Instantaneous Actions vs. Full Asynchronicity:
Controlling and Coordinating a Set of
Autonomous Mobile Robots

Giuseppe Prencipe

Dipartimento di Informatica, Universita di Pisa
Corso Italia, 40, 56100 - Pisa, Italy
prencipe@di.unipi.it

Abstract. Over the past few years, the focus of robotic design has been
moving from a scenario where few, specialized (and expensive) units were
used to solve a variety of tasks, to a scenario where many, general purpose
(and cheap) units were used to achieve some common goal. Consequently,
part of the focus has been to better understand how to efficiently coor-
dinate and control a set of such “simpler” mobile units. Studies can be
found in different disciplines, from engineering to artificial life: a shared
feature of the majority of these studies has been the design of algorithms
based on heuristics, without mainly being concerned with correctness
and termination of such algorithms. Few studies have focused on trying
to formally model an environment constituted by mobile units, study-
ing which kind of capabilities they must have in order to achieve their
goals; in other words, to study the problem from a computational point
of view. This paper focuses on two of these studies [1,6,14] (the only
ones, to our knowledge, that analyze the problem of coordinating and
controlling a set of autonomous, mobile units from this point of view).
First, their main features are described. Then, the main differences are
highlighted, showing the relationship between the class of problems solv-
able in the two models.

Keywords: Mobile Robots, Distributed Coordination, Distributed Mod-
els, Computability.

1 Introduction

In a system consisting of a set of totally distributed agents the goal is generally
to exploit the multiplicity of the elements in the system so that the execution of
a certain number of predetermined tasks occurs in a coordinated and distributed
way. Such a system is preferable to one made up of just one powerful robot for
several reasons: the advantages that can arise from a distributed and parallel
solution to the given problems, such as a faster computation; the ability to
perform tasks which are unable to be executed by a single agent; increased fault
tolerance; and, the decreased cost through simpler individual robot design. On
the other hand, the main concern in such a system is to find an efficient way to

A. Restivo, S. Ronchi Della Rocca, L. Roversi (Eds.): ICTCS 2001, LNCS 2202, pp. 154-171, 2001.
© Springer-Verlag Berlin Heidelberg 2001

Instantaneous Actions vs. Full Asynchronicity 155

coordinate and control the mobile units, in order to exploit to the utmost the
presence of many elements moving independently.

Several studies have been conducted in recent years in different fields. In
the engineering area we can cite the Cellular Robotic System (CEBOT) of
Kawaguchi et al. [9], the Swarm Intelligence of Beni et al. [3], and the Self-
Assembly Machine (“fructum”) of Murata et al. [11]. In the AT community there
has been a number of remarkable studies: social interaction leading to group be-
havior by Matarié¢ [10]; selfish behavior of cooperative robots in animal societies
by Parker [12]; and primitive animal behavior in pattern formation by Balch and
Arkin [2].

The shared feature of all these approaches is that they do not deal with
formal correctness and they are only analyzed empirically. Algorithmic aspects
were somehow implicitly an issue, but clearly not a major concern - let alone
the focus - of the study.

A different approach is to analyze an environment populated by a set of au-
tonomous, mobile robots, aiming to identify the algorithmic limitations of what
they can do. In other words, the approach is to study the problem from a compu-
tational point of view. This paper deals with two studies leading in this direction
(the only ones, to our knowledge, that analyze the problem of coordinating and
controlling a set of autonomous, mobile units from this point of view). The first
study is by Suzuki et al. [1,13,14]. It gives a nice and systematic account on the
algorithmics of pattern formation for robots, operating under several assump-
tions on the power of the individual robot. The second is by Flocchini et al. [6,8]:
they present a model (that we will refer to as COrRDA — Coordination and con-
trol of a set of Robots in a totally Distributed and Asynchronous environment),
that has as its primary objective to describe a set of simple mobile units, which
have no central control, hence move independently from each other, which are
totally asynchronous, and which execute the same deterministic algorithm in
order to achieve some goal. In both studies, the modeled robots are rather weak
and simple, but this simplicity allows us to formally highlight by an algorithmic
and computational viewpoint the minimal capabilities they must have in order
to accomplish basic tasks and produce interesting interactions. Furthermore, it
allows us to better understand the power and limitations of the distributed con-
trol in an environment inhabited by mobile agents, hence to formally prove what
can be achieved under the “weakness” assumptions of the models, that will be
described later in more detail (see [7] for more detailed motivations).

An investigation with an algorithmic flavor has been undertaken within the
AT community by Durfee [5], who argues in favor of limiting the knowledge that
an intelligent robot must possess in order to be able to coordinate its behavior
with others.

Although the model of Suzuki et al. (which we will refer to as SYm) and
CORDA share some features, they differ in some aspects that render the two
models quite different. In this paper we highlight these differences, focusing in
particular on the different approach in modeling the asynchronicity of the envi-

156 Giuseppe Prencipe

ronment in which the robots operate, and showing that the algorithms designed
on SYm do not work in general on CORDA.

In Section 2.1, SYm and CORDA are described, highlighting the features that
render the two models different. In Section 3, we show that the class of problems
solvable in CORDA is strictly contained in the class of problems solvable in SYm.
In Section 4, we present a case study: we analyze the oblivious gathering problem,
showing that the algorithmic solutions designed for SYm do not work in CORDA.
Finally, in Section 5 we draw some conclusions and present open problems and
suggestions for further study.

