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Ab stra ct. In this paper w e aim at an understanding of the fundam ental

algorithm ic lim itations on w hat a set of autonom ous m obile robots can

or cannot achiev e. W e study a hard task for a set of w eak robots. T he

task is for the robots in the plane to form any arbitrary pattern that

is giv en in adv ance. T he robots are w eak in sev eral aspects. T hey are

anony m ous; they cannot ex plic itly com m unicate w ith each other, but

only observ e the positions of the others; they cannot rem em ber the past;

they operate in a v ery strong form of asy nchronic ity . W e show that the

task s that such a sy stem of robots can perform depend strongly on their

com m on k now ledge about their env ironm ent, i.e., the readings of their

env ironm ent sensors.

1 Intro ductio n, D efinitio ns, and Ov e rv ie w

1.1 A utonom ous M obile R obots

W e stu d y the p rob lem of coord in atin g a set of au ton om ou s, m ob ile rob ots in the

p lan e. T he coord in ation m echan ism m u st b e totally decen tralized, w ithou t an y

cen tral con trol. T he rob ots are an on y m ou s, in the sen se that a rob ot d oes n ot

hav e an id en tity that it can u se in a com p u tation , an d all rob ots ex ec u te the

ex act sam e algorithm . E ach rob ot has its ow n , local view of the w orld . T his v iew

in c lu d es a local C artesian coord in ate sy stem w ith origin , u n it of len gth, an d the

direction s of tw o coord in ate ax es, id en tifi ed as x ax is an d y ax is, together w ith

their orien tation s, id en tifi ed as the p ositiv e sid es of the ax es. T he rob ots d o n ot

hav e a com m on u n d erstan d in g of the han dedn ess (chirality ) of the coord in ate
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system that allows them to consistently infer the orientation of the y axis once
the orientation of the x axis is given; instead, k nowing North does not distinguish
East from West. The robots observe the environment and move; this is their only
means of communication and of expressing a decision that they have tak en. The
only thing that a robot can do is mak e a step, where a step is a seq uence of three
actions. First, the robot observes the positions of all other robots with respect
to its local coordinate system. Each robot is viewed as a point, and therefore
the observation returns a set of points to the observing robot. The robot cannot
distinguish between its fellow robots; they all look identical. In addition, the
robot cannot detect whether there is more than one fellow robot on any of
the observed points; we say, it cannot detect multiplicity. Second, the robot
performs an arbitrary local computation according to its algorithm, based only
on its common knowledge of the world (assumed e.g. to be stored in read-only-
memory and to be read off from sensors of the environment) and the observed
set of points. Since the robot does not memorize anything about the past, we call
it oblivious. For simplicity, we assume that the algorithm is deterministic, but
it will be obvious that all of our results hold for nondeterministic algorithms as
well (randomization, however, mak es things diff erent). Third, as a result of the
computation, the robot either stands still, or it moves (along any curve it lik es).
The movement is confined to some (potentially small) unpredictable, nonzero
amount. Hence, the robot can only go towards its goal along a curve, but it
cannot k now how far it will come in the current step, because it can fall asleep
anytime during its movement. While it is on its continuous move, a robot may
be seen an arbitray number of times by other robots, even within one of its steps.

The system is totally asynchronous, in the sense that there is no common
notion of time. Each robot mak es steps at unpredictable time instants. The
(global) time that passes between two successive steps of the same robot is
finite; that is, any desired finite number of steps will have been made by any
robot after some finite amount of time. In addition, we do not mak e any timing
assumptions within a step: The time that passes after the robot has observed the
positions of all others and before it starts moving is arbitrary, but finite. That is,
the actual move of a robot may be based on a situation that lies arbitrarily far
in the past, and therefore it may be totally diff erent from the current situation.
We feel that this assumption of asynchronicity within a step is important in a
totally asynchronous environment, since we want to give each robot enough time
to perform its local computation.

