (
their final positions).

The routine Sides (K) returns t\
robots currently lying in the two halves
ular, it returns respectively the robots’ :
K, according to the local orientation of
returns the half of the plane where the ¢

Go_To.Points (Free_Robots, Fre
bots that is closest to a point in Free_/
to avoid collisions. In fact, if r were to
destination p, it might collide with a rc
the routine appropriately chooses an i
the invariant that r is the robot in Free
Namely (refer to Figure 2.a),
Go_To_Points (Free_Robots,Free_P.

(r,p) := Minimum (Free_Robots.

If1 Am r Then

If No Robots Is On The Line Pa:

Move (p).

Flocchini et al.: Pattern Formation by Autonomous Robots 157

where Move (p) terminates the loca] computation of the calling robot and moves
it towards the point p, using a straight movement. In other words, the distance
d between the topmost (returned by top (H) and the bottommost (returned by
bottom (H)) robot on H is computed by digt (top (H) +bottom(H)) if
there are exactly » robots on H, the second topmost robot r on 4 moves to its
right until it is at an horizonta] distance d from K (while r is moving, the case

stay still until 7 is at distance ¢ from K),
returns the current topmost outermost robots in the world.
Since there is no agreement on the orientation of the X axis, it returns two robots,
Qutery and Outer,.

Then, the algorithm calls the routine Fix_ Outermosts (
that moves Quter and Outer, until they reach the same height,
all the other robots are not allowed to move.

The function Median Axisg

Outermost ()

Outer;, Outery),
Until this happens,

Outery,Outer,) returns the vertical axis K , |
the vertical axes passing through Outer; and
Outer,.

The routine Sides (K)
robots currently lying in the ¢
ular, it rcturns Iespectively t

returns two sets, each containing the positions of
wo halves in which the plane is split by K in partic-
he robots’ positions on the Left and on the Right of

ientation of the calling robot’s X axis. My Side (K)
returns the half of the plane
Go.To_Points (Freeﬂobots,FreePoinis

) chooses the robot 7 in Free Ro-
bots that is closest to

a point in Free Points, Say p, and moves 7 in such a way

- In fact, if r were to move following a straight line towards its
destination P it might

collide with a robot on this path. Should this be the case,
the routine appropriately chooses an intermediate destination point mantaining

€ robot in Free Robots closest to a point in Free Points.
Namely (refer to Figure 2.a),

Go_To_Points (Free Robots, Free_Points)

(r,p) := Minimum (FreeJ?obots,Freef’oints)
1 Amr Then
If No Robots Is

Move (p).

On The Line Passing Through r And p Then

158 Sirocco 8

Figure 2: (a) Routine Go_To_Points () determines the destination point for r.
The empty circles represent the points in Avoid, and the grey one represents the
robot that does not allow 7 to perform a straight movement towards.)R l:lence
routine Closest_Intersection() is called in this c.ase. The thick line is
the path followed by r (in two cycles) to reach p. (b) l.iouFme Choose On. K ()
determines the destination point for r on K. The thick line is the path followed by
r toreach K.

5. Else
L := Line Passing Through r and p;
L' := Line Orthogonal To L; o
C, := Circle Centered In p Having Radius D,
CI’, := Half Of C, Delimited By L That Contains r;

10: Avoid := Robots’ Positions Inside CI’,;
p":=Closest._Intersection (p,L" Avoid,Free Points);
If p” 1s Not Inside , Then . .

p" := Point On L' At Distance 7p/2 From p;{ln this way, p”’ is
always chosen on L' and inside Cp}
15: Move (p").
Else
donothing ().

where Minimum (Free_Robots, Free Points) returns the pair (7, p) such that

rp= min frfp-
fr&Free Robots
SfpCFree Points

If more than one robot has minimum distance, the topmost robot that is.closest
to K is chosen. The core of this routine is in Closest_Inter§ectlon(),
that looks for a point p” on L' such that inside the lrn'a.ngle A passing thro‘u.gh r,
p, and p" there are no robots; hence, r can move inside A avmd’l/n.g collisions.
Furthermore, Closest.Intersection () checks also that p” is such that,
while r moves towards it, p remains the point in Free_Points closest to r.

