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1 Prologue

The theme of this paper, and the main motivation for writing it, was provided to
us by Professor Chew Becca, from the Tattooine University, who was visiting our
Department a few months ago. He presented us with a problem that seemed to be
— to him — of the greatest practical importance. His stay at our Department was

too brief for us to completely solve the problem, but we are reporting here on the
progress that we have made after his visit.

Prof. Becca’s problem was apparently simple. As is, by now, well known, the
Rebels had infiltrated an important Imperial base with one of their best agents —
call him Lucky Skywalker. Due to the chronic shortage of vessels that afflicted
the Rebel’s fleet at the time, Lucky’s mission was to “appropriate” the greatest
possible number of Imperial ships and send them, without them being intercepted,
through a large extension of Empire-controlled space. The ultimate destination of
the ships was to be a secret Rebel base, where the ships were to be reworked and
were to become part of the Rebel fleet.

However, Lucky’s mission was placed under a few other constraints. The ships
would have to escape unnoticed by the Imperials, always proceeding in standard
fieet formation, and they could have no crew on board, since no other agents were
available. Furthermore, the ships could not communicate with each other, to avoid
the risk of their radio communication being intercepted. Worst of all, in order
to further strengthen his grip on the entire universe, the Dark Emperor himself
had had his latest operating system, Windows 3000, installed on the navigational
computers of all the ships in the Imperial fleet. This left no available memory on
the computers to use as storage for an auto-pilot algorithm. Finally, the Rebels did
not want to provide the coordinates of their secret base to the auto-pilots, as the
Empire then could have traced them and attacked the base in force.
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150 Fun with Algorithms 2 .

It was thus decided to simulate a chase: the stolen ships, in autopilot-driven
fleet formation (with no memory and no communication) would follow a small
but very fast Rebel ship, the Millennium Bug Falcon — piloted by the famous
rebel leader Son Solo — as if they were to intercept her. The Rebels hoped that
by simulating a chase, the stolen fleet would attract little attention, and no inter-
ference, from other Imperial forces. In reality, the Millennium Bug Falcon would
lead the ships to the Rebel base, and Lucky Skywalker could continue working
behind the lines on his next mission.

In this paper, we provide a solution to Prof. Becca’s problem. In the next
section, we present an overview of related works. In Section 3 we present the
model under which we will study the flocking problem. In Section 4 we present
an algorithm solving the problem, and in Section 5 some experimental results are
discussed. Some conclusions, and an account of what happened to Prof. Becca’s
friends, conclude the paper.

Publication of an extended version of this work in encrypted e-book form is being
sought through the People’s Revolutionary Committee for Science and Culture. Permission

pending.

2 Overview

Control and coordination of a set of autonomous vehicles that can freely move on
a plane! is a widely studied topic in robotics. The focus on this kind of problem
has grown in recent years because of the increased interest in studying systems
populated by many, simple units, instead of few, powerful ones. In particular,
these units simply observe the environment by using their sensors, and react fol-

lowing simple rules: the reaction to the environmental stimuli is called the behav-

ior of the unit. Despite the simplicity of the units, it has been shown that these

groups of vehicles can exploit rather complex group behaviors [15]. Moreover,

such a system is preferable to one made up of just one large and powerful unit for

many reasons: low costs in changing faulty units; ability to solve tasks otherwise

unsolvable by a single unit [7,17] (e.g., robots that have to move big objects [161);
certain problems can be solved quicker [3] (e.g., robots that are asked to clean a
room [131); for fault tolerance considerations; the decreased cost through simpler
individual unit design. An extensive survey can be found in (53

One major question that arises is: How is it possible to properly coordinate
these group of mobile robots, such that they can together accomplish what they
are asked to do? And another question is: How simple can these units be [8]?
In this paper we study the flocking problem: a set of mobile units are required
to follow a leader unit while keeping a predetermined formation (i.e., they are
required to move in flock, like a group of soldiers). Moreover, the units in the

10r an approximation of it, €.8., the surface of a suitably large planet.
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en flock do not know beforehand the path the leader will take: their task is just to
all follow him wherever he goes, and to keep the formation while moving. This is
us ( a problem often studied in robotics, with several applications (e.g. military [4],
hat or in factories, where robots can be asked to move heavy loads). The approach
er- usually adopted to study this and similar problems, is to design solutions based
uld ‘ on heuristics and tailored on the capabilities of the robots employed, and then test
ing ‘ them by computer simulations, or on real robots.
i

