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Abstract. W e address the problem of mobile agents searching a ring

network for a highly harmful item, a black hole, a stationary process

destroying visiting agents upon their arrival. No observable trace of

such a destruction will be evident. The location of the black hole is not

known; the task is to unambiguously determine and report the location

of the black hole. W e answer some natural computational questions:

How many agents are needed to locate the black hole in the ring ? How

many suffice? What a-priori knowledge is required? as well as complexity

questions, such as: With how many moves can the agents do it ? How

long does it take ?

Keyw ords: Mobile Agents, Distributed Computing, Ring Network, Haz-

ardous Search.

1 Introduction

The most widespread use of autonomous mobile agents in network environments,
from the World-Wide-Web to the Data Grid, is clearly to search, i.e., to locate
some required “item” (e.g., information, resource, . . . ) in the environment. This
process is started with the specification of what must be found and ends with
the reporting of where it is located.

The proposed solutions integrate their algorithmic strategies with an ex-
ploitation of the capabilities of the network environment; so, not surprising,
they are varied in nature, style, applicability and performance (e.g., see [3,4,11,
14,16]). They do however share the same assumption about the “item” to be
located by the agents: it poses no danger, it is harmless.

This assumption unfortunately does not always hold: the item could be a
local program which severely damages visiting agents. In fact, protecting an
agent from “host attacks” (i.e., harmful items stored at the visited site) has
become a problem almost as pressing as protecting a host (i.e., a site) from
an agent attack (e.g., see [17,18]). Still, this problem has not been taken into
account so far by any of the existing solutions.

In this paper we address the problem of searching for a highly harmful item
whose existence we are aware of, but whose whereabouts are unknown. The item
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is a stationary process which disposes of visiting agents upon their arrival; no
observable trace of such a destruction will be evident. Because of its nature, we
shall call such an item a black hole.

The task is to unambiguously determine and report the location of the black
hole (following this phase, a “rescue” activity would conceivably be initiated
to deal with such a destructive process). In the distributed computing litera-
ture, there have been many studies on computing in presence of undetectable
faulty components (e.g., [5,10] which can be rephrased in terms of computa-
tions in presence of black holes). However, a mentioned, this problem has never
been investigated before. We are interested in understanding the basic algorith-
mic limitations and factors. The setting we consider is the simplest symmetric
topology: the anonymous ring (i.e., a loop network of identical nodes). In this
setting operate mobile agents: the agents have limited computing capabilities
and bounded storage1, obey the same set of behavioral rules (the “protocol”),
and can move from node to neighboring node. We make no assumptions on the
amount of time required by an agent’s actions (e.g., computation, movement,
etc) except that it is finite; thus, the agents are asynchronous. Each node has a
bounded amount of storage, called whiteboard; O(log n) bits suffice for all our al-
gorithms. Agents communicate by reading from and writing on the whiteboards;
access to a whiteboard is done in mutual exclusion.

Some basic computational questions naturally and immediately arise, such
as: How many agents are needed to locate the black hole ? How many suffice?

What a-priori knowledge is required? as well as complexity questions, such as:
With how many moves can the agents do it ? How long does it take ?

In this paper, we provide some definite answers to each of these questions.
Some answers follow from simple facts. For example, if the existence of the black
hole is a possibility but not a certainty, it is impossible2 to resolve this ambiguity.
Similarly, if the ring size n is not known, then the black-hole search problem can
not be solved. Hence, n must be known. Another fact is that at least two agents
are needed to solve the problem.

A more interesting fact is that if the agents are co-located (i.e., start from the
same node) and anonymous (i.e., do not have distinct labels), then the problem
is unsolvable. Therefore, to find the black hole, co-located agents must be distinct

(i.e., have different labels); conversely, anonymous agents must be dispersed (i.e.,
start from different nodes). In this paper we consider both settings.

We first consider distinct co-located agents. We prove that two such agents
are both necessary and sufficient to locate the black hole. Sufficiency is proved
constructively: we present a distributed algorithm which allows locating the black
hole using only two agents. This algorithm is optimal, within a factor of two, also
in terms of the amount of moves performed by the two agents. In fact, we show
the stronger result that (n − 1) log(n − 1) + O(n) moves are needed regardless
of the number of co-located agents, and that with our algorithm two agents can
solve the problem with no more than 2n log n + O(n) moves.

