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Ab stra ct. In this paper, w e present parallel algorithm s for the coarse

grained m ulticom p uter (C G M) and the bulk synch ronous parallel com p u-

ter (BSP ) for solv ing tw o w ell k now n graph problem s: (1) determ ining
w hether a graph G is b ipartite, and (2) determ ining w hether a bipartite
graph G is convex .

O ur algorithm s req uire O(log p) and O(log2 p) com m unication rounds,
respectiv ely , and linear seq uential w ork per round on a C G M w ith p
processors and N/p local m em ory per processor, N=|G|. T he algorithm s
assum e that N

p
≥ pε for som e fix ed ε > 0, w hich is true for all com m er-

c ially av ailable m ultiprocessors. O ur results im ply BSP algorithm s w ith
O(log p) and O(log2 p) supersteps, respectiv ely , O(g log(p)N

p
) com m uni-

cation tim e, and O(log(p)N

p
) local com putation tim e.

O ur algorithm for determ ining w hether a bipartite graph is conv ex inc lu-
des a nov el, coarse grained parallel, v ersion of the P Q tree data structure
introduced by Booth and L uek er. H ence, our algorithm also solv es, w ith
the sam e tim e com plex ity as indicated abov e, the problem of testing the
consecutiv e-ones property for (0, 1) m atrices as w ell as the chordal graph
recognition problem . T hese, in turn, hav e num erous applications in graph
theory , DN A seq uence assem bly , database theory , and other areas.

1 Introduction

In th is p ap e r, w e stu dy th e p rob le m of dete c ting b ip artite grap h s and conv e x
b ip artite grap h s. T h at is, giv en an arb itrary grap h G, dete rm ine w h e th e r G is a
bipartite grap h and, giv en a b ip artite grap h G, dete rm ine w h e th e r G is a con vex

b ip artite grap h . B ip artite and conv e x b ip artite grap h s are form ally de fi ned as
follow s.

Definition 1. A graph G = (V,E) is a bipartite graph if V can be partition ed

in to tw o sets A an d B su ch that A ∩ B = ∅, A ∪ B = V an d E ⊆ ((A × B) ∪

(B × A)). A bipartite graph G is also den oted as G = (A,B,E).
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Definition 2. A bipartite graph G = (A, B, E) is a convex bipartite graph if

there exists an ordering (b1, b2, · · · , b|B|) of B such that, for all a ∈ A and 1 ≤
i < j ≤ |B|, if (a, bi) ∈ E and (a, bj) ∈ E then (a, bk) ∈ E for all i ≤ k ≤ j.

These, and closely related, problems has been extensively studied for the
seq uential [1,15] and the shared memory (PRAM ) parallel [4,5,11,12,13,14] do-
main. Unfortunately, theoretical results from PRAM algorithms do not neces-
sarily match the speedups observed on real parallel machines. In this paper, we
present parallel algorithms that are more practical in that the assumptions and
cost model used refl ects better the reality of commercially available multiproces-
sors. M ore precisely, we will use a version of the BS P model, referred to as the
coarse grained m ulticom puter (CGM ) model. In contrast to the BS P model, the
CGM [6,7,8,9] allows only bulk messages in order to minimize message overhead
costs. A CGM is comprised of a set of p processors P1, . . . , Pp with O (N /p)
local memory per processor and an arbitrary communication network (or sha-
red memory). All algorithms consist of alternating local computation and global
communication rounds. Each communication round consists of routing a single
h-relation with h = O(N /p), i.e. each processor sends O(N /p) data and receives
O(N /p) data. W e req uire that all information sent from a given processor to
another processor in one communication round is packed into one long message,
thereby minimiz ing the message overhead. A CGM computation/communication
round corresponds to a BS P superstep with communication cost g N

p
(plus the

above “packing req uirement”). Finding an optimal algorithm in the coarse grai-
ned multicomputer model is eq uivalent to minimiz ing the number of communi-
cation rounds as well as the total local computation time. The CGM model has
the advantage of producing results which correspond much better to the actual
performance of implementations on commercially available parallel machines. In
addition to minimiz ing communication and computation volume, it also minimi-
zes important other costs like message overheads and processor synchronization.