For instance, in [15], experiments are conducted on a team of simple mobile
units in order to produce complex behaviors, by compounding basic ones (such

aext as safe-wondering, i.e. the ability to avoid collisions while moving; dispersion,
the ! i.e. the ability of the robots to spread out over an area; aggregation, i.e. the ability
sent 5 to gather; and homing, i.e. the ability to reach a predetermined destination). In
3 ax,e particular, the author points out that flocking can be obtained combining safe-
-ca’s wandering, aggregation, dispersion, and homing. Hence, in her experiments, all ’ i
the units have a common destination to reach. .
eing T. Balch and C. Arkin studied formation and navigation problems in multi- i
ssion i robot teams. In particular in {2] the problem of specifying the behavior for the I
navigation of a mobile unit is analyzed, and results of both computer simulation . :
and real experimentation are reported. In [4] the approach is extended to multi-
robot teams that navigate the environment maintaining particular formations: in
particular the case of a line, column, diamond and wedge are examined. In their
i study, the authors assumed that the path along which the group of robots has to
veon move is known in advance to every unit. This same assumption is made in [6],
blem where the robots are asked to move in a matrix shape along a path represented by i
stems a straight line followed by a right turn and then a straight line again. In contrast, in
cular, this paper we do not assume any knowledge by the followers of the path that the
1 fol- leader will follow. The followers have only a common description of the formation
rehav- they have to keep while moving.
these A similar problem is studied in [18], where the author derives equations de-
‘eover, scribing navigational strategies for robots moving in formation, and following
ot i_’or ‘ the movement described by one (ore more) leader. In the studied framework, the
:rwxse. 5 robots have identities, hence their positions in the formation are fixed. Moreover,
(16D in order for the i-th robot to compute its position at time ¢, it has to know the
slean a position of either the (i — 1)-th robot or the leader at time 7. Hence, some degree
impler of synchrony has to be introduced in order to implement these strategies.
) In this paper, we analyze the flocking problem by using very simple units and
dinate by dropping the assumption that all the ships in the flock know the path, or that
;;qthey they can derive it (e.g. by observing the orientation of the leader’s prow, or by

) deriving it by observing the leader in different positions). Following the motiva-
>quired tions that prompted previous studies ( [9,12]), we adopt simple units to study the
problem: the ships are completely anonymous, identical (no identities are used
during the computation), asynchronous, memoryless, and with no means of direct
communication. We describe an algorithm (the same for all the ships) that allows

aey are
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the followers to keep a formation given to them as input, while following a path
determined at run-time by the leader, that acts completely independently and does
not behave according to the followers’ algorithm. Moreover, we present results of
computer simulations that show the effectiveness of the proposed solution.

3 The Model

We consider? a system of autonomous mobile units (ships). There are two kinds
of ships in the environment: the leader and the followers. The leader acts inde-
pendently from the others, and we can assume that it is driven by a human pilot.
In the following we will discuss only about the followers.

Each ship is capable of observing its surrounding, computing a destination
based on what it observed, and moving towards the computed destination; hence
it performs an (endless) cycle of observing, computing, and moving.

Each ship has its own local view of the world. This view includes a local
Cartesian coordinate system having an origin (that without losing generality we
can assume to be the position of the ship), a unit of length, and the directions of
two coordinate axes (which we will refer to as the x and y axes), together with their
orientations, identified as the positive and negative sides of the axes. In general,
there is no agreement among the followers on the chirality of the local coordinate
systems (i.e., the ships do not share the same concept of where North, East, South,
and West are).

The ships are modeled as units with computational capabilities, which are able
to freely move in the plane.> They are equipped with sensors that let each ship
observe the positions of the others with respect to their local coordinate system.
Each ship is viewed as a point, and can see all the other ships in the flock (and the
leader).

The ships act totally independently and asynchronously from each other, and
do not rely on any centralized directives, nor on any common notion of time.
Furthermore, they are oblivious, meaning that they do not (need to) remember
any previous observation nor computations performed in the previous steps. Note
that this feature gives the algorithms designed in this model the nice property of
self-stabilization [10]: in fact, every decision taken by a follower can not depend
on what happened in the system previously, and hence is not based on corrupted
data stored in its local memory. They have as input, however, the same pattern

¥ representing the flock to be kept. ¥ is described as a set of coordinates in the
plane, relative to a point representing the leader.