2 Modeling Autonomous Mobile Robots

In this section we present the approaches used in SYm and CORDA to model the
control and coordination of a set of autonomous mobile robots. In particular, we
first present the common features in the two models, and successively present in
detail the instantaneous action of SYm, and the full asynchronicity of CORDA,
that model the interactions between the robots.

2.1 Common Features

The two models discussed in this paper share some basic features. The robots are
modeled as units with computational capabilities, which are able to freely move
in the plane. They are viewed as points, and they are equipped with sensors
that let them observe the positions of the other robots in the plane. Depending
on whether they can observe all the plane or just a portion of it, two different
models can arise: Unlimited and Limited Visibility model (each robot can see
only whatever is at most at distance V' from it). The robots are anonymous,
meaning that they are a priori indistinguishable by their appearances, and they
do not have any kind of identifiers that can be used during the computation.
They are asynchronous and no central control is allowed. Each robot has its
own local view of the world. This view includes a local Cartesian coordinate
system with origin, unit of length, and the directions of two coordinate axes,
identified as x axis and y axis, together with their orientations, identified as the
positive and negative sides of the axes. The robots do not necessarily share the
same x — y coordinate system, and do not necessarily agree on the location of
the origin (that we can assume, without loss of generality, to be placed in the
current position of the robot), or on the unit distance. They execute, however,
the same deterministic algorithm, which takes in input the positions of the robots
in the plane observed at a time instant ¢, and returns a destination point towards
which the executing robot moves. The algorithm is oblivious if the new position
is determined only from the positions of the others at ¢, and not on the positions
observed in the past'; otherwise, it is called non oblivious. Moreover, there are no

! We also refer to the robots as oblivious because of this feature of the algorithms they
execute.

Instantaneous Actions vs. Full Asynchronicity 157

explicit means of communication: the communication occurs in a totally implicit
manner. Specifically, it happens by means of observing the change of robots’
positions in the plane while they execute the algorithm.

Clearly, these basic features render the modeled robots simple and rather
“weak”, especially considering the current engineering technology. But, as al-
ready noted, the main interest in the studies done in [6,14], is to approach the
problem of coordinating and controlling a set of mobile units from a computa-
tional point of view. The robots are modeled as “weak robots” because in this
way it is possible to formally analyze the strengths and weaknesses of the dis-
tributed control. Furthermore, this simplicity can also lead to some advantages.
For example, avoiding the ability to remember what has been computed in the
past gives the system the nice property of self-stabilization [7,14].

During its life, each robot cyclically is in three states: (i) it observes the
positions of the others in the world, (ii) it computes its next destination point,
and (iii) it moves towards the point it just computed. As already stated, the
robots execute these phases asynchronously, without any central control: in this
feature the two models drastically differ. In fact, in SYm states (i) to (iii)
are executed atomically (instantaneously), while this assumption is dropped in
CORDA. In the following we better describe how the asynchronicity is approached
in the two models.

2.2 The Instantaneous Actions of SYm

In this section we better describe how the movement of the robots is modeled in
SYm [1,14]. The authors assume discrete time 0, 1,2,. ... At each time instant ¢,
every robot r; is either active or inactive. At least one robot is active at every
time instant, and every robot becomes active at infinitely many unpredictable
time instants. A special case is when every robot is active at every time instant;
in this case the robots are synchronized, but this case is not interesting for the
purpose of this paper.

Let p;(t) indicate the position of robot r; at time instant ¢, and v the al-
gorithm every robot uses. Since the robots are viewed as points, in SYm it is
assumed that two robots can occupy the same position simultaneously and never
collide. 1 is a function that, given the positions of the robots at time ¢ (or, in the
non oblivious case, all the positions the robots have occupied since the beginning
of the computation?), returns a new destination point p. For any ¢t > 0, if r; is
inactive, then p;(t + 1) = p;(t); otherwise p;(t + 1) = p, where p is the point
returned by . The maximum distance that r; can move in one step is bounded
by a distance €; > 0 (this implies that every robot is then capable of traveling
at least a distance € = min{ey,...,€,} > 0). The reason for such a constant is
to simulate a continuous monitoring of the world by the robots.

Thus, r; executes the three states (i)—(iii) instantaneously, in the sense that
a robot that is active and observes at ¢, has already reached its destination

2 Note that the non obliviousness feature does not imply the possibility for a robot
to find out which robot corresponds to which position it stored, since the robots are
anonymous.

158 Giuseppe Prencipe

point p at ¢ + 1. Therefore, a robot takes a certain amount of time to move
(the time elapsed between ¢ and ¢t + 1), but no fellow robot can see it while it is
moving (or, alternatively, the movement is instantaneous).

2.3 The Full Asynchronicity of CORDA

Similarly to SYm, each robot repeatedly executes four states. A robot is initially
in a waiting state (Wait); at any point in time, asynchronously and independently
from the other robots, it observes the environment in its area of visibility (Look),
it calculates its destination point based only on the current locations of the
observed robots (Compute), it then moves towards that point (Move) and goes
back to a waiting state. The states are described more formally in the following.