Flocchini et al.: Pattern For:

If in MySide there are more robc
directed towards K by invoking routin
ensures that the movements towards &
2.b). In particular,

Choose.On_K (Free_Robots,K)

If 1 Am The Topmost And Closest 1
p := Intersection Between K Anc
sition;

If No Robot Is On The Line Pass;
Move (p).
Else
L := Vertical Line Passing Thrc
R := Portion Of The Plane Ab.
L
Avoid := {Robots’ Positions In:
ph
Intersections := 0
For All p’ € Avoid Do
L' := Line Passing Through »
Intersections := Intersection
End For
p’ = Topmost Point In Interse
p" := Point On K Above p' At |
Move (p").
Else
domnothing ().

In other words, the robot r chooses a 1
in the region K. delimited by L (the ve:
the calling robot) and K, maintaining t
topmost robot in Free_Robots.

When all the robots in Le f1 and Rigl.
K, if any, are directed sequentially, from
available final positions. In particular, th
point in Final _Positions.

4.2 Correctness

We shall call an even agreement config
on the position of a vertical axis K in t'
of the Final Positions or on K, and (iii)
Final Positions. Moreover, we define tt
figuration as the number of robots on K.
the two halves in which the plane is divic
lets the robots reach an even agreement ¢

oint for r,
esents the
P hence
ck line is
OnXK()
llowed by

i that

s closest
“ion(),
.rough r,
JHisions.
uch that,

Flocchini et al.: Pattern Formation by Autonomous Robots 159

If in MySide there are more robots than final
directed towards K by invoking routine Choose_0O
ensures that the movements towards
2.b). In particular,

Choose. On.K (Free_Robots, K)

If T Am The Topmost And Closest To K in Free_Robots Then
p = Intersection Between K And Horizonta

positions, the extra robots are

n-K () in Line 27. This routine
K are done without collisions (refer to Figure

1 Line Passing Through My Po-
sition;
If No Robot Is On The Line Passing Through My Position And p Then
Move (p).
Else

L := Vertical Line Passing Through My Position;
K_:= Portion Of The Plane Above My Position And Delimited By K And
L;
Avoi
pk
Intersections := @
For All p’ € Avoid Do

L' := Line Passing Through My Position And p';

Intersections := Intersections) {Intersection Between X And L'}
End For

d:= {Robots’ Positions Inside R} U {Robots’ Positions On K Above

p' := Topmost Point In Intersections;

p" = Point On K Above p' At Distance § From p/.
Move (p”}.

Else
domnothing ().

In other words, the robot r chooses a path the goes above all the robots that are
in the region R_ delimited by L (the vertical line passing through the position of

the calling robot) and K, maintaining the invariant to remain the (closest to K)
topmost robot in Free_Robots.

When all the robots in Left and Rig
K, if any, are directed sequentially,
available final positions. In particu
point in Final_Positions.

ht are on Final Positions, all the robots on
from the topmost to the bottomost, towards the
lar, the topmost robot on K chooses the closest

4.2 Correctness

We shall call an even agreement configuration one in which (i) all robots agree
on the position of a vertical axis X in the plane, (ii) each robot is either on one
of the Final_Positions or on K, and (iii) there is at most one robot on each of the
Final Positions. Moreover, we define the cardinality of an even agreement con-
figuration as the number of robots on K. In the following we will denote by sides
the two halves in which the plane is divided by K. We first show that Algorithm 1
lets the robots reach an even agreement configuration in a finite number of cycles,

160 Sirocco 8

while avoiding collisions between robots.

Lemma 1 If the robots are not in a final configuration, in a finite number of
cycles the robots agree on two topmost outermost robots, Outery and Outer,,
Let Oy and O, be the vertical axes passing through the positions of Outer, and
Outery, respectively. In a finite number of cycles Outery and Outer; will be at the
same height, and all the robots will agree on the position of the vertical axis K
that is median between Oy and O,. Until this happens, any collision is avoided,