The ships in the flock are anonymous, meaning that they are a priori indis-

2The model we adopt is based on one introduced in [9,11]. It has been adapted, however, to the
particular problem under study.

3Following illustrious precedents [1], we only consider movement in a two dimensional plane here,
as “flat” fleet formations are standard procedure in the Imperial Fleet.
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tinguishable by their appearances, and they do not (need to) have any kind of
identifiers that can be used during the computation. They can only distinguish if
a ship is the leader or a fellow follower. Moreover, there are no explicit direct
means of communication; hence the only way they have to acquire information
from the fellow ships is by observing them®.

They execute the same algorithm, which takes as input the observed positions
of the ships, and returns a destination point towards which the executing ship
moves. A ship, asynchronously and independently from the other ships, (1) ob-
serves the environment (Look), by taking a snapshot of the positions of all other
ships with respect to its local coordinate system. Each ship is viewed as a point,
and therefore its position in the plane is given by its coordinates. The observa-
tion returns the positions of all the other ships in the plane (leader and followers).
(2) It computes a destination point p according to its oblivious algorithm (Com-
pute); the local computation is based only on the current (i.e., at the time of the
previous Look) locations of the observed ships. (3) Finally, the ship moves an un-
predictable amount of space towards p (Move), which is however assumed to be
neither infinite, nor infinitesimally small (see Assumption A2 below), and goes
back to the Look state. Hence, there is no assumption on the maximum distance
a ship can travel before observing again (apart from the bound given from the
destination point that has to be reached). The life of a follower consists in repeat-
ing an endless cycle of states (1)~(3). Moreover, the only assumptions made in
the model are the following [11]: (A1) The time for a ship to complete a Look-
Compute-Move cycle is neither infinite nor infinitesimally small (i.e., is finite and
bounded from below). (A2) For each follower f, there exists an arbitrary (small)
constant 87 > 0, representing the minimum distance it travels in the Move state;
if the computed destination point is closer than 8y, f will reach it. (A3) Since we
need to model ships that “continuously” move, we assume that the time spent in
looking and computing is negligible compared to the time spent in moving.

Summarizing, each ship moves totally independently and asynchronously
from the others, not having any bound on the time it needs to perform a Move,
hence a cycle (it has to be, however, finite by Assumption Al); therefore, a ship
can be seen while it is moving; in addition, they are oblivious, and anonymous.
Moreover, no one of the followers knows in advance the path that the leader will
follow, nor can it derive it at run-time. Their only task is to observe where the
leader and the other followers are, reach an agreement — without communicating
— on how and where to form the pattern in the plane, and move to positions such
that the flock is formed and maintained.

Adopting such “simple” units aims at understanding what kind of complex
tasks can be achieved, and under which conditions (for a detailed discussion on
this model and its motivations, refer to {9-12]).

“The obliviousness of the ships also renders the observations weaker. In fact, nothing observed in
the past can be remembered, hence used in order to let the ships organize themselves to accomplish
their task.
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Figure 1: The triangle represents the leader, and the circles the positions of F. If
the ships did not have a common unit distance, then they could scale ¥, and the
flock would not follow L while it moves.

4 An Algorithm for the Flocking Problem

In this section we present an algorithm to solve the flocking problem that works
in the general setting where no kind of common knowledge on the direction and
the chirality of the followers’ local coordinate system is assumed. Every follower
fiis given in input a formation  described as a set py,... p|#| of points, relatives
to the leader ship, L; we clearly assume to have | ¥ | followers arbitrarily placed at
the beginning (all the ships have distinct positions), where | F| denotes the total
number of points in the formation.

We note that, since we want the ships to form a specific formation and to
keep that formation while moving, it is necessary for the followers to agree on
a common unit measure. Otherwise (i.e. if the input pattern can be scaled), the
formation would be formed even if, instead of following the leader, the followers
would simply “‘scale” the input formation (that is, we would have.a situation where
the ships would form a pattern that becomes bigger and bigger as the leader goes
farther away, see Figure 1). Hence,

Observation 1 In order for the problem to be significant, the followers must
agree on the unit measure.