In this paper, we present parallel CGM algorithms for detecting bipartite gra-
phs and convex bipartite graphs. The algorithms req uire O(log p) and
O(log2 p) communication rounds, respectively, and linear seq uential work per
round. They assume that the local memory per processor, N /p, is larger than
pε for some fixed ε > 0. This assumption is true for all commercially availa-
ble multiprocessors. O ur results imply BS P algorithms with O(log p) supersteps,
O(g log(p)N

p
) communication time, and O(log(p)N

p
) local computation time.

The algorithm for detecting bipartite graphs is fairly simple and is essentially
a combination of tools developed in [3]. The larger part of this paper deals with
the problem of detecting convex bipartite graphs. This is clearly a much harder
problem. It has been extensively studied in the literature and is closely linked
to the consecutive ones problem for (0, 1)-matrices as well as chordal graph
recognition [1,4,5,11,12,13,14,15].

O ur algorithm for determining whether a bipartite graph is convex includes
a novel, coarse grained parallel, version of the P Q tree data structure introduced
by Booth and Lueker [1]. Hence, our algorithm also solves, with the same time
complexity as indicated above, the problem of testing the consecutive-ones pro-
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perty for (0, 1)-matrices as well as the chordal graph recognition problem. These,
in turn, have numerous applications in graph theory, DNA sequence assembly,
database theory, and other areas. [1,4,5,11,12,13,14,15]

2 Detecting Bipartite Graphs

In this section, we present a simple CGM algorithm for detecting bipartite gra-
phs. It is a straight-forward combination of tools developed in [3].

Algorithm 1 Detection of Bipartite Graphs
Input: A Graph G = (V, E) with v ertex set V and edge set E, |G| = N , stored on a
C GM with p processors and O (N/p) m em ory per processor; N/p ≥ pε for som e fix ed ε > 0.
V and E are arbitrarily distributed ov er the m em ories of the C GM. Output: A Boolean
indicating whether G is a bipartite graph and, if it is, a partition of V into two disjoint set
A and B such that E ⊆ ((A × B) ∪ (B × A)).

(1) C om pute a spanning forest of G [3].

(2) F or each tree in the forest, selec t one arbitrary node as the root. A pply the C GM
E uler T our algorithm in [3] to determ ine the distance between each node and the
root of its tree. C lassify the nodes into two groups: the nodes with an odd num bered
distance to the root, and the nodes with an ev en num bered distance to the root.

(3) E ach processor ex am ines the edges stored in its local m em ory. If any such edge has
two vertices that belong to the sam e group, the result for that processor is “failure”;
otherwise, the result is “suc cess”.

(4) By apply ing C GM sort [10] to all “failure”/“suc cess” values, it is determ ined whether
there was any processor with a “failure” result. If there was any “failure”, the graph
G is not bipartite. O therwise, G is a bipartite graph, and the two groups of v ertices
identified in Step 2 are the sets A and B.

Theorem 1. Algorithm 1 detects whether G = (V, E), |G| = N , is a bipartite

graph and, if so, partitions E into sets A and B such that E ⊆ ((A×B)∪(B×A))
in O (log p) communication rounds and O (N

p
) local com pu tation per rou n d on a

C G M w ith p processors an d O (N
p

) m em ory per processor, N
p

≥ pε for som e fi xed

ε > 0.

