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Abstract. O ver th e past few y ears, th e focu s of rob otic desig n h as b een
moving from a scenario w h ere few , specialized (and ex pensive) u nits w ere
u sed to solve a variety of task s, to a scenario w h ere many , g eneral pu rpose
(and ch eap) u nits w ere u sed to ach ieve some common g oal. C onseq u ently ,
part of th e focu s h as b een to b etter u nderstand h ow to efficiently coor-
dinate and control a set of su ch “ simpler” mob ile u nits. S tu dies can b e
fou nd in diff erent disciplines, from eng ineering to artifi cial life: a sh ared
featu re of th e majority of th ese stu dies h as b een th e desig n of alg orith ms
b ased on h eu ristics, w ith ou t mainly b eing concerned w ith correctness
and termination of su ch alg orith ms. F ew stu dies h ave focu sed on try ing
to formally model an environment constitu ted b y mob ile u nits, stu dy -
ing w h ich k ind of capab ilities th ey mu st h ave in order to ach ieve th eir
g oals; in oth er w ords, to stu dy th e prob lem from a computational point
of view . T h is paper focu ses on tw o of th ese stu dies [1,6,14 ] (th e only
ones, to ou r k now ledg e, th at analy ze th e prob lem of coordinating and
controlling a set of au tonomou s, mob ile u nits from th is point of view ).
F irst, th eir main featu res are describ ed. T h en, th e main diff erences are
h ig h lig h ted, sh ow ing th e relationsh ip b etw een th e class of prob lems solv-
ab le in th e tw o models.

K e y w o rd s: M ob ile R ob ots, Distrib u ted C oordination, Distrib u ted M od-
els, C ompu tab ility .

1 Introduction

In a system consisting of a set of totally distrib uted ag ents the g oal is g enerally

to exploit the multiplicity of the elements in the system so that the execution of

a certain numb er of predetermined task s occurs in a coordinated and distrib uted

w ay. S uch a system is preferab le to one made up of just one pow erful rob ot for

sev eral reasons: the advantag es that can arise from a distrib uted and parallel

solution to the g iv en prob lems, such as a faster computation; the ab ility to

perform task s w hich are unab le to b e executed b y a sing le ag ent; increased fault

tolerance; and, the decreased cost throug h simpler indiv idual rob ot desig n. O n

the other hand, the main concern in such a system is to find an efficient w ay to
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coordinate and control the mobile units, in order to exploit to the utmost the
presence of many elements moving independently.

Several studies have been conducted in recent years in different fields. In
the engineering area we can cite the C ellular R obotic System (C E B OT ) of
K awaguchi et al. [9], the Swarm Intelligence of B eni et al. [3], and the Self-
A ssembly M achine (“ fructum” ) of M urata et al. [11]. In the A I community there
has been a number of remarkable studies: social interaction leading to group be-
havior by M atarić [10 ]; selfish behavior of cooperative robots in animal societies
by Parker [12]; and primitive animal behavior in pattern formation by B alch and
A rkin [2].

T he shared feature of all these approaches is that they do not deal with
formal correctness and they are only analyzed empirically. A lgorithmic aspects
were somehow implicitly an issue, but clearly not a major concern - let alone
the focus - of the study.

A different approach is to analyze an environment populated by a set of au-
tonomous, mobile robots, aiming to identify the algorithmic limitations of what
they can do. In other words, the approach is to study the problem from a co m p u -

tatio n al po in t o f view . T his paper deals with two studies leading in this direction
(the only ones, to our knowledge, that analyze the problem of coordinating and
controlling a set of autonomous, mobile units from this point of view). T he first
study is by Suzuki et al. [1,13,14 ]. It gives a nice and systematic account on the
algorithmics of pattern formation for robots, operating under several assump-
tions on the power of the individual robot. T he second is by F locchini et al. [6,8]:
they present a model (that we will refer to as Corda – Coordination and con-
trol of a set of robots in a totally distributed and asynchronous environment),
that has as its primary objective to describe a set of simple mobile units, which
have no central control, hence move independently from each other, which are
totally asynchronous, and which execute the same deterministic algorithm in
order to achieve some goal. In both studies, the modeled robots are rather w eak

and simple, but this simplicity allows us to formally highlight by an algorithmic
and computational viewpoint the minimal capabilities they must have in order
to accomplish basic tasks and produce interesting interactions. F urthermore, it
allows us to better understand the power and limitations of the distributed con-
trol in an environment inhabited by mobile agents, hence to formally prove what
can be achieved under the “ weakness” assumptions of the models, that will be
described later in more detail (see [7] for more detailed motivations).

A n investigation with an algorithmic fl avor has been undertaken within the
A I community by D urfee [5], who argues in favor of limiting the knowledge that
an intelligent robot must possess in order to be able to coordinate its behavior
with others.

A lthough the model of Suzuki et al. (which we will refer to as SY m) and
Corda share some features, they differ in some aspects that render the two
models q uite different. In this paper we highlight these differences, focusing in
particular on the different approach in modeling the asynchronicity of the envi-
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ronment in which the robots operate, and showing that the algorithms designed
on SYm do not work in general on Corda.

