
Leader Election and Compaction for Asynchronous Silent
Programmable Matter

Gianlorenzo D’Angelo

Gran Sasso Science Institute

L’Aquila, Italy

gianlorenzo.dangelo@gssi.it

Mattia D’Emidio

University of L’Aquila

L’Aquila, Italy

mattia.demidio@univaq.it

Shantanu Das

Aix-Marseille University

Marseille, France

shantanu.das@lis-lab.fr

Alfredo Navarra

University of Perugia

Perugia, Italy

alfredo.navarra@unipg.it

Giuseppe Prencipe

University of Pisa

Pisa, Italy

giuseppe.prencipe@unipi.it

ABSTRACT

We study models and algorithms for Programmable Matter (PM,

shortly), that is matter with the ability to change its physical prop-

erties (e.g., shape or optical properties) in a programmable fashion.

PM can be implemented by assembling a system of weak self-

organizing computational elements, called particles, that can be pro-

grammed via distributed algorithms to collectively achieve some

global task. We first introduce SILBOT, a new and weak model-

ing approach that, unlike previous ones, does not require: i) any

synchronization mechanism nor explicit communication between

particles; ii) atomicity for the performed actions; iii) activation of

one particle at the time within a finite neighborhood. Second, we

present a distributed algorithm to solve, in the SILBOT model, a

foundational primitive for PM, namely Leader Election. This algo-

rithm manages initial configurations that are both connected (i.e.

particles induce a connected graph) and compact (i.e. without holes).

Third, we show that, if the initial configuration contains holes, it is

impossible to achieve leader election while preserving connectivity.

Finally, we design an algorithm to handle configurations admitting

holes. Specifically, the algorithm achieves compaction, i.e. stabilizes

the system into a compact connected configuration, while at the

same time accomplishing leader election, provided that particles

are able to sense holes.

CCS CONCEPTS

• Theory of computation → Self-organization; Distributed

algorithms; • Computer systems organization→ Robotics;

KEYWORDS

Programmable Matter; Swarm Robotics; Self-Organizing Systems;

Leader Election; Compaction; Finite Automata; Distributed Algo-

rithms.

ACM Reference Format:

Gianlorenzo D’Angelo, Mattia D’Emidio, Shantanu Das, Alfredo Navarra,

and Giuseppe Prencipe. 2020. Leader Election and Compaction for Asyn-

chronous Silent Programmable Matter. In Proc. of the 19th International

Conference on Autonomous Agents and Multiagent Systems (AAMAS 2020),

Auckland, New Zealand, May 9–13, 2020, IFAAMAS, 9 pages.

1 INTRODUCTION

Matter having the ability to change its physical properties (e.g.,

shape, optical properties, etc.) in a programmable fashion has been

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems

(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May

9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous

Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

recently the subject of many studies in many areas of computer

science, including robotics and distributed computing.

The term Programmable Matter (PM, shortly) was first coined

in a seminal work by Toffoli et al. [32] and, since the beginning, it

has been used to denote systems of weak and small computational

elements, called particles, that can be programmed via distributed al-

gorithms to collectively achieve some global task. Particles are weak

in the sense that they are able to perform, in some self-organized

way, very simple actions only, such as establishing and releasing

bonds or moving in geometrically constrained environments.

Initially, the interest by the scientific community was mostly

theoretical, as in the early 90s the technology for building com-

putational devices at micro/nanoscale was still in a nascent state.

Nowadays, instead, such devices have been rendered increasingly

possible in practice thanks to the advancements in the production

processes of nanounits that integrate computing, sensing, actuation,

and some form of motion mechanism (see e.g., [8, 31]). Hence, the

investigation into the computational characteristics of PM systems

has assumed again a central role, driven by the applied perspec-

tive. In fact, such systems find a plethora of natural applications in

various contexts, including smart materials, ubiquitous computing,

repairing at microscopic scale, and tools for minimally invasive

surgery. Chiefly, large part of such investigation has been dedicated

to modeling issues for effective algorithm design, performance

analysis and study of the feasibility of foundational tasks that are

relevant to PM. Example of robotic approaches related to PM can

be found in [25, 26, 30].