1. Wait The robot is idle. A robot cannot stay infinitely idle.

2. Look The robot observes the world by activating its sensors which will re-
turn a snapshot of the positions of all other robots with respect to its local
coordinate system. Each robot r is viewed as a point, and therefore its po-
sition in the plane is given by its coordinates. In addition, the robot cannot
in general detect whether there is more than one fellow robot on any of the
observed points, included the position where the observing robot is. We say
it cannot detect multiplicity. If, on the other hand, a robot can recognize
that there is more than one fellow on the positions where it is, we say that
it can detect a weak multiplicity.

3. Compute The robot performs a local computation according to its determin-
istic algorithm. The result of the computation can be a destination point or
a null movement (i.e., the robot decides to not move).

4. Move If the result of the computation was a null movement, the robot does
not move; otherwise it moves towards the point computed in the previ-
ous state. The robot moves towards the computed destination of an un-
predictable amount of space, which is assumed neither infinite, nor infinites-
imally small (see Assumption A2 below). Hence, the robot can only go to-
wards its goal, but it cannot know how far it will go in the current cycle,
because it can stop anytime during its movement 3.

A computational cycle is defined as the sequence of the Wait-Look-Compute-
Mowve states; the “life” of a robot is then a sequence of computational cycles.
In addition, we have the following assumptions on the behavior of a robot:

A1l(Computational Cycle) The amount of time required by a robot r to com-
plete a computational cycle is not infinite, nor infinitesimally small.

A2(Distance) The distance traveled by a robot r in a Move is not infinite.
Furthermore, it is not infinitesimally small: there exists an arbitrarily small
constant &, > 0, such that if the result of the computation is not a null

3 That is, a robot can stop before reaching its destination point, e.g. because of limits
to the robot’s motorial autonomy.

Instantaneous Actions vs. Full Asynchronicity 159

movement and the destination point is closer than d,., » will reach it; oth-
erwise, r will move towards it of at least J,. In the following, we shall use
6 = min, 6,.

Therefore, in CORDA there is no assumption on the maximum distance
a robot can travel before observing again (apart from the bound given from the
destination point that has to be reached), while in SYm an active robot r; always
travels at most a distance ¢; in each step. The only assumption in CORDA is
that there is a lower bound on such distance: when a robot r moves, it moves at
least some positive, small constant §,.. The reason for this constant is to better
model reality: it is not realistic to allow the robots to move an infinitesimally
small distance.

The main difference between the two models is, as stated before, in the way
the asynchronicity is regarded. In CORDA the environment is fully asynchronous,
in the sense that there is no common notion of time, and a robot observes the
environment at unpredictable time instants. Moreover, no assumptions on the
cycle time of each robot, and on the time each robot elapses to execute each
state of a given cycle are made. It is only assumed that each cycle is completed
in finite time, and that the distance traveled in a cycle is finite. Thus, each
robot can take its own time to compute, or to move towards some point in the
plane: in this way, it is possible to model different computational and motorial
speeds of the units. Moreover, every robot can be seen while it is moving by
other robots that are observing. This feature renders more difficult the design of
an algorithm to control and coordinate the robots. For example, when a robot
starts a Mowe state, it is possible that the movement it will perform will not be
“coherent” with what it observed, since, during the Compute state, other robots
can have moved.

3 Instantaneous Action vs. Full Asynchronicity

In this section, we highlight the relationship between the two models. In particu-
lar, we first show that any algorithm designed in CORDA to solve some problem P
can be used in SYm to let the robots accomplish the task defined by P. The vice
versa is not true. In fact, we will give strong evidence that the differences pointed
out in the previous sections, in particular the way in which the asynchronicity is
modeled, render the two models really different, both in the oblivious and non
oblivious case, and that the algorithms designed in SYm do not work in CORDA.

Let us first introduce the definition of a valid activation schedule for an
algorithm in CORDA.

Definition 1. Given an algorithm A, an activation schedule for A in CORDA is
defined as a function F(t) =< W(t),L(t),C(¢),M(t) >, where W(t) is a set of
pairs (r,t'), such that

1. 7 is a robot that is in the Wait state at time t,
2.t >t, and

160 Giuseppe Prencipe

3. in W(t) there is at most one pair per each robot in the system

(L(t), C(t), and M(t) are defined similarly for the Look, Compute, and Move
states, respectively).

Definition 2. An activation schedule is valid, if the following conditions hold:
(i) (r,t) e Wit) =Vt <t"<t, (rt) e Wi’ (asimilar condition applies also
for L(t), C(t), and M(t)); (i) for all t, W(t), L(t), C(t), and M(t) constitute
a partition of all the robots in the system.

An algorithm A correctly solves a problem P in CORDA, if, given any valid
activation schedule for A, the robots accomplish the task defined by P in a finite
number of cycles. Let us denote by € and 3 the class of problem that are solvable
in COrRDA and SYm, respectively. We are now ready to show that SYm is at
least as powerful as CORDA, that is € C 3.

Theorem 1. Any algorithm that correctly solves a problem P in CORDA, cor-
rectly solves P also in SYm.

Proof. Let A be an algorithm that solves a given problem P in CORDA. In
order to prove that A solves P also in SYm, we show that any execution of
A in SYm corresponds to an activation schedule in CORDA. Hence, since by
hypothesis A correctly solves P in CORDA, the theorem follows.