P roof. O m itted d u e to p age restric tion s. T o b e in c lu d ed in the fu ll v ersion of
this p ap er. ut

3 Detecting Convex B ipartite G raphs

W e n ow tu rn ou r atten tion to the p rob lem of testin g w hether a giv en b ip artite
grap h is a con v ex b ip artite grap h. T he seq u en tial solu tion , p resen ted b y B ooth
an d Lu ek er [1], in trod u ced a d ata stru c tu re called P Q -tree. O u r coarse grain ed
p arallel solu tion w ill in c lu d e a n ov el coarse grain ed p arallel v ersion of the P Q -
tree. W e w ill fi rst rev iew B ooth an d Lu ek er’s P Q -tree d efi n ition .
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Definition 3. A tree T is a PQ-tree if every internal node of T can be classified

as either a P-node or a Q-node. A P-node is an internal node that has at least 2

children, and the children can be permuted arbitrarily. A Q-node is an internal

node that has at least 3 children, and the children can only be permuted in two

ways: the original order or the reverse order. T he leaves of the PQ-tree are

elements of a universal set S = {a1, . . . ,an}, usually called the ground set.

The order of the ground set in the PQ-tree, from left to right, is called its
frontier. The frontier of a PQ-tree is clearly a permutation of the ground set.
G iven a PQ-tree T and using only permissible permutations of its internal nodes,
we can generate a number of permutations of S. We will denote with L(T ) the
set of all these permissible permutations. A PQ-tree T ′ is equivalent to T if T ′

can be transformed into T using only permissible permutations of the internal
nodes (if L(T ′) and L(T ) have the same elements).

G iven a set A ⊂ S, we say that λ ∈ L(T ) satisfies A if all elements of A
appear consecutively in λ. The main operation on a PQ-tree T is called reduce:
given a reduction set A = {A1, . . . ,Ak} of subsets of S and a PQ-tree T , we want
obtain a PQ-tree T ′, if it exists, such that each permutation in L(T ′) satisfies
every Ai, 1 ≤ i ≤ k.

Let m = Σk
i=1

|Ai| and N = n + m. In order to store T and A, we require
a coarse grained multicomputer with p processors and N/p local memory per
processor.

Two particular PQ-trees are the universal and the empty tree: the first one
has only one internal node (the root of T ) and that internal node is a P-node;
the second one (also called a null PQ-tree) is used to represent an impossible
reduction, that is when it is impossible to reduce a PQ-tree with respect to a
given reduction set.

3.1 M ultiple Disjoint R educe Operations on a PQ-T ree

In this section, we will present a coarse grained parallel algorithm for the spe-
cial case of performing multiple disjoint reductions on a PQ-tree. We will then
use this solution to develop the general algorithm in the subsequent section.
M ore precisely, given a PQ-tree T we will first study how to perform the reduce

operation for a set A = {A1, . . . ,Ak} of subsets of the universal set S where
A1, . . . ,Ak are disjoint. We shall refer to our algorithm as Algorithm MDR educe.
F or ease of discussion, each set Ai is assigned a unique color, and we color the
leaves of the PQ-tree accordingly. S ome of the PQ-tree definitions used are from
[1,12].

We start with a pre-processing phase which extends the coloring δ of the
leaves to a coloring ∆ of all nodes of the PQ-tree T . F or an internal node v
of T , we say that a color is complete at v if all the leaves with that color are
descendants of v. We say a color is incomplete at v if some, but not all, of the
leaves of that color are descendants of v. We say that a color covers v if all
the leaves below v are of that color, and that v is uncovered if no color covers
v. Let LC A(c) be the lowest common ancestor of all leaves with color c. Let
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COLORS(v) denote the set of colors assigned to leaves that are descendents of
v. Let I NC(v) be the set of colors which are incomplete at v. Then I NC(v) =
COLORS(v) - {c: LCA(c) is a descendent of v}.

Algorithm 2 Pre-Processing the PQ -Tree

Input: The original PQ -tree T .

Output: The original PQ -tree T in which each node is assigned a ”coloring” ∆, or, if
failure oc curs, a null tree.

(1) A pply the coarse grained parallel Lowest C om m on A ncestor (LC A ) algorithm [3].

(2) E xpand T into a binary tree B.

(3) Perform tree contrac tion on B; see [3]. F or each node vb in B, let vp be the node in T

from which vb is c reated. Let w1 and w2 be the children of vb. The operation for the
tree contrac tion is I N C (vb) = I N C (w1) ∪ I N C (w2) - {c: L C A (c) is a descendent
of vp}. If at any point the size of I N C is m ore than two, stop and return a null tree.