In Section 2.1, SYm and Corda are described, highlighting the features that
render the two models different. In Section 3, we show that the class of problems
solvable in Corda is strictly contained in the class of problems solvable in SYm.
In Section 4, we present a case study: we analyze the oblivious gathering problem,
showing that the algorithmic solutions designed for SYm do not work in Corda.
Finally, in Section 5 we draw some conclusions and present open problems and
suggestions for further study.

2 Modeling Autonomous Mobile Robots

In this section we present the approaches used in SYm and Corda to model the
control and coordination of a set of autonomous mobile robots. In particular, we
first present the common features in the two models, and successively present in
detail the instantaneous action of SYm, and the full asynchronicity of Corda,
that model the interactions between the robots.

2.1 Common Features

The two models discussed in this paper share some basic features. The robots are
modeled as units with computational capabilities, which are able to freely move
in the plane. They are viewed as points, and they are equipped with sensors
that let them observe the positions of the other robots in the plane. Depending
on whether they can observe all the plane or just a portion of it, two different
models can arise: U nlimited and L imited V isibility model (each robot can see
only whatever is at most at distance V from it). The robots are anonymous,
meaning that they are a priori indistinguishable by their appearances, and they
do not have any kind of identifiers that can be used during the computation.
They are asynchronous and no central control is allowed. Each robot has its
own local view of the world. This view includes a local Cartesian coordinate
system with origin, unit of length, and the d irections of two coordinate axes,
identified as x axis and y axis, together with their orientations, identified as the
positive and negative sides of the axes. The robots do not necessarily share the
same x − y coordinate system, and do not necessarily agree on the location of
the origin (that we can assume, without loss of generality, to be placed in the
current position of the robot), or on the unit distance. They execute, however,
the same deterministic algorithm, which takes in input the positions of the robots
in the plane observed at a time instant t, and returns a destination point towards
which the executing robot moves. The algorithm is oblivious if the new position
is determined only from the positions of the others at t, and not on the positions
observed in the past1; otherwise, it is called non oblivious. Moreover, there are no

1 W e also refer to the robots as oblivious because of this feature of the algorithms they
execute.
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explicit means of communication: the communication occurs in a totally implicit
manner. Specifically, it happens by means of observing the change of robots’
positions in the plane while they execute the algorithm.

Clearly, these basic features render the modeled robots simple and rather
“weak”, especially considering the current engineering technology. But, as al-
ready noted, the main interest in the studies done in [6,14], is to approach the
problem of coordinating and controlling a set of mobile units from a computa-

tional point of view. The robots are modeled as “weak robots” because in this
way it is possible to formally analyze the strengths and weaknesses of the dis-
tributed control. Furthermore, this simplicity can also lead to some advantages.
For example, avoiding the ability to remember what has been computed in the
past gives the system the nice property of self-stabilization [7,14].

During its life, each robot cyclically is in three states: (i) it observes the
positions of the others in the world, (ii) it computes its next destination point,
and (iii) it moves towards the point it just computed. As already stated, the
robots execute these phases asynchronously, without any central control: in this
feature the two models drastically differ. In fact, in SYm states (i) to (iii)
are executed atomically (instantaneously), while this assumption is dropped in
Corda. In the following we better describe how the asynchronicity is approached
in the two models.

2.2 The Instantaneous Actions of SYm

In this section we better describe how the movement of the robots is modeled in
SYm [1,14]. The authors assume discrete time 0, 1, 2, . . .. At each time instant t,
every robot ri is either active or inactive. At least one robot is active at every
time instant, and every robot becomes active at infinitely many unpredictable
time instants. A special case is when every robot is active at every time instant;
in this case the robots are synchronized, but this case is not interesting for the
purpose of this paper.

L et pi(t) indicate the position of robot ri at time instant t, and ψ the al-
gorithm every robot uses. Since the robots are viewed as points, in SYm it is
assumed that two robots can occupy the same position simultaneously and never
collide. ψ is a function that, given the positions of the robots at time t (or, in the
non oblivious case, all the positions the robots have occupied since the beginning
of the computation2), returns a new destination point p. For any t ≥ 0, if ri is
inactive, then pi(t + 1) = pi(t); otherwise pi(t + 1) = p, where p is the point
returned by ψ. The maximum distance that ri can move in one step is bounded
by a distance εi > 0 (this implies that every robot is then capable of traveling
at least a distance ε = min{ε1, . . . , εn} > 0). The reason for such a constant is
to simulate a continuous monitoring of the world by the robots.

Thus, ri executes the three states (i)–(iii) instantaneously, in the sense that
a robot that is active and observes at t, has already reached its destination

2 N ote that the non obliviousness feature does not imply the possibility for a robot
to find out which robot corresponds to which position it stored, since the robots are
anonymous.



158 Giuseppe Prencipe

point p at t + 1. Therefore, a robot takes a certain amount of time to move
(the time elapsed between t and t + 1), but no fellow robot can see it while it is
moving (or, alternatively, the movement is instantaneous).

2.3 The Full Asynchronicity of Corda

Similarly to SYm, each robot repeatedly executes four states. A robot is initially
in a waiting state (W ait); at any point in time, asynchronously and independently
from the other robots, it observes the environment in its area of visibility (Look),
it calculates its destination point based only on the current locations of the
observed robots (C ompute), it then moves towards that point (M ove) and goes
back to a waiting state. The states are described more formally in the following.