Let us execute A in SYm, and let £(f) be the set of robots that are active at
time ¢. Therefore, all the robots £(%) finish to execute their cycle at time ¢ + 1.
The activation schedule F(t), for all # <t < £+ 1, in CORDA for A corresponding
to the portion of the execution of A4 in SYm starting at time ¢ and ending at
time 7 + 1, is defined as follows (see Figure 1). If r € £(¢), then for all t < ¢ < ¢4,
(ryt1) € L(¢); for all t1 <t < to, (r,t2) € C(t); for all to <t < tz, (r,t3) € M(t);
and for all t3 <t <t+1, (r,t+1) € W(t). Otherwise, for all < ¢t < ¢+ 1,
(r,t 4+ 1) € W(¢). In other words, all the robots in () start their Look state,
while all the others are in Wait. Moreover, all these robots execute their three
states perfectly synchronized, so that they start their next cycle all together.
Inductively, F(t), for all t+1 < ¢ < t+ 2, corresponding to the next cycle (from
time ¢ + 1 to ¢ + 2) of the execution of A in SYm is constructed.

Therefore, any execution of A in SYm corresponds to a valid activation sched-
ule for A in CORDA. Since by hypothesis A correctly solves P on CORDA, the
robots will correctly accomplish their task in SYm, and the theorem follows.

Corollary 1. Any problem that can be solved in CORDA, can be solved in SYm;
hence € C 3.

To prove that the inclusion is strict, we place ourselves in the non oblivious
setting: the robots have an unlimited amount of memory, hence they can remem-
ber the positions of all the other robots since the beginning of the execution,
and they can use this information while computing.

Instantaneous Actions vs. Full Asynchronicity 161

O
L4 °
SYm e O > o.
. .
o O o
t t1 to t3 t+1
o) O
® (6}) o ®
Corpa © O » @ O » @ O B O B
® ® ° ® ® 2 © O
O o) 0 o o o o

® Active (SYm)

O Wait/Inactive
® Look (CORDA)

@ Compute (CORDA)
@ Move (CORDA)

Fig. 1. The activation schedule defined in Theorem 1

Definition 3 (Movement Awareness). The Movement Awareness problem
MA is divided in two subtasks Ty and 7. In Ty, robot r;, 1 < i < n, simply moves
along a direction it chooses arbitrarily; r; can start Ty only after it observed r;
in at least three different positions, and after r; observed r; in at least three
different positions, for all j # 1.

Theorem 2. There exists no algorithm that solves MA in CORDA in the non
oblivious setting.

Proof. By contradiction, let us assume that there exists an algorithm .4 that
correctly solves MA in CORDA. The generic robot r starts its execution by
moving along the direction it chooses. By hypothesis, it will eventually and
within a finite number of cycles start the second subtask. Let ¢ be the time
when 7 decides to switch to 73. Since the robots operate in full asynchronicity,
there can exist a robot 7’ that started its first Move state at time ¢’ < ¢, and
is still moving at time ¢ (that is 7’ is still executing its first cycle). Then MA
is not correctly solved, since r’ has not started its second cycle at time ¢ yet,
hence r’ has not observed r in at least three different positions yet, having a
contradiction.

An algorithm similar to the one used in [14] to discover the initial con-
figuration (“distribution”) of the robots in the system, can be used to solve
in SYm MA. Namely, each robot starts moving along the direction it locally
chooses, e.g. the direction of its local y axis. When a robot r observes another
robot 7’ in at least three different positions, r moved at least twice. Moreover,
since in SYm the actions are instantaneous, r can correctly deduce that r’ ob-
served at least twice, hence that v’ observed r in at least three different positions.

162 Giuseppe Prencipe

Therefore, r can correctly start 7o when it observes all v’ # r in at least three
different positions. Hence, we can state the following

Theorem 3. MA is solvable in SYm, in the non oblivious setting.
Corollary 2. € C 3.

A question that arises is: what does it happen in the oblivious case? Unfor-
tunately, we do not yet have an answer. Our conjecture, however, is that the
result stated in Corollary 2 holds also in the oblivious case. In the non oblivious
setting, the fact that in CORDA a robot can be seen by its fellows while it is
moving is crucial to prove € C 3. This is not the case in the oblivious setting.
In fact, since the robots have no memory of robots’ positions observed in the
past, every time a robot r observes another robot 7/, r can not tell if 7’ moved
since last cycle or not, and every observation is like the first one (that is every
time r observes, is like the execution begins). Hence, we believe that the key
to prove € C 3 in the oblivious case is related to the fact that in CORDA the
positions of the robots between a Look and a Compute can change, hence the
computation can be done on "outdated” data. In other words, if r executes the
Look at time t and the Compute at time ¢’ > t, the set of robots’ positions at ¢
and at ¢’ can be clearly different; hence r computes its destination point on the
old data sensed at time ¢, implying that the movement will not be ”choerent”
with what it observed at time ¢. This clearly does not happen in SYm, where
the possible states a robot can be in are executed instantaneously.

4 Case Study: Oblivious Gathering

In this section, we will give evidence that the algorithms designed in SYm in the
oblivious setting do not work in general in CORDA.

The problem we consider is the gathering problem: the robots are asked to
gather in a not predetermined point in the plane in a finite number of cycles.
An algorithm is said to solve the gathering problem if it lets the robots gather
in a point, given any initial configuration. An initial configuration is the set of
robots’ positions when the computation starts, one position per robot, with no
position occupied by more than one robot. This is the only problem, to our
knowledge, solved with an oblivious algorithm in SYm [1,14]. In the following,
we will analyze both the unlimited and limited visibility setting.