(4) Let cv be a new color unique to node v. E ach processor, for all its nodes, v, calculates
∆(v) = < c1, c2 > as follows: If two colors are incom plete at v, then c1 and c2 are
these colors. If only one color c is incom plete at v but c does not cov er v, then c1 =
c and c2 = cv. If one color c is incom plete at v and cov ers v, then c1 = c2 = c. If
no color is incom plete at v, then c1 = c2 = cv.

L em m a 1. On a coarse grained multicomputer with p processors and O(N
p

)

storage per processor, Algorithm 2 can be completed in O(log p) communication

rounds with O(N
p

) local computation per round.

Proof. Omitted due to page restrictions. To be included in the full version of
this paper. ut

A node v in a PQ-tree is orientable if it is a Q-node and the two colors in its
∆(v) =< c1, c2 > are diff erent, i.e. c1 6= c2.

For a color c, define hv(c) =

{

c if c ∈ I NC(v)
cv if c /∈ I NC(v)

For a PQ-tree T where w1 and wk are the leftmost and rightmost elements,
respectively, of the frontier f rT (v), let lT = hv(δ(w1)) and rT = hv(δ(wk)). If
lrT [v] =< lT [v], rT [v] > then we use the following notation: < a, b >∼< a′, b′ >
if {a, b} = {a′, b′}.

Algorithm 3 Processing P-Nodes

Input: The PQ -Tree output from A lgorithm 2.

Output: The original PQ -tree T in which all the P-nodes hav e been processed, or, if
failure oc curs, a null tree.

(1) If the input PQ -tree T is a null tree, return T .

(2) E ach processor sets v ariable F A I L U R E to F A L S E

(3) E ach processor, for each P-node v, reorder the children of v such that for each color
c all children cov ered by c are consecutiv e.

(4) E ach processor, for each P-node v and each color c, if there are at least two children
cov ered by c (and at least one child not cov ered by c) then insert a new P-node wc

between these c-cov ered children and v.
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(5) Each processor, for each P-node v, constructs an auxiliary graph Gv whose nodes are
the children of v and where for each color c there is an edge between children vi and
vj at which c is incomplete if vi or vj is covered by c, or there is no child covered by
c. If any node has more than 2 neighbors, set FAILURE to TRUE to indicate a
failure condition.

(6) Perform a multi-broadcast of the variable FAILURE. If any of the broadcast values
is TRUE, return a null tree.

(7) Each processor uses list-rank ing to identify the connected components of each Gv

and verifies that each of these connected components is a simple path. If any of these
components is a cycle, set FAILURE to TRUE to indicate a failure condition. W e
call these paths color chains.

(8) Perform a multi-broadcast of the variable FAILURE. If any of the broadcast values
is TRUE, return a null tree.

(9) Each processor, for each color chain χ containing at least 2 nodes, chooses one of
the 2 orientations of χ arbitrarily. Reorder the children of v so that the nodes of χ

are consecutive, and insert a new Q-node between these nodes of v.
(10) Each processor, for each P-node v, let S = {vi : vi is a child of v, and INC(vi)=∅}.

If every child of v is in S, then return. O therwise, reorder the children of v to make
S consecutive, insert a new P-node v′ between v and the subset S (if |S| > 1), and
rename v to be a Q-node.

Lemma 2. On a coarse grained multicomputer with p processors and O(N
p

)

storage per processor, Algorithm 3 can be completed in O(log p) communication

rounds with O(N
p

) local computation per round.

Proof. Omitted due to page restrictions. To be included in the full version of
this paper. ut

For each Q-node v, we define an orientation LR(v) which is either ∆(vi)
or ∆(vi)

R. Note that if ∆(vi) =< c1, c2 > th an ∆(vi)
R =< c2, c1 > F or <

a, b >∼< a′, b′ > and a 6= b, w e d e fi ne < a, b > s w ap < a′, b′ > e q u als T R U E

if < a, b >=< b′, a′ >, F AL S E if < a, b >=< a′, b′ >. F or a Q -nod e v, f lip is
d e fi ne d as th e op eration w h ich re -ord ers all its ch ild ren in re v e rse ord er.