1. W ait The robot is idle. A robot cannot stay infinitely idle.
2. L ook The robot observes the world by activating its sensors which will re-

turn a snapshot of the positions of all other robots with respect to its local
coordinate system. Each robot r is viewed as a point, and therefore its po-
sition in the plane is given by its coordinates. In addition, the robot cannot
in general detect whether there is more than one fellow robot on any of the
observed points, included the position where the observing robot is. W e say
it cannot detect multiplicity. If, on the other hand, a robot can recognize
that there is more than one fellow on the positions where it is, we say that
it can detect a weak multiplicity.

3. Comp ute The robot performs a local computation according to its determin-
istic algorithm. The result of the computation can be a destination point or
a null movement (i.e., the robot decides to not move).

4 . M ov e If the result of the computation was a null movement, the robot does
not move; otherwise it moves towards the point computed in the previ-
ous state. The robot moves towards the computed destination of an un-
predictable amount of space, which is assumed neither infinite, nor infinites-
imally small (see Assumption A2 below). H ence, the robot can only go to-
wards its goal, but it cannot know how far it will go in the current cycle,
because it can stop anytime during its movement 3.

A computational cycle is defined as the sequence of the W ait-Look-C ompute-

M ove states; the “life” of a robot is then a sequence of computational cycles.
In addition, we have the following assumptions on the behavior of a robot:

A 1(Comp utational Cy c le) The amount of time required by a robot r to com-
plete a computational cycle is not infinite, nor infinitesimally small.

A 2(D istance) The distance traveled by a robot r in a M ove is not infinite.
Furthermore, it is not infinitesimally small: there exists an arbitrarily small
constant δr > 0, such that if the result of the computation is not a null

3 That is, a robot can stop before reaching its destination point, e.g. because of limits
to the robot’s motorial autonomy.
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movement and the destination point is closer than δr, r will reach it; oth-
erwise, r will move towards it of at least δr. In the following, we shall use
δ = minr δr.

Therefore, in Corda there is no assumption on the maximum distance
a robot can travel before observing again (apart from the bound given from the
destination point that has to be reached), while in SYm an active robot ri always
travels at most a distance εi in each step. The only assumption in Corda is
that there is a lower bound on such distance: when a robot r moves, it moves at
least some positive, small constant δr. The reason for this constant is to better
model reality: it is not realistic to allow the robots to move an infinitesimally
small distance.

The main difference between the two models is, as stated before, in the way
the asynchronicity is regarded. In Corda the environment is fully asynchronous,
in the sense that there is no common notion of time, and a robot observes the
environment at unpredictable time instants. Moreover, no assumptions on the
cycle time of each robot, and on the time each robot elapses to execute each
state of a given cycle are made. It is only assumed that each cycle is completed
in finite time, and that the distance traveled in a cycle is finite. Thus, each
robot can take its own time to compute, or to move towards some point in the
plane: in this way, it is possible to model different computational and motorial
speeds of the units. Moreover, every robot can be seen while it is moving by
other robots that are observing. This feature renders more difficult the design of
an algorithm to control and coordinate the robots. For example, when a robot
starts a Move state, it is possible that the movement it will perform will not be
“coherent” with what it observed, since, during the Compute state, other robots
can have moved.

3 Instantaneous Action vs. Full Asynchronicity

In this section, we highlight the relationship between the two models. In particu-
lar, we first show that any algorithm designed in Corda to solve some problem P
can be used in SYm to let the robots accomplish the task defined by P . The vice
versa is not true. In fact, we will give strong evidence that the differences pointed
out in the previous sections, in particular the way in which the asynchronicity is
modeled, render the two models really different, both in the oblivious and non
oblivious case, and that the algorithms designed in SYm do not work in Corda.

Let us first introduce the definition of a valid activation schedule for an
algorithm in Corda.

Definition 1. G iven an algorithm A, an activation schedule for A in Corda is

defi ned as a function F(t) =< W(t), L(t), C(t), M(t) >, where W(t) is a set of

pairs (r, t′), such that

1 . r is a robot that is in the Wait state at time t,

2 . t′ > t, and
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3. in W(t) there is at most one pair per each robot in the system

(L(t), C(t), and M(t) are defined similarly for the Look, Compute, and Move
states, respectively).

Definition 2. A n activation schedule is valid, if the following conditions hold:
(i) (r, t′) ∈ W(t) ⇒ ∀ t ≤ t′′ < t′, (r, t′) ∈ W(t′′) (a similar condition applies also
for L(t), C(t), and M(t)); (ii) for all t, W(t), L(t), C(t), and M(t) constitute
a partition of all the robots in the system.

An algorithm A correctly solves a problem P in Corda, if, given any valid
activation schedule for A, the robots accomplish the task defined by P in a finite
number of cycles. Let us denote by C and Z the class of problem that are solvable
in Corda and SYm, respectively. We are now ready to show that SYm is at
least as powerful as Corda, that is C ⊆ Z.

Theorem 1. A ny algorithm that correctly solves a problem P in Corda, cor-
rectly solves P also in SYm.