4.1 The Unlimited Visibility Setting

An algorithm for solving the gathering problem in SYm in the unlimited visibility
setting (called Algorithm 1 in Appendix A.1) is presented in [14]. The idea is
as follows. Starting from distinct initial positions, the robots are moved in such
a way that eventually there will be exactly one position, say p, that two or
more robots occupy. Once such a situation has been reached, all the robots
move towards p. It is clear that such a strategy works only if the robots in the

Instantaneous Actions vs. Full Asynchronicity 163

T2 ry T2
r3 O r3
Q ®)
>, O
Cycle 2 Cycle 3
ry T2 r1T3
1IT3 ..
Cycle 4 Cycle 5 Cycle 6

Fig. 2. Proof of Theorem 4. The symbols used for the robots are the same as in
Figure 1. The dotted circles indicate the robots in the Look state; the grey ones
the robots in the Compute state; the circle with an arrow inside are the robots
that are moving; the white circles represent the robots in Wait. The arrows
indicate the direction of the movement computed in the Compute state

system have the ability to detect the multiplicity. In SYm this capability is never
mentioned, but it is clearly used implicitly.

Theorem 4. Algorithm 1 does not solve the gathering problem in CORDA, in
the unlimited visibility setting.

Proof. In order to show that Algorithm 1 does not solve the gathering problem in
CORDA, we give an initial configuration of the robots and describe an activation
schedule that leads to having two points in the plane with multiplicity greater
than two, thus violating the invariant proven for Algorithm 1, that “eventually
there will be exactly one position that two or more robots occupy” [14].

Let us suppose to have 4 robots r;, ¢ = 1,2, 3,4, that at the beginning are on
a circle C, with ro and r4 that occupy the ending points of a diameter of C' (as
pictured in Figure 2, Cycle 1). In the following, the positions of the robots are
indicated by p;, i = 1,2, 3, 4. Executing Algorithm 1, but assuming the features
of CORDA, a possible run (activation schedule) is described in the following.

Cycle 1 At the beginning the four robots are in distinct positions, on a circle C.
r1 and ro enter the Look state, while the others are in Wait. After having

164 Giuseppe Prencipe

observed, both of them enter the Compute state, and let us assume that rs is
computationally very slow (or, alternatively, that r; is very fast). Therefore,
r1 decides to move towards the center of C' (part 2.3 of Algorithm 1), while ro
is stuck in its Compute state. r1 starts moving towards the center, while ry
is still in Compute, and r3 and r4 are in Wait.

Cycle 2 r; is inside C, while the other robots are still on C. Now r; observes
again (already in its second cycle) and, according to part 2.1 of the algorithm,
decides to move toward a robot that is on the circle, say ro. Moreover, ry is
still in the Compute state of its first cycle, and r3 and r4 are in Wait.

Cycle 3 r; reaches ry and enters the Wait of its third cycle: at this point,
there is one position in the plane with two robots, namely p = p; = po.
Now, r3 enters its first Look state, looks at the situation and, according to
the algorithm, decides to move towards p, that is the only point in the plane
with more than ore robots on it. ro is still in its first Compute, and 74 in
Wait.

Cycle 4 r3 reaches r; and 75 on p, and it starts waiting. 1 is in Wait, 7o still
in its first Compute state, and r4 starts its first Look state, decides to move
towards p, and starts moving.

Cycle 5 While r4 is on its way towards p, ro ends its first Compute state.
Since the computation is done according to what it observed in its previous
Look state (Cycle 1), it decides to move towards the center of C' (part 2.3
of the algorithm). ro starts moving towards the center of C' after r4 passes
over the center of C, and while ry4 is still moving towards p; 1 is in Wait.

Cycle 6 1 and r4 are moving in opposite directions on the same diameter of C|
and they stop exactly on the same point p’ (in CORDA a robot can stop before
reaching its final destination). There are two points in the plane, namely p
and p’ with p # p’, with two robots on each. Therefore, the invariant proven
for Algorithm 1, that “eventually there will be exactly one position that two
or more robots occupy” [14], is violated.

Remark 1. We note that in Cycle 6 we made use of the possibility that a robot
stops before reaching the destination point it computed. The proof, however,
works even if we do not assume this; that is, if ro and r4 do not stop before
reaching their respective destination points. In fact, if we assume, as in SYm,
that the robots simply cross each other without stopping, if (i) the crossing
happens in a point p’ # p, and (ii) r enters its Observe phase exactly when the
crossing happens, we have that r; sees two points in the plane with two robots
on each, namely p and p’, and does not know what to do, since this possibility
is not mentioned in SYm'’s algorithm. Therefore, Theorem 4 still holds.

4.2 The Limited Visibility Setting

In [1], an algorithm to solve the gathering problem in SYm in the limited visi-
bility setting (called Algorithm 2 in Appendix A.2) is presented. We recall that,
in this setting a robot can see only whatever is at distance V from it. In the
following we shortly describe it.