Algorithm 4 Processing Q -Nodes
Input: The PQ -tree output from A lgorithm 3.
Output: The original PQ -tree T in which all the Q -nodes hav e been processed, or, if
failure oc curs, a null tree.

(1) If the input PQ -tree T is a null tree, return T .
(2) E ach processor sets v ariable F A I LU RE to F A LS E

(3) E ach processor, for each Q -node v and children be v1, . . . , vs, assign to each LR[vi]
either ∆(vi) or ∆(vi)

R such that ev ery color in the sequence LR[v1], . . . , LR[vs] oc-
curs consecutiv ely, and such that hv(< L[v1], R[vs >]) ∼ ∆(v). If this is im possible,
set F A I LU RE to TRU E to indicate a failure condition, otherwise, set LR[v] to
hv(< L[v1], R[vs] >).

(4) Perform a m ulti-broadcast of the variable F A I LU RE . If any of the broadcast v alues
is TRU E , return a null tree.

(5) E ach processor for each node v: if v is orientable, then set O P P [v] to LR[v] s w a p

LR[v], otherwise, set O P P [v] to F A LS E .
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(6) Each processor for each node v: set REV [v] to

⊕

u is an ancestor of v
OPP [u] (Note:

⊕

denotes ”ex clusive-or”).
(7) F or each orientable node v, if REV [v] is TRUE, then flip v.

Lemma 3. On a coarse grained mu lticompu ter w ith p processors and O(N
p

)

storage per processor, A lgorithm 4 can be completed in O(log p) commu nication

rou nds w ith O(N
p

) local compu tation per rou nd.

P roof. O m itted due to page restrictions. T o b e included in the full version of
this paper. ut

Algorithm 5 Post-Processing the PQ-Tree
Input: The PQ-tree output from Algorithm 4, with all R-nodes renamed.
Output: Result of Algorithm MDR educe.

(1) If T is a null tree, return.
(2) Each processor temporarily cuts the link s of its Q-nodes to their parents.
(3) Each processor performs pointer jumping for all its nodes that are children of R-nodes

to determine their lowest Q-node ancestor.
(4) Each processor restores the link s cut in Step 2.
(5) Each processor eliminates its R-nodes by setting the parents of their children to their

lowest Q-node ancestors.

Lemma 4. On a coarse grained mu lticompu ter w ith p processors and O(N
p

) sto-

rage per processor, A lgoritm 5 can be completed u sing in O(log p) commu nication

rou nds w ith O(N
p

) local compu tation per rou nd.

P roof. O m itted due to page restrictions. T o b e included in the full version of
this paper. ut

Theorem 2. On a coarse grained mu lticompu ter w ith p processors and O(N
p

)
storage per processor, A lgorithm M DReduce performs a mu ltiple disjoint redu ce

for a P Q -tree T in O(log p) commu nication rou nds w ith O(N
p

) local compu tation

per rou nd.

P roof. O m itted due to page restrictions. T o b e included in the full version of
this paper. ut

3.2 M ultiple General R educe Operations on a PQ-Tree

Using the coarse grained parallel M Dredu ce algorithm presented in the previous
section, we will now develop coarse grained parallel algorithm for the general
M R edu ce operation: given a P Q-tree T over the ground set S with n elem ents,
perform the reduce operation for an arb itrary reduction sets A = {A1, . . . , Ak}

O ur C G M algorithm for the general M R edu ce operation consists of two pha-
ses. In the first phase, we ex ecute 3 log p tim es an algorithm which is a C G M
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implementation of a PRAM algorithm proposed by K lein [12]. W e call this ope-
ration Mr ed u ce1(T, {A1, . . ., Ak}, 0). Our contribution here is the implementa-
tion of the various shared memory PRAM steps on a distributed memory CGM,
which is non trivial. After this first phase, we have reduced the problem to one in
which we are left with a set of smaller PQ-trees over ground sets whose size is at
most n/p. Hence, each tree can be stored in the local memory of one processor.
However, we can not guarantee that all the reduction sets of these PQ-trees do
also fit in the local memory of one processor. In the second phase of our algo-
rithm, we use a merging strategy to complete the algorithm. W e will refer to
this phase as the Merging Phase.