Proof. After having chosen an axis of symmetry § on Line 1 of the algorithm’,
the robot locally rotates P in such a way that § becomes parallel to Y. We note that,
since [P is symmetric with respect to S, and S is an empty axis, there are exactly two
topmost outermost points in P. If the robots are all on the same vertical axis H,
routine Same _Vertical Axis (H) is called. In particular, let d be the distance
between the topmost and the bottomost robot on H. The second topmost robot 7 on
H moves at a distance d to its right, while all the other robots do not move. While
r is moving, |H| = n — 1 and, according to Line 19 of the routine, all the robots do
not move until 7, in a finite number of movements, is at distance d from K. After
this, the two outermost and highest robots in the world are localized (Outer; and
Outer, at Line 7), and until they are at the same height8 all the other robots do
not move (Lines 3 and 9 in routine Fix_Outermosts ()). Once they reach the
same height (Line 10), Outer| and Outer; will never move again (Line 12). By
construction, Oy # O3, and there are no robots on 01 and O, that are above Outer;
or Outery. Therefore, since according to routine Fix.Outermosts {) Outer;
and Outer;, if they move, always move up and on O and O3, their movements
can not produce any collision. After Quter; and Outer; reach the same height, all
the robots can agree on the axis K that is in the middle between the vertical axis
passing through Ourer; and the vertical axis passing through Outer, (Line 14).
Since Ourer; and Outer, executed a finite number of cycles to reach their final

positions, by Assumptions Al and A2, the agreement on K is reached in a finite

number of cycles. G

Lemma 2 If the robots are not in a final configuration nor in an even agreement

configuration, they will reach an even agreement configuration in a finite number
of cycles, and without collisions.

Morcover, we can prove the following

Lemma 3 Given an even agreement configuration of cardinality greater or equal
to one, within finite time another even agreement configuration of smaller cardi-

nality will be reached, avoiding any collisions.

7 All the Lines refer to Algorithm 1, if not otherwise stated.
8We recall that we can talk about same heights because all the robots agree on the direction of Y,

hence they can commonly agree on this.

Flocchini et al.: Pattern Formar;

Therefore, by Lemmas 2 and 3, we ca

Theorem 4 Algorithm 1 is a collision-fr.

P.

Corollary 1 An even number of autonc
robots that agree on the direction and orie:

ifand only if P € .

5 Remarks on Rotation

In Sections 3 and 4.1, we have provided :
terns which can be formed by an even nu
the'y h'ave agreement on the direction and «
terization assumes that the robots can local
robots be incapable to perform this operatio
surprisingly, the class of achievable patterr

of symmetric pattern with at least one empn
to?. -

Theorem S There exists no pattern Sformati

rotation of the input pattern, and that lets
Pe .

Proof. By contradiction, let 4 be an algo:
initial configuration, let the robots form a pe
figuration of the robots for IP after they exe«
lowed, also ¥ is symmetric with no empty (
the vertical axes passing through the two outc
median between O; and O0,. If K = 0) =0
leader can be elected (e.g., the topmost robc:
2. Otherwise, if ¥ is symmetric with respect
robot on K (by hypothesis, ¥ has no empty a
f)f these robots can be elected as leader, con
1s not symmetric with respect to X also in th
following an approach similar to the one use.
contradicting again Theorem 2.

As a concluding remark, we note that ski:
Algorithm 1, we have a pattern formation af
local rotation and allows the formation of a
one empty axis that is parallel to Y. Hence, wc

Flocchini et al.: Pattern Formation by Autonomous Robots

Therefore, by Lemmas 2 and 3, we can state the following

Theorem 4 Algorithm 1 is a collision-free pattern formation algorithm JorPe

\}3_

Corollary 1 An even number of autonomous, anonymous, oblivious, mobile
robots that agree on the direction and orientation of Y axis, can form a pattern P
ifand only if P € 'R.

5 Remarks on Rotation

In Sections 3 and 4.1, we have provided a characterization of the class of pat-
terns which can be formed by an even number of anonymous robots, provided
they have agreement on the direction and orientation of the ¥ axis. This charac-
terization assumes that the robots can locally rotate the input pattern. Should the
robots be incapable to perform this operation, the characterization is different; not
surprisingly, the class of achievable patterns is smaller. Let B’ C P be the class

of symmetric pattern with at least one empty axis, and with no empty axis parallel
toY.