Instantaneous Actions vs. Full Asynchronicity 165

Let us denote by r;(t) the position of robot r; at time instant ¢. The set
P(t) ={ri(t),...,r(t)} then denotes the set of the robots’ positions at t. Define
G(t) = (R, E(t)), called the Proximity Graph at time t, by (r;,r;) € E(t) <
dist(r;(t),r;(t)) <V, where dist(p,q) denotes the Euclidean distance between
points p and ¢. It can be proven that, if the proximity graph is not connected
at the beginning, the robots can not gather in a point [I] (form a point, in
SYm language).

Let S;(t) denote the set of robots that are within distance V' from r; at time ¢;
that is, the set of robots that are visible from r; (note that r; € S;(t)). Ci(¢)
denotes the smallest enclosing circle of the set {r;(¢)|r; € S;(t)} of the positions
of the robots in S;(¢) at t. The center of C;(t) is denoted ¢;(¢).

Every time a robot r; becomes active, the algorithm moves r; toward ¢;(t),
but only over a certain distance M OV E. Specifically, if r; does not see any robot
other than itself, then r; does not move. Otherwise, the algorithm chooses = to
be the point on the segment r;(¢)c;(¢) that is closest to ¢;(t) and that satisfies
the following conditions:

1. dist(ri(t),x) < o. An arbitrary small constant o > 0 is fixed, and it is
assumed that the distance a robot can travel in one state is bounded by o
(similarly to the e introduced in Section 2.2).

2. For every robot r; € S;(t), « lies in the disk D; whose center is the mid-
point m; of r;(¢) and 7;(t), and whose radius is V/2. This condition ensures
that r; and r; will still be visible after the movement of r; (and possibly
of rj, see Figure 3.a).

Fig. 3. The algorithm for the gathering problem in SYm, limited visibility setting

166 Giuseppe Prencipe

Cycle 1
T1 T2 T3 T4 5
o © 1C; cl ? O
1% V—r S v 1%
Cycle 2
T1 T2 T3 T4 5
o © {? O 0
1% V-z v-z c 1%
2 2
Cycle 3
T1 T2 T3 T4 T5
o o S ? o)
3
%4 V-3 V-1 V-7
Cycle 4
r1 ro r3 T4 rs
o cl . ? : o)
2
\%4 V- %T V- %‘r V-7
Cycle 5
r1 ro r3 T4 r5
o <) o o o)
5 5
V- % |4 + % V- ET V- ET

Fig. 4. Proof of Theorem 5. The symbols used for the robots are the same as in
Figure 2. A vertical arrow means that a robot decided not to move (Move = 0).
A robot r; moves always towards the center ¢; of the smallest enclosing circle of
all the robots it can see

We note that, since by condition 1. the algorithm uses the constant o to
compute the destination point of a robot, all the robots must agree on the value
of this constant, and thus it must be a priori known.

In [1] it is proven that, executing Algorithm 2, two robots that are connected
in G(t), will be connected in G(t+ 1). In the following theorem we prove that it
does not solve the gathering problem in CORDA, in the limited visibility setting.
Specifically, we give an initial configuration of the robots and describe a possible
run of the algorithm that leads to partitioning the proximity graph: two robots
that were visible until time ¢, are not visible any more at ¢+ 1, contradicting the
result proven in [1].

Theorem 5. The algorithm presented in [1] does not solve the gathering prob-
lem in CORDA, in the limited visibility setting.

Proof. In order to show that Algorithm 2 does not solve the gathering problem in
CORDA, we give an initial configuration of the robots and describe an activation
schedule that leads to partitioning the proximity graph: two robots that were
visible until time ¢, are not visible any more at ¢t + 1, contradicting the result
proven in [1].

Let us suppose to have at the beginning 5 robots on a straight line, as shown
in Figure 4. Moreover, let 7 be a constant such that 7 < o and 6 = 7/16, where ¢
is the constant introduced in the Assumption A2 in Section 2.3. At the beginning,

Instantaneous Actions vs. Full Asynchronicity 167

we have the following wvisibility situation: r1 can see o (dist(ri,re) = V), ro can
seer1 and r3 (dist(re,r3) = V —7), r3 can see ro and ry4 (dist(rs,r4) = V'), r4 can
see r3 and 1y (dist(ry,r5) = V), 15 can see r4. We recall that a robot r; always
move towards the center ¢; of the smallest circle enclosing all the robots it can
see. Executing Algorithm 2, but assuming the features of CORDA, a possible run
is described in the following.

Cycle 1 All the robots, except r; and r5 (that we assume in Wait), execute
their first Look, and start the Compute state. Let us suppose that r3 and r4
are faster than ro in computing. The values they compute are:

. {Goaldist(r3,03)|wv+q—|%
8 Limit = min{—- Y7 + L V} =2

Ty Goal =0 = Move =0

Moreover, 73 and r4 also start moving while ry is still computing; r; and r5
are in Wasit.

Cycle 2 After r3 and r4 move, the visibility situation is the same as it was in
the beginning. rs3 and r4 Look and Compute again, as follows:

-
= Move = —
2

r3: Goal =0 = Move =0
. V4V -—-Z
Goal = dist(rs,cqa) = z _V4ZI|=CT .
T4 . .(4 \fz% V2 . 2 4 =>M0ve:Z
Limit = min{——= + 3, V} =

r3 and r4 move again, while ry is still in its first Compute state, and 1 and r5
in their first Wait.