1.2 P attern F ormation

In this paper, we concentrate on the particular coordination problem that re-
q uires the robots to form a specific geometric pattern, the pattern formation
problem. This problem has been investigated q uite a bit in the literature, mostly
as an initial step that gets the robots together and then lets them proceed in
the desired formation (just lik e a fl ock of birds or a troupe of soldiers); it is
interesting algorithmically, because if the robots can form any pattern, they can
agree on their respective roles in a subseq uent, coordinated action. We study this
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problem for arbitrary geometric patterns, where a pattern is a set of points (gi-
ven by their Cartesian coordinates) in the plane. The pattern is known initially
by all robots in the system. For instance, we might require the robots to place
themselves on the circumference of a circle, with equal spacing between any two
adjacent robots, just like kids in the kindergarten are sometimes requested to
do. We do not prescribe the position of the circle in the world, and we do not
prescribe the size of the circle, just because the robots do not have a notion of
the world coordinate system’s origin or unit of length. The robots are said to
form the pattern, if the actual positions of the robots coincide with the points
of the pattern, where the pattern may be translated, rotated, scaled, and fl ipped
into its mirror position in each local coordinate system. Initially, the robots are
in arbitrary positions, with the only requirement that no two robots are in the
same position, and that of course the number of points prescribed in the pattern
and the number of robots are the same. Note that in our algorithms, we do not
need to and we will not make use of the possibility of rotating the pattern.

The pattern formation problem for arbitrary patterns is quite a general mem-
ber in the class of problems that are of interest for autonomous, mobile robots.
It includes as special cases many coordination problems, such as leader election:
We just define the pattern in such a way that the leader is represented uniquely
by one point in the pattern. This reflects the general direction of the investiga-
tion in this paper: What coordination problems can be solved, and under what
conditions? The only means for the robots to coordinate is the observation of the
others’ positions; therefore, the only means for a robot to send information to
some other robot is to move and let the others observe (reminiscent of bees in a
bee dance). For oblivious robots, even this sending of information is impossible,
since the others will not remember previous positions. Hence, our study is at the
extreme end in two ways: The problem is extremely hard, and the robots are
extremely weak.

In an attempt to understand the power of common knowledge for the co-
ordination of robots, we study the pattern formation problem under several
assumptions. We give a complete characterization of what can and what cannot
be achieved. First, we show that for an arbitrary number of robots that know the
direction and the orientation of both axes, the pattern formation problem can
be solved. Here, knowing the direction of the x axis means that all robots know
and use the fact that all the lines identifying their individual x axes are par-
allel. Similarly, knowing the orientation of an axis means that the positive side
of that axis in the coordinate system coincides for all robots. Second, we study
the case of the robots knowing one axis direction and orientation. We show that
the pattern formation problem can be solved whenever the number of robots
is odd, and that it is in general unsolvable when the number of robots is even.
Third, we show that the situation is the same, if one axis direction is known, but
not the orientation of the axis. Fourth, we show that if no axis direction (and
therefore also no orientation) is known, the problem cannot be solved in general.
For brevity all proofs are omitted. The reader is referred to [4].
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1.3 Related W ork

The problem of controlling a set of autonomous, mobile robots in a distributed
fashion has been studied extensively, but almost exclusively from an engineering
and from an artificial intelligence point of view. In a number of remarkable
studies (on social interaction leading to group behavior [5], on selfish behavior
of cooperative agents in animal societies [6], on primitive animal behavior in
pattern formation [1], to pick just a few), algorithmic aspects were somehow
implicitly an issue, but clearly not a major concern, let alone the focus, of the
study.

We aim at identifying the algorithmic limitations of what autonomous, mobile
robots can or cannot do. An investigation with this flavor has been undertaken
within the AI community by Durfee [2], who argues in favor of limiting the
knowledge that an intelligent agent must possess in order to be able to coordinate
its behavior with others. The work of Suzuki and Y amashita [7, 8, 9] is closest
to our study (and, with this focus, a rarity in the mobile robots literature); it
gives a nice and systematic account on the algorithmics of pattern formation
for robots, under several assumptions on the power of the indivdual robot. The
models that we use differ from those of [7, 8, 9] in the fact that our robots
are as weak as possible in every single aspect of their behavior. The reason is
that we want to identify the role of the robots’ common knowledge of the world
for performing a task. In contrast with [7, 8, 9], we do not assume that on a
move, we know ahead of time the limited, but nonzero distance that a robot
travels. We do not assume that the distance that a robot may travel in one
step is so short that no other robot can see it while it is moving. We do not
assume that the robots have a common handedness, called sense of orientation
in [7, 9].