1
O(log n) bits suffice for all our algorithms.

2 i.e., no deterministic protocol exists which always correctly terminates.
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We also focus on the minimal amount of time spent by co-located agents to
locate the black hole. We easily show that 2n − 4 (ideal) time units are needed,
regardless of the number of agents; we then describe how to achieve such a time
bound using only n − 1 agents. We generalize this technique and establish a
general trade-off between time and number of agents.

We then consider anonymous dispersed agents. We prove that, two anony-
mous dispersed agents are both necessary and sufficient to locate the black hole
if the ring is oriented. Also in this case the proof of sufficiency is constructive: we
present an algorithm which, when executed by two or more anonymous agents
dispersed in an unoriented ring, allows finding the black hole with O(n log n)
moves. This algorithm is optimal in terms of number of moves; in fact, we prove
that any solution with k anonymous dispersed agents requires Ω(n log(n − k))
moves, provided k is known; if k is unknown, Ω(n log n) moves are always re-
quired.

We also show that three anonymous dispersed agents are necessary and suffice

if the ring is unoriented. Sufficiency follows constructively from the result for
oriented rings. Due to space restrictions, some of the proofs will be omitted.

2 Basic Results and Low er Bound

2.1 Notation and Assumptions

The network environment is a set A of asynchronous mobile agents in a ring R
of n anonymous (i.e., unlabeled3) nodes. The size n of R is known to the agents;
the number of agents |A| = k ≥ 2 might not be a priori known. The agents
can move from node to neighboring node in R, have computing capabilities and
bounded storage, obey the same set of behavioral rules (the “protocol”), and
all their actions (e.g., computation, movement, etc) take a finite but otherwise
unpredictable amount of time. Each node has two ports, labelled left and right;
if this labelling is globally consistent, the ring will be said to be oriented, unori-
ented otherwise. Each node has a bounded amount of storage, called whiteboard;
O(log n) bits suffice for all our algorithms. Agents communicate by reading from
and writing on the whiteboards; access to a whiteboard is done in mutual ex-
clusion. A black hole is a stationary process located at a node, which destroys
any agent arriving at that node; no observable trace of such a destruction will
be evident to the other agents.

The location of the black hole is unknown to the agents. The Black-Hole

Search (BHS) problem is to find the location of the black hole. More precisely,
BHS is solved if at least one agent survives, and all surviving agents know the
location of the black hole (explicit termination). Notice that our lower bounds are
established requiring only that at least one surviving agent knows the location
of the black hole (the difference is only O(N) moves/time).

First of all notice that, because of the asynchrony of the agents, we have
that:

3 Alternatively, they all have the same label.
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Fact 1. It is impossible to distinguish between slow links and a black hole.

This simple fact has several important consequences; in particular:

Corollary 1.

1. It is impossible to determine (using explicit termination) whether or not
there is a black hole in the ring.

2. L et the existence of the black hole in R be common knowledge. It is impossible
to find the black hole if the size of the ring is not known.

Thus, we assume that both the existence of the black hole and the size n

of the ring are common knowledge to the agents. The agents are said to be
co-located if they all start from the same node; if they initially are in different
nodes, they are said to be dispersed.

Fact 2. A nonymous agents starting at the same node collectively behave as one
agent.

Corollary 2. It is impossible to find the black hole if the agents are both co-
located and anonymous.

Thus, we assume that if the agents are initially placed in the same node, they
have distinct identities; on the other hand, if they start from different locations
there is at most one agent starting at any given node. Finally, observe the obvious
fact that if there is only one agent the BHS problem is unsolvable; that is

Fact 3. A t least two agents are needed to locate the black hole.