The majority of previous works on models for PM have been

inspired by physical systems or biological colonies [27, 29]. Among

them perhaps the most promising (in terms of quality of the abstrac-

tion, as well documented in the literature [10, 18]) is the so-called

geometric Amoebot model [16], which is inspired by the behavior of

amoeba. Such a model, as well as other prominent ones, considers a

swarm of decentralized autonomous self-organizing particles that:

i) are modeled as finite state automata; ii) are all identical, executing

the same algorithm based on local observation of the surroundings;

iii) are displaced in the cells of a hexagonal grid (represented by

a triangular lattice); iv) can move from cell to cell by repeatedly

alternating between two states, namely contracted (a particle occu-

pies one cell) and expanded (the particle occupies two neighboring

cells). Given these elementary features, it is rather hard to design

distributed algorithms even for basic tasks (e.g. coating [10, 15],

bridge building [3], shape formation [6, 16, 18, 33], shape recov-

ery [17], and compression [6]). Essentially all existing solutions, to

solve foundational problems in this setting, have resorted to add

various features to overcome such hardness. Examples include:

• presence of a global serialized synchronizer: no two neigh-

boring particles are assumed to be simultaneously activated

(a.k.a. sequential scheduling, a single particle activation at

the time);

• communication: particles are endowed with the ability to

explicitly interact with neighboring particles by means of

shared memory, read/write operations or message passing

mechanisms;

• atomicity of actions: particles are assumed to be able to per-

form various operations in an atomic step (e.g. observation

of the surrounding, elaboration, and communication happen

simultanously);

• randomization: particles can rely on random outcomes to

take decisions and in particular for symmetry breaking.

All these additional assumptions appear quite unrealistic, given

the inherently weak and asynchronous nature of PM. Specifically,

theoretical models differ in many aspects from the real systems

that have been deployed and tested in the laboratories [5, 7, 24]

both in terms of particles’ capabilities and in how they interact.

Therefore, the provided abstraction might result in being ineffective

for algorithm design and performance analysis in these scenarios.

On a related line of research, it is worth observing that similar

modeling issues have been encountered by studies on multi-robot

computing systems [2, 12–14, 21, 23], and metamorphic robots [28].

In this paper, we try to bridge the gap existing between theoret-

ical studies and practice by proposing the SILBOT model, a new

modeling approach for systems of programmable particles. The new

abstraction inherits some features of the most established models

for PM but it is closer to real-world particles systems, since it shares

some peculiarities (e.g. absence of explicit communication or full

asynchronicity) of the consolidated Look-Compute-Movemodel [21]

for robotic swarms, extensively studied in distributed computing

and widely adopted in practice. Thus, we move a step closer to prac-

tically implementable programmable matter. Moreover, a weaker

model allows to build safer, more energy-efficient and fault-tolerant

systems. Thus, it is important to develop algorithms that require as

few assumptions as possible.

Within the SILBOT model, we provide distributed algorithms to

implement perhaps the most prominent primitive for PM, namely

Leader Election. The Leader Election problem, besides being of theo-

retical interest on its own, can be considered one of the foundational

problems in systems of programmable particles [4, 16, 18, 20, 22],

as its resolution is often necessary to solve more complex tasks, e.g.

coating or shape formation.

Several strategies have been used in the past for leader election:

in [11, 16], for instance, particles resort to randomization to break

symmetries; in [4, 11, 16, 22] chirality is assumed, that is a globally

consistent circular orientation of the plane shared by all particles;

in [20], the scheduler is assumed so as only one particle at the time

is activated. Note that, unless randomization [11, 16] or sequential

scheduling [20] is assumed, the election of one single leader is

not possible. Indeed, in [4] and [18] up to six and three leaders,

respectively, can be elected due to possible symmetries. In what

follows, therefore, we focus on this latter leader election problem,

where up to three mutually neighboring particles can be elected;

these form a team of leaders that may then act together to guide the

other particles. We provide a deterministic algorithm for solving

leader election when the initial configuration is simply connected

as in [18]. Indeed we show how to emulate the erosion process

presented in [18] by a simpler set of rules.