The most radical deviation from previous models may, however, be our as-
sumption of asynchronicity within one step. In contrast, [7, 8, 9] assume the
atomicity of a step: A robot moves immediately after it has observed the current
situation, with all awake robots moving at the same clock tick (some robots may
be asleep). This difference influences the power of the system of robots so dra-
stically that in general, algorithms that make use of atomicity within one step
do not work in our model; in particular, this is true for the work in [7, 8, 9].

2 Knowledge of B oth Ax is Directions and Orientations

For the case in which the directions and orientations of both axes are common
knowledge, the robots can form an arbitrary given pattern when each robots
executes the following algorithm in each step.

Algorithm 1 (Both axis directions and orientations).
Input: An arbitrary pattern P described as a sequence of points p1, . . . ,pn,
given in lexicographic order. The directions and orientations of the x axis and
the y axis is common knowledge.
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Begin
α := Angle(p1, p2);
Give a lexicographic order to all the robots in the system,

including myself, say from left to right and from bottom to top;
A :=First robot in the order;
B :=Second robot in the order;
β := Angle(A, B);
If I am B Then Do nothing()

E lse If I am A

Then If α = β Then Do nothing()

E lse Go Into Position(A, B, α)

E lse %I am neither A nor B%
If α = β

Then U n it := AB;
% all the robots agree on a common unit distance %
F in a l P o sitio n s := Find Final Positions(A,B,U n it);
If I am on one of the F in a l P o sitio n s

Then Do nothing()

E lse F ree R o bo ts := {ro bo ts n o t o n o n e o f the

F in a l P o sitio n s};
F ree P o in ts := {F in a l P o sitio n s w ith n o ro bo ts

o n them};
Go To Points(F ree R o bo ts, F ree P o in ts);

E lse Do nothing()

E nd

Angle(p, q) computes the angle between the positive horizontal axis passing
through p and the segment pq. Do nothing() terminates the local computation
and the current step of the calling robot.

Go Into Position(A, B, α) orders A to move so as to achieve angle α

with B while staying lexicographically first.
Find Final Positions(A, B, U n it) figures out the final positions of the

robots according to the given pattern, and the positions of A and B. The common
scaling of the input pattern is defined by the common unit distance U n it.

Go To Points(F ree R o bo ts, F ree P o in ts) chooses the robot in F ree R o bo ts

that is closest to a point in F ree P o in ts and moves it, as follows:

Go To Points(F ree R o bo ts, F ree P o in ts)

Begin
(r, p) := Minimum(F ree R o bo ts, F ree P o in ts);
If I am r Then Move(p)

E lse Do nothing()

E nd

Minimum(F ree R o bo ts, F ree P o in ts) finds one of the F ree R o bo ts that has
the minimum Euclidean distance from one of the F ree P o in ts (i.e. with no robot
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Fig. 1. Breaking Symmetry from (a) to (b); defining the sides (c); the unbreakable
symmetry of a 5-gon (d)

on it). If more than one robot has minimum distance, the one smaller in the
lexicographic order is chosen.

Move(p) terminates the local computation of the calling robot and moves it
towards p.

Theorem 1. With A lgorithm 1, the robots correctly form the input pattern P .

3 Knowledge of One Axis Direction and Orientation

Let us now look at the case when only one axis direction and orientation are
known. As an aside, note that this case would trivially coincide with the first
one, if the robots would have a common handedness (or sense of orientation, as
Suzuki and Yamashita call it [7, 9]). We first show that in general, it is impossible
to break the symmetry of a situation. We will then show that for the special case
of an odd number of robots, symmetry can be broken and an arbitrary pattern
can be formed.

Theorem 2. In a system with n anonymous robots that agree only on one axis
direction and orientation, the pattern formation problem is unsolvable when n is
even.