Thus, we assume that there are at least two agents. Let us now introduce
the complexity measure used in the paper. Our main measures of complexity are
the number of agents, called size, and the total number of moves performed by
the agents, which we shall call cost. We will also consider the amount of time
elapsed until termination. Since the agents are asynchronous, “real” time cannot
be measured. We will use the traditional measure of ideal time (i.e., assuming
synchronous execution where a move can be made in one time unit); sometimes
we will also consider bounded delay (i.e., assuming an execution where a move
requires at most one time unit), and causal time (i.e., the length of the longest,
over all possible executions, chain of causally related moves). In the following,
unless otherwise specified, “time” complexity is “ideal time” complexity.

2.2 Cautious W alk

At any time during the search for the black hole, the ports (corresponding to
the incident links) of a node can be classified as (a) unexplored – if no agent has
moved across this port, (b) safe – if an agent arrived via this port or (c) active
– if an agent departed via this port, but no agent has arrived via it.

It is always possible to avoid sending agents over active links using a tech-
nique we shall call cautious walk: when an agent moves from node u to v via an
unexplored port (turning it into active), it must immediately return to u (mak-
ing the port safe), and only then go back to v to resume its execution; an agent
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needing to move from u to v via an active port must wait until the port becomes
safe. In the following, by the expression moving cautiously we will mean moving
using cautious walk. Cautious walk reduces the number of agents that may enter
the black hole in a ring to 2 (i.e., the degree of the node containing the black
hole). Note that this technique can be used in any asynchronous algorithm A,
at a cost of O(n) additional moves, with minimal consequences:

Lemma 1 ([8]). Let A′ be the algorithm obtained from A by enforcing cautious
walk. F or every execution E ′ of A′ there exists a corresponding execution E of
A such that E is obtained from E ′ by deleting only the additional moves due to
cautious walk.

Let us remark that cautious walk is a general technique that can be used
in any topology; furthermore, it has been shown that every black-hole location
algorithm for two agents must use cautious walk [8].

2.3 Low er Bound on Mov es

In this section we consider the minimum number of moves required to solve
the problem. The existence of an asymptotic Ω(n log n) bound can be proven
by carefully adapting and modifying the (rather complex) proof of the result of
[10] on rings with a faulty link. In the following, using a substantially different
argument, we are able to to obtain directly a more precise (not only asymptotic)
bound, with a simpler proof. In fact we show that, regardless of the setting (i.e.,
collocation or dispersal) and of the number of agents employed, (n − 1) log(n −
1) + O(n) moves are required.

In the following, we will denote by Et and U t the explored and unexplored
area at time t, respectively. Moreover, zt denotes the central node of Et; that is,
given xt and yt, the two border nodes in Et that connect Et to U t, zt is the node
in Et at distance �|Et|/2	 − 1 from xt.

Definition 1. A causal chain from a node vp to a node vq has been executed at
time t, if ∃d ∈ N,∃u1, u2, . . . , ud ∈ V and times t1, t

′
1, t2, t

′2, . . . , td, t
′
d such that

– t < t1 < t′1 < t2 < t′2 < . . . < td < t′d,
– vp = u1, vq = ud and ∀i ∈ { 1, 2, . . . , d − 1} : ui is a neighbor of ui+1, and
– ∀i ∈ { 1, 2, . . . , d − 1} at time ti an agent moves from node ui to node ui+1

and reaches ui+1 at time t′i.

Lemma 2. Let |U t| > 2 at a given time t ≥ 0, and k ≥ 2.

1. Within finite time, at least two agents will leave the explored area Et in
different directions.

2. A finite time after they have left Et, say at t′ > t, a causal chain is executed
from one of the two border nodes of Et′ to zt.

Theorem 1. At least (n−1) log(n−1)+O(n) moves are needed to find a black
hole in a ring, regardless of the number of agents.
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3 Co-located Distinct Agents

In this section we consider the case when all agents are co-located but distinct;
i.e., they start at the same node, called the home base, and have distinct iden-
tities. The distinct labels of the agents allows any tie to be deterministically
broken. As a consequence, if the ring is unoriented, the agents can initially agree
on the directions of the ring. Thus, in the rest of this section, we assume w.l.g.
that the ring is oriented.

Let 0, 1, . . . n − 1 be the nodes of the ring in clockwise direction (0,−1, . . . −
(n − 1) in counter-clockwise direction) and, without loss of generality, let us
assume that node 0 is the home base.