Cycle 3 After the movement of the previous cycle, the visibility situation is still
unchanged, that is, the proximity graph is still connected. r3 and r4 enter
their third Look and Compute states.

. |V T v o
Goal = dist(rg,c3) = |—25—2 -V +IZ| =1L
r3: (35 ‘;Szl ‘3_1 2 8 = Move = T
Limit =min{—52 + ¥, S+ 4+ ¥} =17 8
T4 Goal =0 = Move =0

rg and r4 move again. The other robots are in the same states as in the
previous cycle.

Cycle 4 The proximity graph is still connected. r3 and r4y Look and Com-
pute again (this is their fourth cycle).

T3 Goal =0 = Move =0
_3 _T
- Goal = dist(ry,cs) = ‘% VvV + %T‘ —zr tove T
4' 3 _z = —
Limit:min{—v+287+%,v24 +¥y =23, 16

rg and r4 enter the Mowve state. Meanwhile, r, finishes its first Compute. The
values it computes refer to what was the situation when it observed, in Cycle
1.

z T
To: 2 ﬁMovezi

{Goal = dist(re, c2) = 7‘/*‘;{““ — V’ -
. .y . V_ _

Limit = min{V, =57 + £} =

ro starts moving according to the destination point it just computed (it

enters it first Move state).

168 Giuseppe Prencipe

Cycle 5 The distance between ro and r3 is V + 7/8 > V; so ro and r3 can
not see each other anymore, breaking the proximity graph connectivity that
we had at the beginning of the cycle. So, the invariant that “robots that
are mutually visible at ¢ remain within distance V' of each other thereafter”
asserted in [1] is violated. Therefore, the theorem follows.

5 Conclusions

In this paper we discussed two models, SYm [I,14], and CORrDA [6,7,8], whose
main focus is to study the algorithmic problems that arise in an asynchronous
environment populated by a set of autonomous, anonymous, mobile units that
are requested to accomplish some given task. These studies want to gain a better
understanding of the power of the distributed control from an algorithmic point
of view; specifically, the goal is to understand what kind of goals such a set
of robots can achieve, and what are the minimal requirements and capabilities
that they must have in order to do so. To our knowledge, these are the only
approaches to the study of the control and coordination of mobile units in this
perspective.

We showed that the different way in which the asynchronicity is modeled in
SYm and CORDA, is the key feature that renders the two models different: in
SYm the robots operate executing instantaneous actions, while in CORDA full
asynchronicity is modeled, and the robots elapses finite, but otherwise unpre-
dictable, amount of time to execute their states. In particular, we showed that
¢ C 3 in the non oblivious setting. Therefore, one open issue is to prove this
result also in the oblivious setting.

We feel that the approach used in CORDA better describes the way a set
of independently-moving units operates in a totally asynchronous environment;
hence the motivation to further investigate coordination problems in a dis-
tributed, asynchronous environment using the fully asynchronous approach. Is-
sues which merit further research, regard the operating capabilities of the robots
modeled. In fact, it would be interesting to look at models where robots have dif-
ferent capabilities. For instance, we could equip the robots with just a bounded
amount of memory (semi-obliviousness), and analyze the relationship between
amount of memory and solvability of the problems, or how it would affect the
self-stability property of the oblivious algorithms [7].

Other features that would inspire further study include giving a dimension to
the robots, and adding stationary obstacles to the environment, thus adding the
possibility of collision between robots or between moving robots and obstacles.
Furthermore, we could also study how the robots can use some kind of direct
communication, and we could introduce different kinds of robots that move in the
environment (as in the intruder problem, where all the robots in the environment
must chase and “catch” a “designated” robot).

Relationship between memory and ability of the robots to complete given
tasks, dimensional robots, obstacles in the environment that limit the visibility
and that moving robots must avoid or push aside, suggest that the algorithmic

Instantaneous Actions vs. Full Asynchronicity 169

nature of distributed coordination of autonomous, mobile robots merits further
investigation.

Acknowledgments

I would like to thank Paola Flocchini, Nicola Santoro and Vincenzo Gervasi for
the discussions and comments that helped with the writing of this paper.

References

1.

10.

11.

12.

13.

14.

H. Ando, Y. Oasa, I. Suzuki, and M. Yamashita. A Distributed Memoryless Point
Convergence Algorithm for Mobile Robots with Limited Visibility. IEEE Trans.
on Robotics and Automation, 15(5):818-828, 1999. 154, 155, 157, 162, 164, 165,
166, 168, 170, 171

T. Balch and R. C. Arkin. Behavior-based Formation Control for Multi-robot
Teams. IEEE Trans. on Robotics and Automation, 14(6), December 1998. 155
G. Beni and S. Hackwood. Coherent Swarm Motion Under Distributed Control.
In Proc. DARS’92, pages 39-52, 1992. 155

Y. U. Cao, A. S. Fukunaga, A. B. Kahng, and F. Meng. Cooperative Mobile
Robotics: Antecedents and Directions. In Int. Conf. on Intel. Robots and Sys.,
pages 226-234, 1995.