In contrast, we now show that for breaking the symmetry, it is enough to
know that the number n of robots is odd.

Algorithm 2 (One axis direction and orientation).
Input: An arbitrary pattern P described as a sequence of points p1, . . . , pn, gi-
ven in lexicographic order. The direction and orientation of the y axis is common
knowledge.
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Begin
If We are in a final configuration Then Do nothing();
pm := Median Pattern Point(P);% median pattern point in x direction %
p := Outermost Pattern Point(P); % outermost pattern point w.r.t. pm %
Pattern Unit L eng th := Horizontal distance in the pattern

between the vertical lines through pm and p;
K := Median Robot Line(); % through the median robot position %
(O u ter Robot, O u ter L ine, positiv e x orientation):=

Outermost Robot Position(K);
M ed ian Robot := Find Median Robot(K);
Final Positions := Find Final Positions(M ed ian Robot,

positiv e x orientation, Pattern Unit L eng th,
Distance(K, O u ter L ine)/2);

Free Points := {Final Positions on my sid e with no robots on them};
If I am the M ed ian Robot Then Do nothing()

Else If I am the O u ter Robot
Then If Free Points contains just one (last) free point

Then Move Towards(last free point)
Else Do nothing()

Else If I am on one of the Final Positions Then Do nothing()

Else Free Robots := {robots on my sid e not on Final Positions};
Go To Points(Free Robots, Free Points)

End

Median Pattern Point(P) finds the median point in direction of x in the
input pattern P according to the local orientation of the axis. The ordering is
given left-right, bottom-up.

Outermost Pattern Point(P) finds the point in the input pattern P that
lies on the vertical line farthest from the vertical line through the median. If
more than one point exists, then the highest and rightmost is chosen according
to the local orientation of the axis.

Median Robot Line() returns the vertical line through the median robot po-
sition. Note that the position of this line does not depend on the local orientations
of the x axes of the robots.

Outermost Robot Position(K) uniquely determines a robot that is outer-
most with respect to K. It does so by breaking symmetry of the situation, if
necessary, in the following way (see Figure 1(a) and (b)):

Outermost Robot Position(K)

Begin
(O u ter Robot, O u ter Robot′, u niqu e) := Outer Two Robots(K);
If not u niqu e
Then If Symmetric(K)

Then If I am the median of the points on K
Then Move(to my rig ht by ε)
Else Do nothing()
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Else positive x orientation := Outermost Asymmetry(K);
Outer Robot := Choose between Outer Robot and Outer Robot′

the one that lies on the positive x orientation;
If I am Outer Robot Then Move(away from K by ε)
Else Do nothing()

Else positive x orientation := side on which Outer Robot lies;
Outer Line := vertical line on which Outer Robot lies;
Return (Outer Robot, Outer Line, positive x orientation)

End

Outer Two Robots(K) finds either two or a unique single topmost robot(s)
that lie(s) on the farthest vertical line(s) from K. The variable unique tells
whether the robot found has been unique.

Symmetric(K) returns T rue if the current configuration of the robots in the
system is symmetric with respect to K, in the following sense. The configuration
is called symmetric with respect to K, if there is a perfect matching for all the
robots not on K, such that any two matched robots lie on two vertical lines that
are in symmetric position with respect to K (see Figure 1(a)).

Outermost Asymmetry(K) identifies, for an asymmetric configuration, the
unique halfplane with respect to K in which a robot r lies that (in some mat-
ching) has no symmetric partner with respect to K, and that is on the farthest
vertical line from K among all robots with this property (see Figure 1(b)).

Find Median Robot(K) finds the median robot position in the current con-
figuration of the robots. This median robot position splits the robot positions
into two equal size subsets, of size (n − 1)/2, defined as follows. O ne subset is in
the halfplane of positive x orientation, including the points on K that are above
the median robot position, and the other subset is in the other halfplane of K,
including the points on K that are below the median robot position; from now
on, we will call these the two sides (see Figure 1(c)). According to this definition,
the median robot position is unique, and each robot (even if it lies on K) can
decide to which side it belongs.