When the initial configuration contains holes, that is when there

is a region of the grid, delimited by particles, whose interior contains

empty cells, we formally show that leader election is impossible if

the system needs to maintain connectivity among particles. To deal

with arbitrary connected configurations we empower the particles

with the capability of detecting whether an empty neighboring cell

is part of a hole or it belongs to the exterior grid region. Practi-

cally, it is possible for PM particles to acquire such knowledge by

local sensing of the surroundings (e.g. via light or pressure sen-

sors) without any global visibility or exchange of messages. We

provide an algorithm for achieving compaction of holes, that is to

convert any arbitrary connected configuration to a simply con-

nected configuration. We also show how to achieve leader election

while performing the compaction. Our algorithms are deterministic,

and particles have no additional memory, except the ability to be

in two visually distinguishable states.

2 THE SILBOT MODEL

In this section, we present the new SILBOT model for PM, where

particles act independently of each other, without explicit communi-

cation, in a fully asynchronous way, based only on local knowledge.

The modeling assumptions are as follows.

Environment. The system is modeled as an infinite triangular

lattice (representing the described hexagonal grid) embedded in

the plane, where each node has 6 incident edges. As in the usual

model [4, 11, 16, 18, 20, 22], nodes correspond to hexagonal cells

and each edge represents a boundary shared by two cells. Each

node can contain at most one particle. There are 𝑛 particles and

initially the set of 𝑛 nodes containing particles induces a connected

subgraph of the lattice.

Particles andConfigurations. Each particle is an automatonwith

two states, contracted or expanded (they do not have any other

form of persistent memory). In the former state, the particle oc-

cupies a single node of the lattice while in the latter, the particle

occupies one single node and one of the adjacent edges. Each par-

ticle can sense its surroundings up to a distance of 2 hops i.e., if a

particle occupies a node 𝑣 , then it can see the neighbors of 𝑣 and

the neighbors of the neighbors of 𝑣 . Specifically, a particle can de-

termine (i.e. sense) if a node is empty or occupied by a contracted

particle, or occupied by an expanded particle, for each node in its 2-

hop visibility range. In our model particles do not have any explicit

means of communication. Thus, a particle can acquire information

about its surroundings only by its limited vision without communi-

cations, rather using direct sensing, e.g. weak electromagnetic fields

or radars. Any positioning of contracted or expanded particles

that includes all 𝑛 particles composing the system is referred to as

a configuration.

Movement and occupancies. Each particle can occupy only one

node 𝑣 at a time. In order to move to a neighboring node 𝑢, the

particle expands on the edge between node 𝑣 and node 𝑢. Thus, in

expanded state, the particle occupies one node and one edge (the

physical interpretation is that the particle is occupying one hexago-

nal cell completely and has partially entered into the adjacent cell).

Note that node 𝑢 may still be occupied by another particle. If the

other particle leaves node 𝑢 in the future, the expanded particle

will contract into node 𝑢 during its next activation. There may be

arbitrary delays between the actions of these two particles, while

the connectivity is still maintained. For example, when the particle

at node 𝑢 has moved to another node, the edge between 𝑣 and 𝑢

is still occupied by the original expanded particle. In this case we

say that node 𝑢 is semi-occupied. We ensure that the set of occupied

and semi-occupied nodes induces a connected configuration at all

times during the execution of the proposed algorithms.

A particle commits itself into moving to node 𝑢 by expanding in

that direction, and at the next activation of the same particle, it is

constrained to move to node 𝑢, if 𝑢 is empty. A particle cannot revoke

its expansion once committed.