3.1 Agent-Optimal Solution

At least two agents are needed to locate the black hole (Fact 3). We now consider
the situation when there are exactly two agents, l and r, in the system, and they
are co-located.

The algorithm proceeds in phases. Let Ei and Ui denote the explored and
unexplored nodes in phase i, respectively. Clearly, Ei and Ui partition the ring
into two connected subgraphs, with the black hole located somewhere in Ui.

Algorithm 1 (Two Agents)

Start with round number i = 1, E1 = {0}, and U1 = {1, 2, . . . , n − 1}.

1. Divide Ui into two continuous disjoint parts U l
i and Ur

i of almost equal sizes.
Since Ui is a path, this is always possible. (We may assume U l

i is to the left
of 0 while Ur

i is to the right.)
2. Let agents l and r explore (using Cautious Walk) U l

i and Ur
i , respectively.

Note that, since both of them are within Ei and since Ui is divided into two
continuous parts, the agents can safely reach the parts they have to explore.

3. Since U l
i and Ur

i are disjoint, at most one of them contains the black hole;
hence, one of the agents (w.l.g. assume r) successfully completes step 2.
Agent r then moves across Ei and follows the safe ports of U l

i until it comes
to the node w from which there is no safe port leading to the left.

4. Denote by Ui+1 the remaining unexplored area. (All nodes to the right of w,
up to the last node of Ur

i explored by r, are now explored – they form Ei+1.)
If|Ui+1| = 1, agent r knows that the black hole is in the single unexplored
node and terminates. Otherwise Ui+1 is divided into U l

i+1 and Ur
i+1 as in

step 1. Agent r leaves on the whiteboard of w a message for l indicating the
two areas U l

i+1 and Ur
i+1. Note that O(log n) bits are sufficient to code this

message.
5. Agent r traverses Ei+1 and starts exploring Ur

i+1. (Proceeds to the next
round – increment i and go to step 2 ...)

6. When (if) l returns to w, it finds the message and starts exploring U l
i+1.

(Proceeds to the next round – increment i and go to step 2 ...) ��
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Theorem 2. Two agents can find the black hole performing 2n log n + O(n)
moves (in time 2n log n + O(n)).

From Fact 3 and Theorems 1 and 2, it follows that

Corollary 3. Algorithm 1 is size-optimal and cost-optimal.

3.2 More Than Two Agents: Improving the Time

In this section we study the effects of having k > 2 agents in the home base.
We know that increasing k will not result in a decrease of the total number

of moves; in fact, the lower bound of Theorem 1 is independent of the number
of agents and is already achieved, within a factor of two, by k = 2. However, the
availability of more agents can be exploited to improve the time complexity of
locating the black hole.

The following theorem shows a simple lower bound on the time needed to
find the black hole, regardless of the number of agents in the system.

Theorem 3. In the worst case, 2n − 4 time units are needed to find the black
hole, regardless of the number of agents available.

We now show that the lower bound can be achieved employing n − 1 agents.
Let r1 . . . r(n−1) be the n − 1 agents.

Algorithm 2 (n − 1 Agents)

Each agent ri is assigned a location i + 1; its task is to verify whether that is
the location of the black hole. It does so in two steps, executed independently
of the other agents.
Step 1: It first goes to node i in clockwise direction and, if successful, returns to
the home base (phase 1).
Step 2: It then goes in counter clockwise direction to node −(n − i − 2) and, if
successful, returns to the home base: the assigned location is where the black
hole resides.
Clearly, only one agent will be able to complete both steps, while the other n−2
will be destroyed by the black hole. ��

Theorem 4. The black hole can be found in time 2n−4 by n−1 agents starting
from the same node.

Thus, by Theorems 3 and 4, it follows that

Corollary 4. Algorithm 2 is time-optimal.

We now show how to employ the idea used for the time-optimal algorithm to
obtain a trade-off between the number of agents employed and the time needed
to find the black hole. Let q (1 ≤ q ≤ log n) be the trade-off parameter.