The intuition behind Algorithm 1 is described in the following (see also Fig-
ure 2). First, the generic follower f gets the positions of the leader L and of the
other followers (with respect to its local coordinate system), by calling Look ()
in Step 1. Then it computes the baricenter B of the followers’ positions (Step 2),
by executing Baricenter (Followers), and a shared vertical axis ¥ given by
the line passing through L and B, and oriented according to LB can be derived:
this is accomplished by Get_Y_axis (L,B), that returns the axis Y that all the
followers will use to agree on orienting themselves in the plane.’ Then S, $1 and

SHf L = B, the followers can simply wait for the leader to move away from B.

10:
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Algorithm 1 The Flocking Algorithm.

Input: The formation ¥ to be kept, relative to the leader.

10:

15:

20:

35:

(Followers,L) := Look () ;
B := Baricenter (Followers);
Y := Get_Y.axis{(L,B},;
So := {Shipson Y};
Sy := {Ships on the left of Y };
S, := {Ships on the rightof Y };
F := Final_Positions(¥,L,Y);
Bf := Baricenter (F);
Fp := {Final Positions on Y };
F, := {Final Positions on the Left of Y };
F, := {Final Positions on the Right of Y };
For All j=0,1,2Do
Sort (Fj,L,BF);
Sort (Sj,L,B);
End For
Case me in
oS
k := Rank (me,$1);
If k < |F1| Then
Move (k-th positionin Fy).
Else If k < |Fi| + |Fo| — |So| Then
H := {Ships in S; whose rank > |F1{}U
{Ships in S whose rank > |F|};
Sort (H,L,B);
K :=Rank(me,H);
If I am the only ship in H with rank £’ Then
p = (K +|So|)-th slot in Fo;
Else
p := random slot between the (k' + [So})-th
and the (k' + |So| + 1)-thin Fy;
Move (p).
Else
Move ((|Fy| — (k—|F| ~ [Fol +|So|) + 1)-th positionin F3).
LAY
/* This case is simmetric to the previous one */
*So
k := Rank (me,So);
If k < |Fo| Then
Move (k-th positionin Fp).
Else If |S;| < |S2| Then
Move ((}F] —|S1]+ (k- [Fo|))-th positionin Fy).
Else
Move ((|Fa| — |S2] + ([k— |Fol))-th positionin F3).

S APRE WRPEPERE BC- - S N
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The farthest |F| The next |Fp| — |So| The remaining ships
in S; towards towards the available towards the available
the slots of Fy slots in Sg (closest) slots in />

Figure 2: Some cases of Algorithm 1. The filled triangle is the leader, the filled
circles are the followers, and the empty circles the slots the followers want to
reach.

$2, containing respectively ships whose positions are exactly on Y, to its left, and
to its right, are computed (according to the local concept of left/right of Y).

At this point, f executes Final_Positions (¥,L,Y) (Step 7), that rotates
the points in ¥, assuming that the leader is moving according to the direction and
orientation of Y, and translates them into the observed leader’s position. We will
call the positions returned by this routine, the slots of F (these are the positions
that the followers will try to reach). After having computed the baricenter Br of
the slots in Step 8, these positions are partitioned in three subsets: those exactly
on Y (Fp, Step 9), to the left of Y (Fy, Step 10), and to its right (5, Step 11).
Then, Fj, j = 0,1,2, are sorted in decreasing order with respect to the distances
from L and Br (Step 13), and Sj, J =0,1,2, are sorted in decreasing order with
respect to the distances from L and B (Step 14). These sorting operations are done
by Sort (A,l,b), where A is the array (set of points) to be sorted. In particular,
after the sorting, it is guaranteed that

Viajv i<j= (d(er:) > d(l>pj)) Vv (d(lapi) = d(’:pj) Ad(bapi) > d(b,pj)),
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where p; and p; are points in A, and d(q,r) denotes the distance between points
g and r. Next, the rank k of f in the subset it belongs to is computed, by
Rank (me,-).

Now, if f is the k-th folower in Sy, and k < |5}/, then it moves towards the
k-th position in Fy (Step 20; a similar argument applies if f is in S, see Step 35).
Otherwise, if there are positions available in Sy (i.e., |Fp| > |So| and k— |Fy| <
|Fol — |Sol), f is directed towards Sp. In particular, Step 22 computes the set H
containing the ships in Sy and S, whose rank is respectively bigger than |F;| and
|F3|; H is then sorted, and the rank &’ of f in H is computed in Step 25. If f is the
only ship with rank ¥, then it is directed towards the (k' + |So|)-th slof in Fp (Step
27), that is towards a slot in Fj that is not a target of ships in Sp (refer to Step 35
to see how ships in Sp choose their target). If there is another ship in H with rank
kK (ie., f is at the same distance from L and B as a ship in S3), then f randomly
chooses as a destination a slot between the (k' + |So|)-th and the (K’ +|So| + 1)-th
in Fp (Step 29). This is the only® case in which f does a random computation. If no
position in S is available, f moves towards the (|F2| — (k— |Fy| = |Fo| +1S0]) +1)-
th position in F3, that is towards one of the slots in F; that are not a destination
point of either a ship in §; whose rank is smaller than £, or of a ship in S; (Step
33).