First Phase: For a node v of a PQ-tree, le ave sT (v) denotes the set of pendant
leaves of v, i.e. leaves of T having v as ancestor. Let lcaT (A) denote the least
common ancestor in T of the leaves belonging to A. S uppose that v = lcaT (A)
has children v1, . . . vs in order. W e say A is contiguous in T if either (1) v is a
Q-node, and for some consecutive subsequence vp, . . . , vq of the children of v,
A =

⋃

p≤i≤q le ave sT (vi), or (2) v is a P-node or a leaf, and A = le ave sT (v).
S uppose that E is contiguous in T . T |E denotes the subtree consisting of

lcaT (E) and those children of lcaT (E) whose descendents are in E (it is still a
PQ-tree whose ground set is E). For a set A, define

Ai|E =

{

Ai ∩ E if Ai ∩ E 6= E
∅ if Ai ∩ E = E

Let ?E denote lcaT (E). T/E denotes the subtree of T obtained by omitting
all the proper descendents of lcaT (E) that are ancestors of elements of E (it is
still a PQ-tree whose ground set is S − E ∪ {?E}). For a set A, define

Ai/E =

{

Ai − E ∪ {?E} if Ai ⊇ E
Ai − E otherwise

Algorithm 6 Mr ed u ce1(T, {A1, . . . , Ak}, i):
(1) If i = 3 log p, return.
(2) Purge the collection of input sets Ai of empty sets. If no sets remain, return.
(3) Let n be the size of the ground set of T . If n ≤ 4, carry out the reduction one by one.

If the size of the input is smaller than the size of the local memory of the processors,
than solve the problem sequentially using the Booth and Lueker’s algorithm.

(4) O therwise, let A be the family of (nonempty) sets Ai. Let S consist of the sets Ai

such that |Ai| ≤ n/2. W e call such sets ”small”. Let L be the remaining, ”large”,
sets in A. Find the connected components of the intersection graph of A, find a
spanning forest of the intersection graph of S, and find the intersection ∩L of the
large sets.

(5) Proceed according to one of the following cases:
(a) The intersection graph of A is disconnected. In this case, let C1, . . . , Cr be the

connected components of A. For i = 1, . . . , r , let Ei be the union of sets in
the connected component Ci. C all MDr ed u ce to reduce T with respect to
the disjoint sets E1, . . . , Er. Next, for each i = 1, . . . , r in parallel, recursively
call Mr ed u ce1(T |Ei, Ci, i + 1).
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(b) The union of sets in some connected component of S has cardinality at least
n/4. In this case, from the small sets making up this large connected compo-
nent, select a subset whose union has cardinality between n/4 and 3n/4. Let
E be this union, and call subreduce(T, E, {A1, . . . , Ak}, i).

(c) The cardinality of the intersection of the large sets is at most 3n/4. In this case,
from the large sets choose a subset whose intersection has cardinality between
n/4 and 3n/4. Let E be this intersection, and call subreduce(T, E, {A1, . . . ,
Ak}, i).

(d) The other case do not hold. In this case, let E be the intersection of the large
sets, and call subreduce(T, E, {A1, . . . , Ak}, i).

In the full version of this paper, we show how to implement the above on a
coarse grained multicomputer with p processors and O(n

p ) storage per processor

in O(log p) communication rounds. The non trivial parts are Step 4, Step 5b,
the computation of E, T/E, and T |E, as well as the subreduce operation. The
latter involves another operation called G lue. Due to page restrictions, we can
not present this part of our result in the extended abstract. Instead, we give one
example which shows the coarse grained parallel computation of the set E in
Step 5(b) of Algorithm 6.