Interaction between particles. Our model requires no explicit

communication between the particles. Inspired also by Cellular

Automata systems (see, e.g. [1, 19]), each particle can sense the

presence of other particles (contracted or expanded) in its neigh-

borhood. Ideally we would like the particles to operate with 1-hop

visibility (limited to immediate neighboring nodes). However, in

order to avoid some well-known deadlock condition (see [10, 18],

this will be better clarified later in the paper), particles need to

acquire information about the neighbors of their neighbors, so we

assume 2-hop visibility. This means that the particles can sense

nodes within 2 hops to determine the presence of contracted or

expanded particles. Note that this capability is much weaker than

explicit communication with neighbors (used e.g. by the Amoe-

bot model) which allows particles to obtain information up to any

arbitrary distance via multi-hop communication.

Asynchrony and Rounds. The SILBOT model introduces a fine

grained notion of asynchrony with possible delays between obser-

vations and movements performed by the particles. All operations

performed by the particles are not atomic, that is there can be

delays between the actions of sensing the surroundings, comput-

ing the next decision, executing the decision (i.e., change of state,

movement, expansion, contraction). We make no assumptions nor

restrictions on the scheduling of these events; thus any possible ex-

ecution of an actual physical system can be captured by our model.

This has important consequences for computability of the particle

systems and requires more rigorous techniques for proving correct-

ness of the algorithms. In particular, algorithms for this model must

be inherently simple with a few rules, since this already provides an

uncountably large number of possible execution sequences. We call

a round the time within which all particles have been activated and

concluded their activation time at least once. Clearly, the duration

of a round is finite but unknown and may vary from time to time.

Orientation and Randomness. We do not make any additional

assumption about orientation nor randomness: particles do not

agree on clockwise direction (i.e., they have no chirality) and ex-

ecute deterministic algorithms (i.e., they cannot exploit random

outcomes to take decisions). The only random component in the

system is of adversarial type [21]: if two contracted particles decide

to expand on the same edge simultaneously, exactly one of them

succeeds (arbitrarily chosen by the scheduler). If two particles are

expanded on two distinct edges incident to the same node𝑤 , and

both particles are activated simultaneously, exactly one of the par-

ticles (again, chosen arbitrarily by the scheduler) contracts to node

𝑤 , while the other particle does not change state.

Connectivity and Leader Election. We assume the system is

initially in a connected configuration where all particles are con-

tracted. We define the problem of leader election as in [18] where

at most 3 particles may be elected. We remark the election of a

single particle is possible only if either randomization or a sequen-

tial scheduler are employed [20]. We say a particle 𝑝 recognizes

itself to be a leader if it is contracted and, within its visibility

range, there are at most two other contracted adjacent particles

that are also adjacent with 𝑝 . Note that to decide to be leader,

particles need to acquire information about the neighbors of their

neighbors [18]. Hence, without communication, 1-hop visibility is

not enough for a particle to decide whether it is a leader or not. A

particle recognizes to be non-leader if it is expanded.

Definition 2.1 (Particle Leader Election (PLE)). An algorithm solves

the Particle Leader Election (PLE) problem if the following condi-

tions hold: i) once the algorithm terminates there are exactly one,

two, or three mutually adjacent particles that are leader and ii) all

particles are either leader or non-leader.

Initially, all particles are contracted and represent potential

candidates to become leader. Once the election algorithm success-

fully terminates, there are at most 3 mutually adjacent leaders.

Given a triangular lattice𝐺 , a subgraph of𝐺 is simply connected if

the envelope of its standard planar embedding has only one exterior

boundary and no interior boundaries. A configuration is simply

connected if the subgraph of 𝐺 induced by the nodes occupied

by particles is simply connected. A configuration is deeply simply

connected if it is simply connected and the nodes occupied by the

contracted particles induce a simply connected graph.

In what follows, we denote by Π the set of simply connected

configurations with only one, two, or three contracted particles

such that the nodes occupied by the contracted particles induce a

complete graph. Moreover, given a particle 𝑝 , we call 𝑁1 (𝑝) and
𝑁2 (𝑝) the set of nodes that are occupied by contracted particles

at distance 1 and 2, resp., from 𝑝 . We sometimes denote as 𝑝 the

node occupied by particle 𝑝 . Given a set of nodes𝑈 , we call 𝐺 (𝑈)
the subgraph of 𝐺 induced by𝑈 .