If f is in So, and its rank k is smaller than |Fp|, then it simply moves towards
the k-th slot in Fy (Step 39). Otherwise, it chooses to move towards the side that
has fewer ships (note that if |S1| = |S2|, then it chooses to move towards a slot in
F). In Figure 2, an example of how the followers chose their slots is depicted.

Finally, Move (p) moves the executing ship towards p, and terminates the
current cycle. As already pointed out in Section 3, in general the ship does not
reach p in one Move (the distance it travels is finite, but unpredictable). Clearly,
since the ships can not remember p in the next cycle (obliviousness), this implies
that it is possible that f changes its destination point in the next cycle, because its
ranking can change.”

Since the ships are memoryless, they can not be sure of the direction of move-
ment of L. They only assume that the leader is going away from B (i.e. according
to Bi). Furthermore, the followers assume that the direction of movement of L is
given by the axis passing through B and L, and oriented from B towards L, hence
they can reach an agreement on Y. They can not, however, reach in general a sim-
ilar agreement on X, that is on an axis hortogonal to Y that would let them agree
on the concept of left and right. Hence,

SWe are assuming here that ships are inpenetrable, i.e., two ships cannot occupy exactly the same
point in space.

"This can be avoided, e.g. to have guaranteed (slower) convergence rather than (faster) statistical
convergence. To this end, each ship can compute for each follower f; a circle centered in L and having
Lf; as radius. This circle represents the rank of follower f;: all the ships that are outside this circle
have higher rank than f;; all the ones inside it, have a lower rank. By choosing a course towards
its destination point that avoids intersecting any rank’s circle, f can avoid changes in ranking while
moving.

B
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Observation 2 Algorithm I applies only to formations that are symmetric with
respect to the direction of movement of L.

Let us denote with v, and vy respectively the maximum linear velocity of the
leader and of the generic follower f, and with @ the maximum angular velocity
of L. Clearly, if we want the followers to be able to follow L, the leader must
be slower than the slowest follower, that is v, < miny v;. Furthermore, when the
leader turns, all the slots will turn with a velocity related to wr. In particular, the
maximum linear velocity of a slot is v, + @ - r, where r = max ¢ 5 d(L, p), i.e.
the maximum distance between L and the points in ¥ . Therefore, in order for the
leader to not be “too fast”, it must be @ - 7+ v, < minysvy. Hence, we can state
the following

Theorem 1 In order for the formation to be kept in movement, it is necessary for
the leader to have or - r+ vy < mings vy.

5 Analysis of Experiments

Let fi(t) be the absolute position of follower f; at time ¢ (i.e., its position w.r.t.
an inertial reference frame), L(t) the absolute position of L at time ¢, B(t) the
absolute position of B at time ¢, and ¥ (¢) the axis passing through L(t) and B(t).
Moreover, let IT be the set of all possible permutations of 1,... ,| F|.

Definition 1 We define the distance D of the ships’ positions from a formation Z
at time t, as follows: D(Z)! = min,;enxglxd( fi(t),2n(sy), where z; is a point in
2.

Let F (t)y(s) be the set of positions in ¥ translated w.r.t. L(t), and rotated w.r.t the
orientation of Y (¢), and ¥ ()L,) the set of positions in ¥ translated w.r.t. L(t), and
rotated w.r.t the direction of movement of the leader at time z. To measure how far
the ships are at time ¢ from the aimed formation, we use the following functions:
A1) = D(F(t)yp)' and A.(r) = D(F (t)y(,)’- In particular, A(t) represents
how far the followers are from the real formation, that is the formation rotated
w.r.t. the actual heading direction of L at time ¢. A.(¢) represents how far the
followers are from the estimated formation, obtained from the position of the
baricenter at time ¢.

In Figure 6, some plots of A, and A, are reported, relative to computer simu-
lations run with six followers trying to keep a wedge shaped formation, four in a
line, ten in a spread formation (all shown in Figure 3), and with random forma-
tions.