Mobile Search for a Black Hole in an Anonymous Ring 173

Algorithm 3 (Time-Size Tradeoff )

Two agents (called explorers) are arbitrarily chosen; their task is to mark all
the safe ports before the black hole. They do so by leaving the home base in
opposite directions, moving cautiously; each will continue until it is destroyed
by the black hole.
The other agents start their algorithm in pipeline with the two explorers, always
leaving from safe ports. The algorithm proceeds in q rounds.
In each round n1/q −1 agents (r1 . . . rn1/q

−1) follow an algorithm similar to Algo-

rithm 2 to reduce the size of the unexplored area by a factor of n1/q. The unex-
plored area is in fact divided into n1/q segments S1,S2, . . . ,Sn1/q of almost equal
size (e.g., at the first phase the segment Si is (i − 1)n(q−1)/q + 1, . . . , in(q−1)/q).
Agent ri verifies the guess that the black hole belongs to segment Si by checking
the nodes around Si (first the right one, then the left one).
Clearly only one agent, say ri, will be able to locate the segment containing the
black hole. When ri verifies its guess, arriving to the node to the left of Si, the
agents rj with j < i are trying to enter Si from the left, while the agents rj for
j > i are still trying to enter Si from the right. To use these agents in the next
round, ri has to “wake them up”: before returning to the home base, ri moves
left (possibly entering Si) up to the last safe port, awakening all rj with j < i,
so that they can correctly proceed to the next round.
The process is repeated until the black hole is located in round q. ��

Notice that, except for the two exploring agents, all agents survive.

Theorem 5. Let 1 ≤ q ≤ log n. The black hole can be found using n1/q + 1
agents in time 2(q + 1)n − o(n).

4 Disp ersed Anonymous Agents

In this section we examine the case when the agents are anonymous but dispersed
(i.e., initially there is at most one agent at any given location). The number k

of agents is not known a priori.

4.1 Basic Prop erties and Low er Bounds

A simple but important property is that, although anonymous, the agents can
uniquely identify each other by means of purely local names. This is easily
achieved as follows. Each agent a will think of the nodes as numbered with con-
secutive integers in the clockwise direction, with its starting node (its ”home-
base”) as node 0. Then, when moving, agent a will keep track of the relative
distance da from the homebase: adding +1 when moving clockwise, and −1 oth-
erwise. Thus, when a encounters at the node (at distance) da = −3 an agent b

which is at distance db = +2 from its own homebase, a is able to unambiguously
determine that b is the unique agent whose homebase is node −5 (in a’s view of
the ring).
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Lemma 3. Each agent can distinguish and recognize all other agents.

Another simple but important property is that, unlike the case of co-located
agents, with dispersed agents there is a major difference between oriented and
unoriented rings. In fact, if the ring is unoriented, two agents no longer suffice
to solve the problem: they could be located in the nodes next to the black hole,
and both made to move towards it. In other words,

F act 4. A t least three dispersed agents are needed to locate the black hole in the

unoriented ring.

Thus, when dealing with the unoriented ring, we assume that there are at least
three dispersed agents.

We now establish a lower bound (that we will prove to be tight in the next
section) on the cost for locating the black hole; the lower bound is established
for oriented rings and, thus, applies also to the unoriented case.

Theorem 6. The cost of locating the black hole in oriented rings is at least

Ω(n log n).

We now consider the case when every agent is endowed with a priori knowl-
edge of k. This additional knowledge would provide little relief, as indicated by
the following lower bound.

Theorem 7. If k is known a priori to the agents, the cost of locating the black

hole in oriented ring is Ω(n log(n − k)).

The proof of Theorem 6 considers a worst-case scenario: an adversarial place-
ment of both the black hole and the agents in the ring. So, one last question is
whether, knowing k we could fare substantially better under a (blind but) favor-
able placement of the agents in the ring; i.e., assuming that k is known a priori
and that we can place the agents, leaving to the adversary only the placement of
the black hole. Also in this case, the answer is substantially negative. In fact, the
application of the proof technique of Theorem 1 (with the initial explored region
set to be the smallest connected region containing all agents, which is clearly of
size at most n−n/k) yields a lower bound of Ω(n log(n/k)) = Ω(n(log n− log k),
which, for reasonably small k, is still Ω(n log n).