3 PLE WITH SIMPLE CONNECTIVITY

In this section, we provide an algorithm for PLE when the initial

configuration is simply connected, i.e., it does not contain holes.

Alternatively, the algorithm works for any deeply simply connected

initial configuration even if not all particles are contracted. We

now describe the algorithm called lesc (see the pseudocode in

Algorithm 1, it refers to the point of view of a single particle).

Let us consider the standard planar embedding of the subgraph

of lattice 𝐺 induced by the nodes occupied by contracted parti-

cles, and the envelope (concave hull) that contains all the nodes

in this embedding. Informally, our algorithm shrinks this enve-

lope by expanding the particles that are on its border toward the

interior. Moreover, the algorithm expands the particles toward oc-

cupied nodes in such a way that no expanded particle will contract

again. Essentially, once expanded, a particle will not compete any-

more to become a leader. Formally, the algorithm allows to expand

only contracted particles 𝑝 such that𝐺 (𝑁1 (𝑝)) is connected and

|𝑁1 (𝑝) | ≤ 3. In particular, if there exists a contracted particle 𝑝

such that 𝐺 (𝑁1 (𝑝)) is connected and |𝑁1 (𝑝) | ≤ 2, then 𝑝 expands

along edge (𝑝, 𝑞), where 𝑞 is a contracted neighboring particle

of 𝑝 (see Line 3). If there is a contracted particle 𝑝 such that

𝐺 (𝑁1 (𝑝)) is connected and |𝑁1 (𝑝) | = 3, then 𝑝 expands along edge

(𝑝, 𝑞), with 𝑞 being the central neighboring particle of 𝑝 , only if the

other two neighbors have degree at least 3 and 𝑞 has degree at least

4 (see Lines 4–7). This strategy avoids that 𝑝 expands while one of

its neighboring particles is expanding toward 𝑝 itself. We remark

that 2-hop visibility is necessary to detect this special condition

(as observed in [18]). Notice that no contractions are induced by

Algorithm 1.

We show that in any deeply simply connected configuration a

particle satisfying one of the above conditions always exists until

leaders are elected. Moreover, the obtained configuration is guar-

anteed to be deeply simply connected, while the number of con-

tracted particles decreases, until it converges to a configuration

in Π. In order to show this, we model an execution of Algorithm

lesc as a path in a directed graph 𝐻 = (𝑉 , 𝐸), where the vertices in
𝑉 correspond to any deeply simply connected configuration with

at most 𝑛 contracted particles, and the edges in 𝐸 correspond to

transitions among configurations as determined by Algorithm lesc.

In particular, each vertex 𝑢 ∈ 𝑉 corresponds to a configuration 𝐶𝑢 ,

and there is a directed edge (𝑢, 𝑣) ∈ 𝐸 if there exists an execution

Algorithm 1: Algorithm lesc (PLE with Simple Connectivity).

Precondition :Each particle is contracted, the set of nodes

containing particles induces a simply connected

subgraph of𝐺 .

Postcondition :A configuration in Π.
1 if (𝑝 is contracted) ∧ (𝐺 (𝑁1 (𝑝)) is connected) ∧ (𝐺 (𝑁1 (𝑝) ∪

𝑁2 (𝑝) ∪ {𝑝 }) ∉ Π) then
2 if 𝑁1 (𝑝) = {𝑞 } ∨ 𝑁1 (𝑝) = {𝑞, 𝑟 } then
3 Expand along (𝑝,𝑞) ;
4 if 𝑁1 (𝑝) = {𝑟, 𝑞, 𝑠 } then
5 Let 𝑞 be the central neighbor;