E. H. Durfee. Blissful Ignorance: Knowing Just Enough to Coordinate Well. In
ICMAS, pages 406-413, 1995. 155

P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Hard Tasks for Weak
Robots: The Role of Common Knowledge in Pattern Formation by Autonomous
Mobile Robots. In ISAAC ’99, pages 93-102, 1999. 154, 155, 157, 168

P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Distributed Coordination
of a Set of Autonomous Mobile Robots. In IEEFE Intelligent Veichle 2000, pages
480-485, 2000. 155, 157, 168

P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Gathering of Asyn-
chronous Mobile Robots with Limited Visibility. In STACS 2001, volume 2010 of
Lecture Notes in Computer Science, pages 247-258, 2001. 155, 168

Y. Kawauchi and M. Inaba and T. Fukuda. A Principle of Decision Making of
Cellular Robotic System (CEBOT). In Proc. IEEE Conf. on Robotics and Autom.,
pages 833-838, 1993. 155

M. J. Matari¢. Interaction and Intelligent Behavior. PhD thesis, MIT, May 1994.
155

S. Murata, H. Kurokawa, and S. Kokaji. Self-Assembling Machine. In Proc. IEEE
Conf. on Robotics and Autom., pages 441-448, 1994. 155

L. E. Parker. On the Design of Behavior-Based Multi-Robot Teams. Journal of
Advanced Robotics, 10(6), 1996. 155

K. Sugihara and I. Suzuki. Distributed Algorithms for Formation of Geometric
Patterns with Many Mobile Robots. Journal of Robotics Systems, 13:127-139,
1996. 155

I. Suzuki and M. Yamashita. Distributed Anonymous Mobile Robots: Formation
of Geometric Patterns. Siam J. Comput., 28(4):1347-1363, 1999. 154, 155, 157,
161, 162, 163, 164, 168, 170, 171

170 Giuseppe Prencipe
Appendix

A Oblivious Gathering in SYm

In this appendix, we report the oblivious algorithms described in [1,14] that let
the robots gather in a point in SYm, in both the unlimited and limited visibility
settings.

A.1 Unlimited Visibility

In the following we report the oblivious algorithm described in [14] that lets the
robots achieve a configuration where a unique point p with multiplicity greater
than one is determined.

Algorithm 1 (Point Formation Algorithm in SYm, Unlim. Visib.[14])

Case 1. n = 3; p1, p2, and p3 denote the positions of the three robots.

1.1. If n = 3 and p;, p2, and ps are collinear with p, in the middle, then
the robots at p; and ps move towards p, while the robot at ps remains
stationary. Then eventually two robots occupy ps.

1.2. If n = 3 and p1, p2, and ps form an isosceles triangle with |pipz| =
|P1p3| # |P2psl, then the robot at p; moves toward the foot of the per-
pendicular drop from its current position to pzp3 in such a way that
the robots do not form an equilateral triangle at any time, while the
robots at ps and p3 remain stationary. Then eventually the robots be-
come collinear and the problem is reduced to part 1.1.

1.3. If n = 3 and the lengths of the three sides of triangle p1, p2, ps are all
different, say [p1pz| > |P1ps| > |P2p3|, then the robot at p3 moves toward
the foot of the perpendicular drop from its current position to p1pz while
the robots at p; and ps remain stationary. Then eventually the robots
become collinear and the problem is reduced to part 1.1.

1.4. If n = 3 and p1, p2, and p3 form an equilateral triangle, then every robot
moves towards the center of the triangle. Since all robots can move up
to at least a constant distance € > 0 in one step, if part 1.4. continues to
hold then eventually either the robots meet at the center, or the triangle
they form becomes no longer equilateral and the problem is reduced to
part 1.2 or part 1.3.

Case 2. n > 4; C; denotes the smallest enclosing circle of the robots at time .

2.1. If n > 4 and there is exactly one robot r in the interior of Cy, then r
moves toward the position of any robot, say r’, on the circumference
of Cy while all other robots remain stationary. Then eventually r and r’
occupy the same position.

2.2. If n > 4 and there are two or more robots in the interior of C;, then
these robots move toward the center of C; while all other robots remain
stationary (so that the center of C; remains unchanged). Then eventually
at least two robots reach the center.

Instantaneous Actions vs. Full Asynchronicity 171

2.3. If n > 4 and there are no robots in the interior of C}, then every robot
moves toward the center of C}. Since all robots can move up to at least
a constant distance € > 0 in one step, if part 2.3 continues to hold,then
eventually the radius of C; becomes at most €. Once this happens, then
the next time some robot moves, say, at t’, either (i) two or more robots
occupy the center of C; or (ii) there is exactly one robot r at the center
of C, and therefore there is a robot that is not on Cy (and the problem
is reduced to part 2.1 or part 2.2) since a cycle passing through r and
a point on C; intersects with C; at most at two points.

A.2 Limited Visibility

In the following we report the oblivious algorithm described in [14] that lets the
robots gather in a point (refer to Figure 3.b).

Algorithm 2 (Point Formation Algorithm in SYm, Lim. Visib. [1])

1. If S;(t) = {r:}, then = = r;(¢).
2. Vrj S Sl(t) — {’I“i},
2.1. dj = dist(ri(t), Tj (t)),
2.2. tgj = ci(t)ri(t)rj (t),
2.3. 1j = (d;/2)cosb; +/(V/2)> — ((d;/2) sinb;)?,
3. LIMIT = minerSi(t)f{m}{le
4. GOAL = dist(ri(t), ¢;(t)),
5. MOVE = min{GOAL, LIMIT, o},
6. = = point on 7;(t)c;(t) at distance MOV E from r;(t).