Algorithm 7 Computation of E.
Input: The set S and the spanning forest of its intersection graph.

(1) In order to find a connected component C in the spanning forest of S, such that the
union of its sets has cardinality at least n/4, order all the components according to
the labeling given by the coarse grained parallel spanning forest algorithm [3].

(2) Sort each component with respect to the values of its elements and mark as ”valid”
only one element per distinct value.

(3) Sort again with respect to the components’ labels. Compute the cardinality of the
union of the elements of each component (that is the size of each component), with
a prefix-sum computation, counting only the ”valid” elements. (Hence, we do not
count twice the elements with same values and compute correctly the cardinality of
the union.)

(4) If a processor finds a component whose size is ≥ n/4, then it broadcasts the label of
this component. Otherwise it broadcast a ”not-found” message.

(5) If everybody sent ”not-found”, go to step 4(c) of Mreduce algorithm. Otherwise,
among all the labels received in the previous step, choose as C the component with
the smallest label.

(6) For each of the sets comprising C, compute the distance in the spanning tree (from
the root) using the coarse grained parallel Euler-tour technique [3].

(7) Sort the sets according to distance, and let B1, . . . , Bs be the sorted sequence. Sort
each sets with respect to the values of its elements and mark as ”valid” only one
element per distinct value. Sort the sets again, according to distance, and let ı̂ be
the minimum i such that |

⋃i

j=1
Bj | ≥ n/4. (̂ı can be found with a prefix-sum

computation on the ”valid” elements.) Broadcast ı̂.
(8) Mark all “valid” elements in B1, . . . , Bı̂ as elements of E.

Second Phase: Consider the tree R of recursive calls in Mreduce1. We ob-
serve that, after l = 3 log

4/3
p levels of R (w h en th e fi rst p art of ou r algorith m
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stops), the sizes of the ground sets assoc iated with the nod es in R at level l are
at most n/p. T his is d ue to the fact that the d escend ants of a nod e u in R that
are 3 levels b elow u are sm aller than u b y approx imately a factor 3/4. M ore
prec isely , if n(u) d enotes the size of the ground set of T (u) (the sub tree rooted
at u) then, for every nod e w three levels b elow u, n(u) ≤ 3n(w)/4 + 1. Hence,
each P Q -tree ob tained at the end of the first phase fits completely into the local
memory of one processor.

Unfortunately , the same argument d oes not hold for the red uction sets. Recall
that m = Σk

i=1
|Ai|. Let u b e an internal nod e of R, Au1

, . . . ,Auj
its red uction

sets, and mu = Σj
i=1

|Aui
|. S ince the sizes of the red uction sets of the child ren of

u d epend stric tly on the Aui
and on how they intersect with the set E computed

for u, it is possib le that the Aui
are split in an unb alanced way . T hat is, we

can have Σj
i=1

|Aui
|E| = O(mu) and Σj

i=1
|Aui

/E| = O(1) (or vice versa). If this
continues up to level 3 log p of R, it is possib le that for a recursive call assoc iated
with a nod e v at level l, Σf

i=1
|Avi| > m/p.

T herefore, while the ground set of T (v), and hence T (v), can fit in one pro-
cessor, the red uction sets could possib ly not. T hus, at this point of the compu-
tation, we can not simply use the seq uential algorithm of B ooth and Luek er [1]
for completing the red uction.

O ur id ea for solving this prob lem is the following. Let us consid er a nod e v
at level l in R that has mu > m/p. S ince, at any level of recursion, the sum of
the sizes of all red uction sets is at most 2m, we can create αv copies of T (v),
with αv = b mv

m/ pc. W e ob serve that

Σv∈lαv = Σv∈lb
mv

m/p
c ≤ Σv∈l

mv

m/p
≤

p

m
Σv∈lmv ≤

p

m
· 2m = 2p.