6 if |𝑁1 (𝑟) | > 2 ∧ |𝑁1 (𝑞) | > 3 ∧ |𝑁1 (𝑠) | > 2 then

7 Expand along (𝑝,𝑞) ;

of Algorithm lesc that leads from 𝐶𝑢 to 𝐶𝑣 , without generating in

between further configurations different from 𝐶𝑣 . We distinguish

two types of edges: we call (𝑢, 𝑣) an expansion edge if, considering

𝐶𝑢 as the initial configuration, there is a schedule in which Algo-

rithm lesc leads from𝐶𝑢 to𝐶𝑣 in one round.We call (𝑢, 𝑣) a pending
edge if it models the transition from a configuration 𝐶𝑢 to another

configuration 𝐶𝑣 that may occur not because one or more particles

are performing expansions dictated by the algorithm from 𝐶𝑢 , but

because such particles have started their computations from some

configurations different from 𝐶𝑢 and, due to asynchrony, 𝐶𝑢 has

been generated in the meanwhile. The expansions that determine,

from 𝐶𝑢 , a pending edge are called pending expansions. The next

theorem exploits graph 𝐻 to show that Algorithm lesc converges

to a configuration in Π.

Theorem 3.1. Starting from a deeply simply connected configura-

tion, Algorithm lesc terminates after 𝑂 (𝑛) rounds in a configuration

in Π. Moreover, any configuration generated during the execution of

lesc is deeply simply connected.

Proof. Initially there are 𝑛 contracted particles that form

a deeply simply connected configuration. Let 𝐻 = (𝑉 , 𝐸) be the
directed graph representing the executions of Algorithm lesc as

defined above. We show the statement of the theorem by proving

the three following properties:

P1. Each vertex in 𝐻 , excluding those corresponding to con-

figurations in Π, has at least one outgoing expansion edge.

Moreover, vertices in 𝐻 corresponding to configurations in

Π are connected only by pending edges as shown in Fig. 1 (a).

P2. Each expansion dictated by Algorithm lesc corresponds

to an edge in 𝐻 , that is the configuration obtained by any

expansion dictated by lesc is deeply simply connected.

P3. Graph 𝐻 is acyclic.

The statement then follows as the only sink vertices of 𝐻 w.r.t.

expansion edges (i.e., the only vertices that have no outgoing ex-

pansion edges) are those corresponding to configurations in Π.
Therefore, starting from any configuration 𝐶𝑢 , an execution of Al-

gorithm lesc corresponds to a directed path in 𝐻 that starts at 𝑢

and finishes, after a finite number of edges (i.e., expansions), in

a vertex corresponding to a configuration in Π. The final vertex
of the path depends on the exact schedule, which determines the

expansions that are pending and, hence, the pending edges in the

path. We now show the above three properties separately.

Property P1.We first show that in any deeply simply connected

configuration there exists a contracted particle 𝑝 such that

𝐺 (𝑁1 (𝑝)) is connected and |𝑁1 (𝑝) | ≤ 3. Let us consider the stan-

dard planar embedding of the subgraph of lattice 𝐺 induced by the

contracted particles and the envelope containing all the points of

this embedding. Since the configuration is deeply simply connected,

the shape of the envelope is a “tree of polygons”, that is a set of

polygons that are connected by paths of straight lines, possibly

of length 0 (i.e., connected by one single point corresponding to

a single particle). Moreover, the leaves of the tree are not single

particles since this would imply that there is at least one particle

with only one neighbor and this is a contradiction, see Fig.s 1 (b)

and (c) for an example. Now, let us consider a leaf of the tree of

polygons, and let us assume that it has𝑚 vertices (corresponding to

𝑚 particles). Note that since this polygon is a leaf of the tree, only

one of its vertices is connected to the rest of the tree and any other

vertex of the polygon corresponds to a particle that has a connected

neighborhood. By contradiction, let us assume that each particle in

the polygon, excluding the one that connects the polygon to the

rest of the tree, has at least 4 occupied neighbors. Then the interior

angle of each vertex in the polygon corresponding to these particles

measures at least 𝜋 . Therefore, the sum of the interior angles of

the polygon is at least (𝑚 − 1)𝜋 , which is a contradiction since it

is known that such a sum equals (𝑚 − 2)𝜋 in any polygon. Hence,

we have shown that there must exist a contracted particle 𝑝 such

that 𝐺 (𝑁1 (𝑝)) is connected and |𝑁1 (𝑝) | ≤ 3. Furthermore, such a

particle belongs to a leaf of the tree of polygons.