In all cases, the simulations started with all the ships (leader and followers)
randomly placed in a square area with a side of 512 units. Each ship also had a
random direction and orientation of the axes for its local coordinate system. Each
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Figure 3: Fleet formations used in the simulations.

Leader

. [Initial Positions

Figure 4: Trace of the ships while forming and keeping a wedge shaped formation.

follower had a random velocity between 0.5 and 5.0 units/move, while the leader’s
speed was determined in accordance with the limitations of Theorem 1.

The leader’s course was determined as follows: at all times, the leader would
move forward according to its velocity. At each move, with a probability of 1/20,
the leader could start turning to its left or right with an angular speed limited again
by Theorem 1. If already turning, with the same probability the leader could stop
and continue its course as a straight line. Figures 4 and 5 show the courses of the
ships in two simulation runs.

In Figure 6, it can be observed how convergence to the estimated formation
(A,) is obtained usually in less than half the time needed to reach the real forma-
tion. Figure 6 also reveals other interesting phenomena. In the A, graph for the
wedge formation, we can observe a “plateau” caused by the ships forming the
pattern in exactly the wrong direction, i.e. in front of the leader rather than behind
it. This correctly formed, but incorrectly-headed pattern, is kept until the leader
starts changing its direction, at which point all the folowers rapidly reach their
proper position behind the leader. Related effects can also be observed in the A,
graphs for the other formation, in which instabilities in the distance are caused by
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v Leader

Figure 5: Trace of the ships while forming and keeping the spread formation with
ten ships. Note the circular trajectory of the ships at the beginning, while trying
to align the formation with the course of the leader.

the followers trying to catch up with change of directions of the leader.

All our experiments demonstrated that the algorithm is properly behaved, and
in all cases the followers were able to assume the desired formation and to main-
tain it while following the leader ship along her route. Indeed, while Theorem 1
provides conditions under which the ability of the ships to follow the leader is
guaranteed, even when those conditions were relaxed the followers were usually
able to compensate for sudden turns or accelerations of the leader (as long as the
effective speed of the leader remained, at least on average, lower than that of the
slowest follower). As a concluding remark, we note that the obliviousness of the
algorithm contributes to this result, since the followers do not base their compu-
tation on past leader’s positions.

6 Epilogue

In this paper we have presented a novel algorithm for misappropriating space
ships or, more specifically, for coordinating a set of non-communicating, asyn-
chronous and memoryless vehicles into following a leader while keeping a fixed
formation. The algorithm only assumes the vehicles share a common unit of dis-
tance, but no common sense of direction (i.e., a common coordinate system) is
needed, nor any previous knowledge of the path the leader will follow. Moreover,
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the followers do not need to have an identity, and are not distinguishable in any
way one from the other.

Indeed, the algorithm we propose exhibits remarkable robustness, and nu-
meric simulations indicate that in most cases the formation is reached in a rel-
atively short time and kept after that, as Professor Becca wanted.

In fact, it has been reported to us [14] that Lucky Skywalker indeed succeeded
in seizing the ships, and that the autopilot software based on an carly version of
our algorithm worked flawlessly, so that the stolen ships formed and maintained
a perfect formation during their escape.

Unfortunately, the valiant attempt by the rebels took place on February 8, 3106
EC. While our algorithm is totally independent of time (and indeed, follower ships
are not required to have any notion of time, nor of their own speed), the on-board
software of the Millennium Bug Falcon was not. Captain Solo could only blame
himself for not having anticipated that exactly on that date the 32-bit counter
used to keep track of the date and time (counting the number of seconds since
the midnight of January 1, 2970) would have rolled over. This caused a chain of
failures in various navigation subsystems, that left his ship constantly turning on
a close circle. The followers followed in perfect formation. Imperial forces were
puzzled at the strange show of a chase being conducted in such circumstances,
and in the end intervened and arrested Captain Solo.

Had not the Dark Emperor been slain by a flock of ferocius penguins while he
was trying to install his latest Operating System on their brains, that gross failure
could well have led to a definitive defeat for the Rebels. But Destiny had other
plans, and after the not necessarily premature demise of the Emperor, the entire
Empire collapsed. The Rebellion in the end triumphed, and we all can only be
glad that Freedom, Democracy, and Abundant University Funding have at last
spread to the entire known universe.
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