Hence, we req uire at most two copies per processor. T he red uction prob lem of
each nod e v at level l of R will b e solved b y the αv processors that have copies
of T (v). T he nex t step is the distribu tion of the red uction sets assoc iated to v
among these αv processors. E ach of these αv processors can solve locally the
prob lem of red uc ing T (v) with respect to the red uction sets that it has stored ,
using B ooth and Luek er’s algorithm [1]. F or each processor, let T ′(v) refer to
this red uced tree. Now, we need to merge these αv trees, T ′(v). M ore prec isely ,

we need to compute a P Q -tree T̂ (v) such that L(T̂ (v)) = L(T (v)), where T (v) is
the P Q -tree that we would have ob tained b y red uc ing T (v) d irectly with respect

its red uction sets. F or the construction of T̂ (v), we merge the T ′(v) trees in a
b inary tree fashion.

Algorithm 8 Merging P hase
Input: h P Q -trees T (i), with |T (i)| ≤ n/p and Σi|T (i)| ≤ n, and their reduction sets.
Output: The T (i) reduced with respect their reduction sets.

(1) Let mi be the sum of the sizes of the reduction sets of Ti. Make αi = b mi

m/p
c copies

of each T (i). Distribute the reduction sets of each Ti between the processors that
hav e the copies of T (i).

(2) E ach processor ex ecutes the sequential algorithm [1] for its P Q -trees with the reduc -
tion sets that it has stored. Let T ′(i) refer to the trees obtained.
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(3) The αi processors associated with each T (i) merge the T ′(v) trees in a binary tree
fashion. More details are outlined below.

The following Theorem 3 shows that the merge operation in Step 3 of Al-
gorithm 8 reduces to a tree intersection operation. We have designed a C G M
algorithm for tree intersection which implements Step 3 of Algorithm 8. Due
to page restrictions, we can not include a description of our tree intersection
algorithm in this extended abstract. It will be included in the full version of this
paper.

Theorem 3. Let T be a P Q -tree over the ground set S and let T ′ be a copy of
T . Let T ∗ and T ′∗ be the result of the reduction of T w ith respect to {A1, . . . , Ar}
and of T ′ w ith respect to {B1, . . . , Bt}, respectively . Let T be the P Q -tree obtained
by reducing T w ith respect to {A1, . . . , Ar, B1, . . . , Bt}. T hen,

λ ∈ L(T ) ⇔ λ ∈ L(T∗) ∩ L(T ′∗).

P roof. L(T ) is the intersection of the sets of all orderings that satisfy A1, . . . , Ar,
B1, . . . , Bt, and L(T ). L(T ) is always the same, independently of the order in
which we reduce T . If λ ∈ L(T ), then λ must belong to the intersection between
the set of all orderings that satisfy A1, . . . , Ar and L(T) and it must also belong to
the intersection between the set of all orderings that satisfy B1, . . . , Bt and L(T),
that is λ ∈ L(T ∗), λ ∈ L(T ′∗) and λ ∈ L(T ). Hence λ belongs to L(T ∗)∩L(T ′∗).
The reverse can be shown analogously. ut

In summary, we obtain

Theorem 4. O n a coarse grained multicomputer w ith p processors and O (N
p )

storage per processor, A lgorithm MReduce performs a reduce operation for a
P Q -tree T in O (log2 p) communication rounds w ith O (N

p ) local computation per
round.

3.3 C on v ex Bipartite Graphs

Recall the definition of convex bipartite graphs (Definition 2). G iven a bipartite
graph G = (A, B, E) with A = {a1, a2, · · · , ak} and B = {b1, b2, · · · , bn}. Let
A = {A1, . . . , Ak} where Ai = {b ∈ B : (ai, b) ∈ E}, and let T be a PQ-tree over
the ground set B consisting of a root with children b1, b2, · · · , bn. The problem of
determining whether G is convex and, if this is the case, computing the correct
ordering of the elements in B is equivalent to the M R educe operation on T with
respect to A.

Theorem 5. O n a coarse grained multicomputer w ith p processors and O (N
p )

storage per processor, the problem of determining w hether G is convex (and
computing the correct ordering of the elements in B) can be solved in O (log2 p)
communication rounds w ith O (N

p ) local computation per round.
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