Find Final Positions(Median Robot, S ide, Pattern Unit Length,
W orld Unit Length) returns the set of final positions of the robots according
to the given pattern, based on the agreement on Median Robot and on
positive x orientation. The common scaling of the input pattern is defined by
identifying Pattern Unit Length with W orld Unit Length.

Distance(K, L) returns the horizontal distance between the two vertical
lines K and L.

3.1 C orrectness

To see that the above algorithm solves the pattern formation problem for an
arbitrary pattern, we argue as follows. First, we show that the robots initi-
ally arrive at an agreement configuration, by breaking symmetry if necessary.
Then, they translate and scale the pattern with respect to the median and the
outermost point, and finally they move to their destinations. To present this
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argument in more detail, we start with a brief definition. A confi guration (of
the robots) is a set of robot positions, one position per robot, with no position
occupied by more than one robot. An agreement confi guration is a configuration
of the robots in which all robots agree on a unique median robot and a unique
outermost robot, as defined in the above routines Find Median Robot(K) and
Outermost Robot Position(K). A fi nal confi guration is a configuration of the
robots in which the robots form the desired pattern. Note that a final configu-
ration might or might not be an agreement configuration.

Theorem 3. With Algorithm 2, the robots correctly form the input pattern P .

4 Knowledge of One Axis Direction

Note that the difference to the previous section is only the lack of knowledge
about the axis orientation. For solving the pattern formation problem in this
case, we can use an algorithm similar to the one used in Section 3. We easily
observe that with slight modifications in Algorithm 2, the agreement on the
orientation of the x axis could have been achieved without using the knowledge
of the orientation of the y axis. M ore precisely, we can do the following:

1. Find the vertical line K on which the median robot lies (as before, this is
independent from the direction of x).

2. Find the Outermost robots with respect to K. Since we do not know the
orientation of the given axis, let’s say the y axis, it is possible that we find
more than one outermost robot; there are at most four of them, on both
sides of K to the top and to the bottom. In this case, we will detect an
(outermost) asymmetry with respect to K as before, or create it as follows.
If the configuration is symmetric with respect to K, the median robot is
uniquely identified, and it moves by some small amount ε > 0 to its right,
breaking the symmetry. So now, as in the previous section, all the robots
agree on the positive direction of the x axis (the side where the outermost
asymmetry lies), and at most 2 outermost robots remain (the bottom and
top ones on the positive x side, say).

3. The same technique and argument now applies to the x axis as the given
one. In this way, an agreement also on the orientation of the y axis can be
reached. Now, we can select a unique Outermost robot out of the at most
two that were remaining, and let it (for convenience) move by ε outwards.

4. The robots can compute their unique final positions and go towards them,
in the same way as in Algorithm 2.

Using Theorem 2, we therefore conclude:

Theorem 4. With common knowledge of one axis direction, an odd number of
autonomous, anonymous, oblivious, mobile robots can form an arbitrary given
pattern, while an even number cannot.
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5 No Knowledge

The following theorem states that giving up the common knowledge on at least
one axis direction leads to the inability of the system to form an arbitrary pat-
tern.

Theorem 5. With no common knowledge, a set of autonomous, anonymous,
oblivious, mobile robots cannot form an arbitrary given pattern.

6 Discussion

We have shown that from an algorithmic point of view, only the most fundamen-
tal aspects of mobile robot coordination are being understood. In a forthcoming
paper, we propose two algorithms for the point formation problem for oblivious
robots; the first one does not need any common knowledge, and the second one
works with limited visibility, when two axes are known [3]. There is a wealth
of further questions that suggest themselves. For example, we have shown that
an arbitrary pattern cannot always be formed; it is interesting to understand
in more detail which patterns or classes of patterns can be formed under which
conditions, because this indicates which types of agreement can be reached, and
therefore which types of tasks can be performed. Slightly faulty snapshots, a
limited range of visibility, obstacles that limit the visibility and that moving ro-
bots must avoid or push aside, as well as robots that appear and disappear from
the scene clearly suggest that the algorithmic nature of distributed coordination
of autonomous, mobile robots merits further investigation.
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