P roof. Let A be an algorithm that solves a given problem P in Corda. In
order to prove that A solves P also in SYm, we show that any execution of
A in SYm corresponds to an activation schedule in Corda. Hence, since by
hypothesis A correctly solves P in Corda, the theorem follows.

Let us execute A in SYm, and let E(t) be the set of robots that are active at
time t. Therefore, all the robots E(t) finish to execute their cycle at time t + 1.
The activation schedule F(t), for all t ≤ t < t+1, in Corda for A corresponding
to the portion of the execution of A in SYm starting at time t and ending at
time t + 1, is defined as follows (see Figure 1). If r ∈ E(t), then for all t ≤ t < t1,
(r, t1) ∈ L(t); for all t1 ≤ t < t2, (r, t2) ∈ C(t); for all t2 ≤ t < t3, (r, t3) ∈ M(t);
and for all t3 ≤ t < t + 1, (r, t + 1) ∈ W(t). Otherwise, for all t ≤ t < t + 1,
(r, t + 1) ∈ W(t). In other words, all the robots in E(t) start their Look state,
while all the others are in Wait. Moreover, all these robots execute their three
states perfectly synchronized, so that they start their next cycle all together.
Inductively, F(t), for all t + 1 ≤ t < t + 2, corresponding to the next cycle (from
time t + 1 to t + 2) of the execution of A in SYm is constructed.

Therefore, any execution of A in SYm corresponds to a valid activation sched-
ule for A in Corda. Since by hypothesis A correctly solves P on Corda, the
robots will correctly accomplish their task in SYm, and the theorem follows.

Corollary 1. A ny problem that can be solved in Corda, can be solved in SYm;
hence C ⊆ Z.

To prove that the inclusion is strict, we place ourselves in the non oblivious
setting: the robots have an unlimited amount of memory, hence they can remem-
ber the positions of all the other robots since the beginning of the execution,
and they can use this information while computing.
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t t1 t + 1t2

S Y m

Cord a

A ctiv e (S Y m )

Wait/ Ina ctiv e

L oo k (Cord a)

C o m p u te (Cord a)

M o ve (Cord a)

t3

Fig. 1. T he a ctiv a tio n schedu le defi ned in T heo rem 1

D e fi n itio n 3 (M o v e m e n t A w a re n e ss). T h e M o v em ent A w a reness p ro blem

MA is d iv id ed in tw o su btasks T1 and T2. In T1, ro bo t ri, 1 ≤ i ≤ n, sim p ly m o ves

alo ng a d irectio n it ch oo ses arbitrarily ; ri can start T2 o nly after it o bserved rj

in at least th ree d iff erent po sitio ns, and after rj o bserved ri in at least th ree

d iff erent po sitio ns, fo r all j �= i.

T h e o re m 2 . T h ere ex ists no algo rith m th at so lves MA in Cord a in th e no n

o blivio u s setting.

P roo f. B y co ntra dictio n, let u s a ssu m e tha t there ex ists a n a lg o rithm A tha t
co rrectly so lv es MA in Cord a. T he g eneric ro b o t r sta rts its ex ecu tio n b y
m o v ing a lo ng the directio n it cho o ses. B y hy p o thesis, it w ill ev entu a lly a nd
w ithin a fi nite nu m b er o f cy cles sta rt the seco nd su b ta sk . L et t b e the tim e
w hen r decides to sw itch to T2. S ince the ro b o ts o p era te in fu ll a sy nchro nicity ,
there ca n ex ist a ro b o t r′ tha t sta rted its fi rst M o ve sta te a t tim e t′ < t, a nd
is still m o v ing a t tim e t (tha t is r′ is still ex ecu ting its fi rst cy cle). T hen MA

is no t co rrectly so lv ed, since r′ ha s no t sta rted its seco nd cy cle a t tim e t y et,
hence r′ ha s no t o b serv ed r in a t lea st three diff erent p o sitio ns y et, ha v ing a
co ntra dictio n.

A n a lg o rithm sim ila r to the o ne u sed in [14 ] to disco v er the initia l co n-
fi g u ra tio n (“ distrib u tio n” ) o f the ro b o ts in the sy stem , ca n b e u sed to so lv e
in S Y m MA. N a m ely , ea ch ro b o t sta rts m o v ing a lo ng the directio n it lo ca lly
cho o ses, e.g . the directio n o f its lo ca l y a x is. W hen a ro b o t r o b serv es a no ther
ro b o t r′ in a t lea st three diff erent p o sitio ns, r m o v ed a t lea st tw ice. M o reo v er,
since in S Y m the a ctio ns a re insta nta neo u s, r ca n co rrectly dedu ce tha t r′ o b -
serv ed a t lea st tw ice, hence tha t r′ o b serv ed r in a t lea st three diff erent p o sitio ns.
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Therefore, r can correctly start T2 when it observes all r′ �= r in at least three
different positions. H ence, we can state the following

Theorem 3. MA is solvable in SYm, in the non oblivious setting.

C orollary 2. C ⊂ Z.