We now show that given the existence of such a particle, then

there is at least one particle that decides to expand according to

Algorithm lesc. In particular, if |𝑁1 (𝑝) | ≤ 2, then 𝑝 will expand

(see Line 3). If |𝑁1 (𝑝) | = 3, then 𝑝 is allowed to expand only if the

condition at Line 6 is satisfied. Assume that this condition is not

satisfied and let 𝑟 , 𝑞 and 𝑠 be the three neighbors of 𝑝 , with 𝑞 being

the central one. If |𝑁1 (𝑟) | ≤ 2 (or |𝑁1 (𝑠) | ≤ 2), then 𝑟 (or 𝑠) will

expand, as imposed by Line 3. By referring to Fig.s 2 (a) and (b), if

|𝑁1 (𝑟) | > 2 and |𝑁1 (𝑠) | > 2, then 𝑟 shares neighbor 𝑞 with 𝑝 and

has a further neighbor, say 𝑡𝑟 . Similarly, 𝑠 is adjacent to 𝑝 , 𝑞, and

has a further neighbor 𝑡𝑠 . Then two cases can occur: if 𝑡𝑟 and 𝑡𝑠 are

not neighbors of 𝑞, then we have a contradiction as the considered

polygon is not a leaf of the tree (see Fig. 2 (a)). Otherwise, if at least

one among 𝑡𝑟 and 𝑡𝑠 is a neighbor of 𝑞, we have that |𝑁1 (𝑞) | > 3

and the condition at Line 6 is satisfied (see Fig. 2 (b)), hence 𝑝 will

expand, which is again a contradiction. Therefore, we have shown

there is at least one particle that decides to expand according to

Algorithm lesc. If more than two particles decide to expand along

the same edge, at least one of them will succeed according to the

model.

Finally, it remains to show that the vertices corresponding to

configurations in Π are connected as shown in Fig. 1 (a). Observe

that if there are no pending expansions, and the configuration is

in Π, then no particle is expanded by Algorithm lesc. It follows

that edges among vertices corresponding to configurations in Π
can only be pending edges. Hence, Property P1 follows.

Property P2. By contradiction, let us assume that after an expan-

sion (possibly pending) dictated by Algorithm lesc, the configu-

ration obtained is not deeply simply connected anymore. In the

following, we denote by 𝑁 𝑡
1
(𝑝) the set 𝑁1 (𝑝), as seen by a particle

𝑝 if it is activated at some time 𝑡 . Let 𝑡 be the first time instant when

the subgraph𝐺𝑡 of lattice𝐺 , induced by the contracted particles,

is not simply connected. We distinguish two possible cases:

(1) 𝐺𝑡 has a hole. We first show that an expanded particle

does not contract again. By contradiction, let us consider the first

expanded particle 𝑝 that contracts. Let (𝑣,𝑢) be the edge where 𝑝
is expanded, with 𝑢 being the node on which 𝑝 contracts after. By

the algorithm, node 𝑢 was occupied when 𝑝 has decided to expand,

while it is empty when 𝑝 is contracted. This implies that the

particle that was occupying node 𝑢 has been contracted in a time

𝐵

𝐴

𝐶

(a)
(b) (c)

Figure 1: (a) A subgraph of graph 𝐻 used in the proof of Theorem 3.1. Each vertex is associated with a set of configurations

represented by the subgraph induced by only contracted particles. Pending edges are drawn as dashed arrows, while expansion

edges are drawn as bold arrows. For simplicity, not all the configurations that according to Algorithm lesc can be obtained

from configuration 𝐶 are depicted. (b) Example of a simply connected configuration. (c) Example of tree of polygons, corre-

sponding to the configuration in (b), used in the proof of Theorem 3.1 for Property P1.