4.2 Oriented Rings: A Cost-Optimal Algorithm

In this section we describe a cost-optimal algorithm for the oriented ring where
k ≥ 2 anonymous agents are dispersed. The algorithm is composed of three
distinct parts: pairing, elimination, and resolution.

The basic idea is to first form pairs of agents and then have the pairs search
for the black hole.
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Algorithm 4 (Pairing)

1. Move along the ring clockwise using cautious walk, marking (direction and
distance to the starting node) the visited nodes, until arriving to a node
visited by another agent.

2. Chase that agent until you come to a) a node visited by two other agents or
b) the last safe node marked by the agent you are chasing
Case a) Terminate with status alone.
Case b) F orm a pair: Leave a mark Join me and terminate with status
paired-left

3. When, during your cautious walk, you encounter the mark Join me, clear
this mark and terminate with status paired-right.

4. If you meet a paired agent, terminate with status alone. ��

The agents with status paired- will then execute the algorithm to locate the black
hole. The agents terminating with status alone will be passive in the remainder
of the computation.

Lemma 4. At least one pair is formed during the pairing phase. The pairing

phase lasts at most 3n − 6 time units, its cost is at most 4n − 7.

Note that, if the pairing algorithm starts with k agents, any number of pairs
between 1 and �k/2� can be formed, depending on the timing. F or example
�k/2� pairs are formed when the “even” (as counting to the left from the black
hole) agents are very slow, and the “odd” agents are fast and catch their right
neighbors.

Since agents can distinguish themselves using local names based on their
starting nodes (Lemma 3), also the pairs can be given local names, based on the
node where the pair was formed (the “homebase”). This allows a pair of agents
to ignore all other agents. Using this fact, a straightforward solution consists of
having each pair independently execute the location algorithm for two agents
(Algorithm 1). This however will yield an overall O(n2 log n) worst-case cost.

To reduce the cost, the number of active pairs must be effectively reduced.
The reduction is done in a process, called elimination, closely resembling leader
election. In this process, the number of homebases (and thus pairs) is reduced
to at most two.

The two agents in the pair formed at node v will be denoted by rv and lv, and
referred to as the right and the left agent, respectively; v will be their homebase.

Algorithm 5 (Elimination)

The computation proceeds in logical rounds. In each round, the left agent lv∗
cautiously moves to the left until it is destroyed by the black hole (case 0), or it
reaches a homebase u with higher (case 1) or equal (case 2) round number. In
case (1), lv∗ returns to v which it marks Dead. In case (2), lv∗ marks u as Dead

and returns to v; if v is not marked Dead, it is promoted to the next round.
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Similarly, agent rv∗ cautiously moves to the right until it finds (if it is not
destroyed by the black hole) the first homebase u in equal or higher round; it
then returns back to v. If the current level of v (its level could have risen during
the travel of rv∗) is not higher then the level of u, v is marked Dead; otherwise,
if v is not marked Dead, rv∗ travels again to the right (it is now in a higher
round).
To prevent both agents of a pair entering the black hole, both lv∗ and rv∗
maintain a counter and travel to distance at most �(n − 1)/2�. If one of them
has traveled such a distance without finding another homebase with the same
or higher round, it returns back to v, and v is marked Selected. ��

The rule of case 1 renders stronger a homebase (and, thus, a pair) in a higher
logical round; ties are resolved giving priority to the right node (case 2 and the
handling of the right agent). This approach will eventually produce either one
or two Selected homebases. If an agent returns to a homebase marked Dead,
it stops any further execution. When a homebase has been marked Selected,
the corresponding agents will then start the resolution part of the algorithm by
executing Algorithm 1, and locating the black hole. Note that, for each of the
two pairs, the execution is started by a single agent; the other agent either has
been destroyed by the black hole or will join in the execution upon its return to
the homebase. Summarizing, the overall algorithm is structured as follows.