A q uestion that arises is: what does it happen in the oblivious case? U nfor-
tunately, we do not yet have an answer. O ur conjecture, however, is that the
result stated in Corollary 2 holds also in the oblivious case. In the non oblivious
setting, the fact that in Corda a robot can be seen by its fellows while it is
moving is crucial to prove C ⊂ Z. This is not the case in the oblivious setting.
In fact, since the robots have no memory of robots’ positions observed in the
past, every time a robot r observes another robot r′, r can not tell if r′ moved
since last cycle or not, and every observation is like the first one (that is every
time r observes, is like the execution begins). H ence, we believe that the key
to prove C ⊂ Z in the oblivious case is related to the fact that in Corda the
positions of the robots between a Look and a Compute can change, hence the
computation can be done on ”outdated” data. In other words, if r executes the
Look at time t and the Compute at time t′ > t, the set of robots’ positions at t

and at t′ can be clearly different; hence r computes its destination point on the
old data sensed at time t, implying that the movement will not be ”choerent”
with what it observed at time t. This clearly does not happen in SYm, where
the possible states a robot can be in are executed instantaneously.

4 Case Study: Oblivious Gathering

In this section, we will give evidence that the algorithms designed in SYm in the
oblivious setting do not work in general in Corda.

The problem we consider is the gathering problem: the robots are asked to
gather in a not predetermined point in the plane in a finite number of cycles.
An algorithm is said to solve the gathering problem if it lets the robots gather
in a point, given any initial confi guration. An initial configuration is the set of
robots’ positions when the computation starts, one position per robot, with no
position occupied by more than one robot. This is the only problem, to our
knowledge, solved with an oblivious algorithm in SYm [1,14]. In the following,
we will analyze both the unlimited and limited visibility setting.

4 .1 The U nlimited V isib ility S etting

An algorithm for solving the gathering problem in SYm in the unlimited visibility
setting (called Algorithm 1 in Appendix A.1) is presented in [14]. The idea is
as follows. Starting from distinct initial positions, the robots are moved in such
a way that eventually there will be exactly one position, say p, that two or
more robots occupy. O nce such a situation has been reached, all the robots
move towards p. It is clear that such a strategy works only if the robots in the
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C y cle 1 C y cle 2 C y cle 3

r1

r2

r4

r3

r2

r4
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r2

r4

r3

r2

r4

r3
r2

r3

r2

C y cle 5C y cle 4 C y cle 6

r1

r1

r4

r4

r3r1
r1

r1

Fig. 2. Proof of Theorem 4. The symbols used for the robots are the same as in
F igure 1. The dotted circles indicate the robots in the Look state; the grey ones
the robots in the Compute state; the circle with an arrow inside are the robots
that are moving; the white circles represent the robots in Wait. The arrows
indicate the direction of the movement computed in the Compute state

system have the ability to detect the multiplicity. In SYm this capability is never
mentioned, but it is clearly used implicitly.

Theorem 4. A lgorithm 1 does not solve the gathering problem in Corda, in

the unlimited visibility setting.

Proof. In order to show that Algorithm 1 does not solve the gathering problem in
Corda, we give an initial configuration of the robots and describe an activation
schedule that leads to having two points in the plane with multiplicity greater
than two, thus violating the invariant proven for Algorithm 1, that “eventually
there will be exactly one position that two or more robots occupy” [14].

Let us suppose to have 4 robots ri, i = 1, 2, 3, 4, that at the beginning are on
a circle C, with r2 and r4 that occupy the ending points of a diameter of C (as
pictured in F igure 2, Cycle 1). In the following, the positions of the robots are
indicated by pi, i = 1, 2, 3, 4. E xecuting Algorithm 1, but assuming the features
of Corda, a possible run (activation schedule) is described in the following.

Cycle 1 At the beginning the four robots are in distinct positions, on a circle C.
r1 and r2 enter the Look state, while the others are in Wait. After having
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observed, both of them enter the Compute state, and let us assume that r2 is
computationally very slow (or, alternatively, that r1 is very fast). Therefore,
r1 decides to move towards the center of C (part 2.3 of Algorithm 1), while r2

is stuck in its Compute state. r1 starts moving towards the center, while r2

is still in Compute, and r3 and r4 are in Wait.
Cycle 2 r1 is inside C, while the other robots are still on C. Now r1 observes

again (already in its second cycle) and, according to part 2.1 of the algorithm,
decides to move toward a robot that is on the circle, say r2. Moreover, r2 is
still in the Compute state of its first cycle, and r3 and r4 are in Wait.

Cycle 3 r1 reaches r2 and enters the Wait of its third cycle: at this point,
there is one position in the plane with two robots, namely p = p1 = p2.
Now, r3 enters its first Look state, looks at the situation and, according to
the algorithm, decides to move towards p, that is the only point in the plane
with more than ore robots on it. r2 is still in its first Compute, and r4 in
Wait.

Cycle 4 r3 reaches r1 and r2 on p, and it starts waiting. r1 is in Wait, r2 still
in its first Compute state, and r4 starts its first Look state, decides to move
towards p, and starts moving.

Cycle 5 While r4 is on its way towards p, r2 ends its first Compute state.
Since the computation is done according to what it observed in its previous
Look state (Cycle 1), it decides to move towards the center of C (part 2.3
of the algorithm). r2 starts moving towards the center of C after r4 passes
over the center of C, and while r4 is still moving towards p; r1 is in Wait.