Theorem 5 There exists no pattern formation algorithm that does not allow local

rotation of the input pattern, and that lets the robots form a symmetric pattern
Pe P

Proof. By contradiction, let 4 be an algorithm that, starting from an arbitrary
initial configuration, let the robots form a pattern P € *P’. Let ¥ be the final con-
figuration of the robots for P after they execute 4. Since no local rotation is al-
lowed, also ¥ is symmetric with no empty axis parallel to Y. Let O; and O, be
the vertical axes passing through the two outermost robots, and K the vertical axis
median between O; and O,. If K = O = 0,, then all the robot are on K, hence a
leader can be elected (e.g., the topmost robot on K), thus contradicting Theorem
2. Otherwise, if ¥ is symmetric with respect to K. 'hen there must be at least one
robot on K (by hypothesis, ¥ has no empty axis parallel to Y); hence, the topmost
of thesc robots can be elected as leader, contradicting Theorem 2. Therefore, W
is not symmetric with respect to K: also in this case a leader can be elected (e.g.,
following an approach similar to the one used in the proof of Theorem 3.a), thus
contradicting again Theorem 2. g

As a concluding remark, we note that skipping the Rotate (P) at Line 2 in
Algorithm 1, we have a pattern formation algorithm that does not make use of
local rotation and allows the formation of a symmetric pattern that has at least
one empty axis that is parallel to Y. Hence, we can state the following

162

Sirocco 8

Corollary 2 An even number of aufonomous, anonymous, oblivious, mobile
robots that agree on the direction and orientation of Y axis, cam form a pattern P
if and only if P € B\ *B’, when no local rotation of P is allowed.

Acknowledgements

This work has been partially supported by the Natural Science and Engineering
Research Council of Canada, by the Swiss National Science Foundation, and by
Nortel Networks.

References

(1] J. Desai, J. Ostrowski, and V. Kumar. Control of Formations for Multiple Robots. In

(2]

{31

{4]

151

(6]

{7

{8]

Paola Flocchini is an Associate Professor at the School of Information, Technology and

Proc. of 1998 IEEE Int. Conf. on Rob. and Autom.

P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer.

Hard Tasks for Weak

Robots: The Role of Common Knowledge in Pattern Formation by Autonomous Mo-

bile Robots. In Proc. of ISAAC, 1999.

Y. Kawauchi, M. Inaba, and T. Fukuda. A Principle of Decision Making of Cellular
Robotic System (CEBOT). In Proc. 1993 IEEE Conference on Rob. and Autom., pages

833-838.

M. J. Mataric. Designing Emergent Behaviors: From Local Interactions to Collective
Intelligence. From Animals to Animats 2, pages 423-441, 1993.

S. Murata, H. Kurokawa, and S. Kokaji. Self-Assembling Machine. In Proc. 1994

IEEE Conference on Rob. and Autom., pages 441-448.

G. Prencipe. Distributed Control and Coordination of a Set of Autonomous Mobile

Robots. PhD thesis, Universita di Pisa, 2001.

1. Suzuki and M. Yamashita. Distributed Anonymous Mobile Robots - Formation and

Agreement Problems. In Proc. of SIROCCO, pages 313-330, 1996.

1. Suzuki and M, Yamashita. Distributed Anonymous Mobile Robots: Formation of

Geometric Patterns. Siam J. Comput., 28(4):1347-1363, 1999.

Engineering of the University of Ottawa. E-mail: flocchin@site.uottawa.ca

Giuseppe Prencipe is a Ph.D. student at the Computer Science Department of the Uni-

versity of Pisa. E-mail: prencipe@di.unipi.it

Nicola Santore is a Full Professor at the School of Computer Science of the Carleton

University. E-mail: santoro@scs.carleton.ca

Peter Widmayer is a Full Professor at the Theoretische Informatik of the ETH Ziirich.

E-mail: pw@inf .ethz.ch

Characterization of N
Multi-dimensional Lin

Scher

YASHAR G
University of Wate

Abstrac

An Interval routing scheme (IRS}is a
strategy for routing messages in a distrib:
node of the network is assigned an integer
labeled with an interval. The interval assig-
the set of destination addresses of the me-
through e at v. A Multi-dimensional Inte;
generalization of IRS in which each nods
label (which is a list of 4 integers for the
assigned to the links of the network are z
1-dimensional intervals). The class of ne
which the intervals are not cyclic) is alre.
case [5]. In this paper, we generalize this r.
the class of networks supporting linear MI'
ber of dimensions d. We show that by inc
supporting MLIRS is strictly expanded. W
the class of networks supporting strict MLI.

the intervals assigned to the links incident -
label of v).

Keywords

Computer networks, interval routing schemes

characterizati

1 Introduction

One of the most fundamental tasks in any net
sages between pairs of nodes. The classical m:

anetwork is to store a routing table at each n¢
_— TS

This work has been supported in ;;n by NSERC.

163