Algorithm 6 (Ov erall)

1. Form pairs of agents using Algorithm 4.
2. Reduce the number of pairs using Algorithm 5.
3. Find the location of the black hole using Algorithm 1. ��

Theorem 8. In oriented rings, the black hole can be found by k ≥ 2 dispersed

anonymous agents in O(n log n) time and cost.

Thus, by Theorems 6 and 8, it follows that

Corollary 5. Algorithm 6 is cost-optimal.

4.3 Oriented Rings: Considerations on Time

In the previous section we have shown that the lower bound on the cost is tight,
and can be achieved by two agents. This implies that the presence of multiple
agents does not reduces the cost of locating the black hole. The natural question
is whether the presence of more agents can be successfully exploited to reduce

the time complexity.
Unlike the case of co-located agents, now the agents have to find each other

to be able to distribute the workload. Note that, if the agents are able to quickly
gather in a node, Algorithm 3 can be applied. As a consequence, in the remainder
of this section, we focus on the problem to quickly group the agents.

If the number of agents k is known, the gathering problem can be easily
solved by the following algorithm:
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Algorithm 7 (Gathering – k known)

1. Each agent travels to the right using cautious walk.
2. When arriving at a node already visited by another agent, it proceeds to the

right via the safe port.
3. If there is no safe port, it tests how many agents are at this node; if the

number of agents at the node is k − 1, the algorithm terminates. ��

Eventually, since all agents travel to the right, all but one agent (which will
reach the black hole) will be at the same node (in the worst case, the left neighbor
of the black hole). Since, using cautious walk, it takes at most 3 time units to
safely move to the right, and since there are at most n − 2 such possible moves,
this yields the following lemma:

Lemma 5. If the numbers of agents k is known, k − 1 agents can gather in an

oriented ring in time 3n − 6.

This strategy can not be applied when k is unknown. In fact, while the agents
can follow the same algorithm as in the previous case, they have no means to
know when to terminate (and, thus, to switch to Algorithm 3).

Actually, if causal time complexity is considered (i.e., length of the longest
chain of causally related moves, over all possible executions of the algorithm),
the additional agents can be of little help in the worst case:

Lemma 6. The causal time complexity of locating the black hole in an oriented

ring, using k agents is at least n(log n − log k) − O(n).

However, if the bounded delay time complexity is considered (i.e., assuming
a global clock and that each move takes at most one time unit), the additional
agents can indeed help. Initially, all agents are in state alone.

Algorithm 8 (Gathering – k unknown)

Rules for alone agent r:
1. Cautiously walk to the right until you meet another agent r′.
2. If r′ is in state alone, form a group G (r and r′ change state to grouped)

and start executing the group algorithm.
3. Otherwise (r′ is in state grouped, belonging to the group G′, formed at

the node g′) join the group G′: Go to g′ and set your state to Join[g′].
Rules for group G formed at node g, consisting of |G| agents:

Execute Algorithm 3 using |G| agents, with the following actions taken after
finishing each phase and before starting the next one:
1. If any of your agents have seen agents of another group G′ whose starting

node g′ is to the right of g, join group G′ by sending all your agents to
g′, with state Join[g′].

2. Otherwise add all the agents waiting at g with state Join[g] to G and
execute the next phase of Algorithm 3 using the updated number of
agents. ��

Theorem 9. In oriented rings the black hole can be located by k = n1/q agents

in bounded delay time complexity O(qn1/q).
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4.4 Unoriented Ring

If the ring is unoriented, at least three dispersed agents are needed to locate
the black hole (Fact 4). Thus we assume that there are at least three dispersed
agents.

It is easy to convert a solution for oriented rings into one for the unoriented
ones, at the cost of twice the number of moves and of agents.

Lemma 7. Let A be an algorithm for oriented ring which, using p agents solves
problem P in time T and cost C. Then there is an algorithm A′ for unoriented
ring which, using 2p− 1 agents, solves P in time T and complexity at most 2C.

Note that lemma 7 can be applied to all previous algorithms presented for scat-
tered agents, except Algorithm 7.

From Theorem 8, Lemma 7, and Fact 4, it follows that:

Theorem 10. Three (anonymous dispersed) agents are necessary and sufficient
to locate the black hole in an unoriented ring.
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