Cycle 6 r2 and r4 are moving in opposite directions on the same diameter of C,
and they stop exactly on the same point p′ (in Corda a robot can stop before
reaching its final destination). There are two points in the plane, namely p

and p′ with p �= p′, with two robots on each. Therefore, the invariant proven
for Algorithm 1, that “eventually there will be exactly one position that two
or more robots occupy” [14], is violated.

R emark 1. We note that in Cycle 6 we made use of the possibility that a robot
stops before reaching the destination point it computed. The proof, however,
works even if we do not assume this; that is, if r2 and r4 do not stop before
reaching their respective destination points. In fact, if we assume, as in SYm,
that the robots simply cross each other without stopping, if (i) the crossing
happens in a point p′ �= p, and (ii) r1 enters its Observe phase exactly when the
crossing happens, we have that r1 sees two points in the plane with two robots
on each, namely p and p′, and does not know what to do, since this possibility
is not mentioned in SYm’s algorithm. Therefore, Theorem 4 still holds.

4.2 The L imited Visibility Setting

In [1], an algorithm to solve the gathering problem in SYm in the limited visi-
bility setting (called Algorithm 2 in Appendix A.2) is presented. We recall that,
in this setting a robot can see only whatever is at distance V from it. In the
following we shortly describe it.



Instantaneous Actions vs. Full Asynchronicity 165

Let us denote by ri(t) the position of robot ri at time instant t. The set
P (t) = {r1(t), . . . , rn(t)} then denotes the set of the robots’ positions at t. D efine
G(t) = (R , E(t)), called the Proximity Graph at time t, by (ri, rj) ∈ E(t) ↔
dis t(ri(t), rj(t)) ≤ V , where dis t(p, q) denotes the Euclidean distance between
points p and q. It can be proven that, if the proximity graph is not connected
at the beginning, the robots can not gather in a point [1] (form a point, in
SYm language).

Let Si(t) denote the set of robots that are within distance V from ri at time t;
that is, the set of robots that are visible from ri (note that ri ∈ Si(t)). Ci(t)
denotes the smallest enclosing circle of the set {rj(t)|rj ∈ Si(t)} of the positions
of the robots in Si(t) at t. The center of Ci(t) is denoted ci(t).

Every time a robot ri becomes active, the algorithm moves ri toward ci(t),
but only over a certain distance M O V E. Specifically, if ri does not see any robot
other than itself, then ri does not move. Otherwise, the algorithm chooses x to
be the point on the segment ri(t)ci(t) that is closest to ci(t) and that satisfies
the following conditions:

1. dis t(ri(t), x) ≤ σ. An arbitrary small constant σ > 0 is fixed, and it is
assumed that the distance a robot can travel in one state is bounded by σ
(similarly to the ε introduced in Section 2.2).

2. For every robot rj ∈ Si(t), x lies in the disk Dj whose center is the mid-
point mj of ri(t) and rj(t), and whose radius is V/ 2. This condition ensures
that ri and rj will still be visible after the movement of ri (and possibly
of rj , see Figure 3.a).

a. b.

mj

ri(t)

V/ 2

rj(t)

Dj

dj

mj

lj

Dj

V/ 2

ri(t) rj(t)θj

ci(t)

Fig. 3. The algorithm for the gathering problem in SYm, limited visibility setting
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Fig. 4. Proof of Theorem 5. The sy mb ols used for the rob ots a re the sa me a s in
F ig ure 2. A v ertic a l a rrow mea n s tha t a rob ot d ec id ed n ot to mov e (Move = 0 ).
A rob ot ri mov es a lw a y s tow a rd s the cen ter ci of the sma llest en c losin g c irc le of
a ll the rob ots it c a n see

W e n ote tha t, sin ce b y con d ition 1. the a lg orithm uses the con sta n t σ to
compute the d estin a tion poin t of a rob ot, a ll the rob ots must a g ree on the v a lue
of this con sta n t, a n d thus it must b e a priori k n ow n .

In [1] it is prov en tha t, ex ecutin g A lg orithm 2, tw o rob ots tha t a re con n ec ted
in G(t), w ill b e con n ec ted in G(t + 1). In the follow in g theorem w e prov e tha t it
d oes n ot solv e the g a therin g prob lem in Cord a, in the limited v isib ility settin g .
S pec ifi c a lly , w e g iv e a n in itia l con fi g ura tion of the rob ots a n d d escrib e a possib le
run of the a lg orithm tha t lea d s to pa rtition in g the prox imity g ra ph: tw o rob ots
tha t w ere v isib le un til time t, a re n ot v isib le a n y more a t t + 1, con tra d ic tin g the
result prov en in [1].

T h e o re m 5 . The algorithm p resen ted in [1] d oes n ot solve the gatherin g p rob-
lem in Cord a, in the lim ited visibility settin g.

P roof. In ord er to show tha t A lg orithm 2 d oes n ot solv e the g a therin g prob lem in
Cord a, w e g iv e a n in itia l con fi g ura tion of the rob ots a n d d escrib e a n a c tiv a tion
sched ule tha t lea d s to pa rtition in g the prox imity g ra ph: tw o rob ots tha t w ere
v isib le un til time t, a re n ot v isib le a n y more a t t + 1, con tra d ic tin g the result
prov en in [1].

L et us suppose to ha v e a t the b eg in n in g 5 rob ots on a stra ig ht lin e, a s show n
in F ig ure 4. M oreov er, let τ b e a con sta n t such tha t τ ≤ σ a n d δ = τ/ 16 , w here δ
is the con sta n t in trod uced in the A ssumption A 2 in S ec tion 2.3 . A t the b eg in n in g ,
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we have the following visibility situation: r1 can see r2 (d is t(r1, r2) = V ), r2 can
see r1 and r3 (d is t(r2, r3) = V −τ), r3 can see r2 and r4 (d is t(r3, r4) = V ), r4 can
see r3 and r5 (d is t(r4, r5) = V ), r5 can see r4. We recall that a robot ri always
move towards the center ci of the smallest circle enclosing all the robots it can
see. E xecuting Algorithm 2, but assuming the features of Corda, a possible run
is described in the following.

Cycle 1 All the robots, except r1 and r5 (that we assume in W ait), execute
their first L ook , and start the C ompute state. Let us suppose that r3 and r4

are faster than r2 in computing. The values they compute are:

r3:

{

Goa l = d is t(r3, c3) =
∣

∣

V −τ+V

2
− V + τ

∣

∣ = τ

2

L im it = min{−V −τ

2
+ V

2
, V } = τ

2

⇒ Move =
τ

2

r4: Goa l = 0 ⇒ Move = 0

Moreover, r3 and r4 also start moving while r2 is still computing; r1 and r5

are in W ait.
Cycle 2 After r3 and r4 move, the visibility situation is the same as it was in

the beginning. r3 and r4 L ook and C ompute again, as follows:

r3: Goa l = 0 ⇒ Move = 0

r4:

{

Goa l = d is t(r4, c4) =
∣

∣

∣

V +V −

τ

2

2
− V + τ

2

∣

∣

∣
= τ

4

L im it = min{−
V −

τ

2

2
+ V

2
, V } = τ

4

⇒ Move =
τ

4

r3 and r4 move again, while r2 is still in its first C ompute state, and r1 and r5

in their first W ait.
Cycle 3 After the movement of the previous cycle, the visibility situation is still

unchanged, that is, the proximity graph is still connected. r3 and r4 enter
their third L ook and C ompute states.

r3:

{

Goa l = d is t(r3, c3) =
∣

∣

∣

V −

τ

2
+V −

τ

4

2
− V + τ

2

∣

∣

∣
= τ

8

L im it = min{−
V −

τ

2

2
+ V

2
,

V −

τ

4

2
+ V

2
} = τ

4

⇒ Move =
τ

8

r4: Goa l = 0 ⇒ Move = 0

r3 and r4 move again. The other robots are in the same states as in the
previous cycle.

Cycle 4 The proximity graph is still connected. r3 and r4 L ook and C om-
pute again (this is their fourth cycle).

r3: Goa l = 0 ⇒ Move = 0

r4:

{

Goa l = d is t(r4, c4) =
∣

∣

∣

V −

3

8
τ+V −

τ

4

2
− V + 3

8
τ
∣

∣

∣
= τ

16
τ

L im it = min{−
V + 3

8
τ

2
+ V

2
,

V −

τ

4

2
+ V

2
} = 3

16
τ

⇒ Move =
τ

16

r3 and r4 enter the M ove state. Meanwhile, r2 finishes its first C ompute. The
values it computes refer to what was the situation when it observed, in C ycle
1.

r2:

{

Goa l = d is t(r2, c2) =
∣

∣

V +V −ta u

2
− V

∣

∣ = τ

2

L im it = min{V,−V −τ

2
+ V

2
} = τ

2

⇒ Move =
τ

2

r2 starts moving according to the destination point it just computed (it
enters it first M ove state).
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Cycle 5 The distance between r2 and r3 is V + τ/8 > V ; so r2 and r3 can
not see each other anymore, breaking the proximity graph connectivity that
we had at the beginning of the cycle. So, the invariant that “ robots that
are mutually visible at t remain within distance V of each other thereafter”
asserted in [1] is violated. Therefore, the theorem follows.

5 Conclusions

In this paper we discussed two models, SY m [1,14], and Corda [6,7,8], whose
main focus is to study the algorithmic problems that arise in an asynchronous
environment populated by a set of autonomous, anonymous, mobile units that
are req uested to accomplish some given task. These studies want to gain a better
understanding of the power of the distributed control from an algorithmic point
of view; specifically, the goal is to understand what kind of goals such a set
of robots can achieve, and what are the minimal req uirements and capabilities
that they must have in order to do so. To our knowledge, these are the only
approaches to the study of the control and coordination of mobile units in this
perspective.

We showed that the diff erent way in which the asynchronicity is modeled in
SY m and Corda, is the key feature that renders the two models diff erent: in
SY m the robots operate executing instantaneous actions, while in Corda full
asynchronicity is modeled, and the robots elapses finite, but otherwise unpre-
dictable, amount of time to execute their states. In particular, we showed that
C ⊂ Z in the non oblivious setting. Therefore, one open issue is to prove this
result also in the oblivious setting.

We feel that the approach used in Corda better describes the way a set
of independently-moving units operates in a totally asynchronous environment;
hence the motivation to further investigate coordination problems in a dis-
tributed, asynchronous environment using the fully asynchronous approach. Is-
sues which merit further research, regard the operating capabilities of the robots
modeled. In fact, it would be interesting to look at models where robots have dif-
ferent capabilities. For instance, we could eq uip the robots with just a bounded
amount of memory (semi-obliviousness), and analyze the relationship between
amount of memory and solvability of the problems, or how it would aff ect the
self-stability property of the oblivious algorithms [7].

O ther features that would inspire further study include giving a dimension to
the robots, and adding stationary obstacles to the environment, thus adding the
possibility of collision between robots or between moving robots and obstacles.
Furthermore, we could also study how the robots can use some kind of direct
communication, and we could introduce diff erent kinds of robots that move in the
environment (as in the intruder problem, where all the robots in the environment
must chase and “ catch” a “ designated” robot).

R elationship between memory and ability of the robots to complete given
tasks, dimensional robots, obstacles in the environment that limit the visibility
and that moving robots must avoid or push aside, suggest that the algorithmic
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nature of distributed coordination of autonomous, mobile robots merits further
investigation.
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Appendix

A O b liv io u s G a th ering in SYm

In this appendix, we report the oblivious algorithms described in [1,14 ] that let
the robots gather in a point in S Y m, in both the unlimited and limited visibility
settings.

A.1 Unlimited Visibility

In the following we report the oblivious algorithm described in [14 ] that lets the
robots achieve a confi guration where a uniq ue point p with multiplicity greater
than one is determined.

Alg o rith m 1 (P o int F o rma tio n Alg o rith m in S Y m, Unlim. Visib.[14 ])

C a se 1. n = 3 ; p1, p2, and p3 denote the positions of the three robots.
1.1. If n = 3 and p1, p2, and p3 are collinear with p2 in the middle, then

the robots at p1 and p3 move towards p2 while the robot at p2 remains
stationary . T hen eventually two robots occupy p2.

1.2 . If n = 3 and p1, p2, and p3 form an isosceles triangle with |p1p2| =
|p1p3| �= |p2p3|, then the robot at p1 moves toward the foot of the per-
pendicular drop from its current position to p2p3 in such a way that
the robots do not form an eq uilateral triangle at any time, while the
robots at p2 and p3 remain stationary . T hen eventually the robots be-
come collinear and the problem is reduced to part 1.1.

1.3 . If n = 3 and the lengths of the three sides of triangle p1,p2,p3 are all
diff erent, say |p1p2| > |p1p3| > |p2p3|, then the robot at p3 moves toward
the foot of the perpendicular drop from its current position to p1p2 while
the robots at p1 and p2 remain stationary . T hen eventually the robots
become collinear and the problem is reduced to part 1.1.

1.4 . If n = 3 and p1, p2, and p3 form an eq uilateral triangle, then every robot
moves towards the center of the triangle. S ince all robots can move up
to at least a constant distance ε > 0 in one step, if part 1.4 . continues to
hold then eventually either the robots meet at the center, or the triangle
they form becomes no longer eq uilateral and the problem is reduced to
part 1.2 or part 1.3 .

C a se 2 . n ≥ 4 ; Ct denotes the smallest enclosing circle of the robots at time t.
2 .1. If n ≥ 4 and there is exactly one robot r in the interior of Ct, then r

moves toward the position of any robot, say r′, on the circumference
of Ct while all other robots remain stationary . T hen eventually r and r′

occupy the same position.
2 .2 . If n ≥ 4 and there are two or more robots in the interior of Ct, then

these robots move toward the center of Ct while all other robots remain
stationary (so that the center of Ct remains unchanged). T hen eventually
at least two robots reach the center.
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2.3. If n ≥ 4 and there are no robots in the interior of Ct, then every robot
moves toward the center of Ct. Since all robots can move up to at least
a constant distance ε > 0 in one step, if part 2.3 continues to hold,then
eventually the radius of Ct becomes at most ε. O nce this happens, then
the next time some robot moves, say, at t′, either (i) two or more robots
occupy the center of Ct or (ii) there is exactly one robot r at the center
of Ct, and therefore there is a robot that is not on Ct′ (and the problem
is reduced to part 2.1 or part 2.2) since a cycle passing through r and
a point on Ct intersects with Ct at most at two points.

A.2 L imited Visibility

In the following we report the oblivious algorithm described in [14] that lets the
robots gather in a point (refer to F igure 3.b).

Algorithm 2 (Point Formation Algorithm in SYm, L im. Visib. [1] )

1. If Si(t) = {ri}, then x = ri(t).
2. ∀rj ∈ Si(t) − {ri},

2.1. dj = dis t(ri(t), rj(t)),

2.2. θj = ci(t)r̂i(t)rj(t),

2.3. lj = (dj/2) cos θj +
√

(V /2)2 − ((dj/2) sin θj)2,
3. L I M I T = minrj∈Si(t) − { ri}{lj},
4. G O A L = dis t(ri(t), ci(t)),
5 . M O V E = min{G O A L , L I M I T , σ },
6 . x = point on ri(t)ci(t) at distance M O V E from ri(t).