𝑡𝑟

𝑝

𝑞𝑠

𝑟

𝑡𝑠

(a)

𝑡𝑟

𝑝

𝑞𝑠

𝑟

𝑡𝑠

(b)

𝑝1

𝑝2 ≡ 𝑞

𝑠

𝑟

(c)

𝑠

𝑟

𝑝1 𝑞

𝑝2

(d)

Figure 2: Configurations used in the proof of Theorem 3.1.

between the decision of expansion and the contraction of 𝑝 , which

is a contradiction as 𝑝 is the first particle that contracts after an

expansion. Therefore, to create a hole the only possibility is that a

contracted particle 𝑝 has decided to expand at some time 𝑡 ′ ≤ 𝑡

and it is actually expanded at time 𝑡 , when it was surrounded by

6 contracted particles. Since expanded particle do not contract

again, function |𝑁 𝑡
1
(𝑝) | is non-increasing with respect to the time 𝑡 .

This implies that |𝑁 𝑡 ′
1
(𝑝) | ≥ |𝑁 𝑡

1
(𝑝) | = 6, and 𝑝 decided to expand

at time 𝑡 ′, with |𝑁 𝑡 ′
1
(𝑝) | = 6. This is in contradictionwith Algorithm

lesc that allows a particle 𝑝 to expand only if |𝑁1 (𝑝) | ≤ 3.

(2) 𝐺𝑡 is disconnected. If a particle 𝑝 is expanded at time 𝑡

and 𝐺𝑡 becomes disconnected because of such expansion, then

either 𝐺 (𝑁1 (𝑝)) was disconnected when 𝑝 decided to expand or a

neighboring particle of 𝑝 expanded at a time between the time when

𝑝 decided to expand and 𝑡 . The former case contradicts Algorithm

lesc that allows 𝑝 to expand only if𝐺 (𝑁1 (𝑝)) is connected. For the
latter case, assume that the disconnection at time 𝑡 is due to two

particles 𝑝1 and 𝑝2 that are contracted, occupy two neighboring

nodes at some time before 𝑡 , and that are both expanded at time 𝑡

(they may expand at different times, in any order, 𝑡 is the time when

the second particle is expanded). Let us denote as 𝑡1 and 𝑡2 the time

when 𝑝1 and 𝑝2 decided to expand, respectively, and let us assume

without loss of generality that 𝑡1 ≤ 𝑡2 ≤ 𝑡 . If 𝑡 ′
1
and 𝑡 ′

2
denote the

time when 𝑝1 and 𝑝2 actually expand, respectively, then we must

have that 𝑡 ′
1
≥ 𝑡2 as otherwise the expansions of 𝑝1 and 𝑝2 are

sequential (i.e., we are in the former case). Therefore we have two

possible cases: either 𝑡1 ≤ 𝑡2 ≤ 𝑡 ′
1
≤ 𝑡 ′

2
= 𝑡 or 𝑡1 ≤ 𝑡2 ≤ 𝑡 ′

2
≤ 𝑡 ′

1
= 𝑡 .

We assume that at times 𝑡1 and 𝑡2 the configuration is not in Π,
as otherwise 𝑝1 and/or 𝑝2 will not decide to expand according

to Algorithm lesc. Since |𝑁 𝑡1
1
(𝑝2) | ≥ |𝑁 𝑡2

1
(𝑝2) | and, according to

Algorithm lesc, a particle 𝑝 is allowed to expand only if𝐺 (𝑁1 (𝑝)) is
connected and |𝑁1 (𝑝) | ≤ 3, then we analyze the following possible

cases:

(a) |𝑁 𝑡1
1
(𝑝1) | = 1. In this case 𝑝1 expands toward 𝑝2, and 𝑝2 can

decide to expand only after 𝑝1 is expanded otherwise𝐺 (𝑁1 (𝑝2)) is
not connected. Therefore, we have 𝑡 ′

1
< 𝑡2 which is a contradiction.

(b) |𝑁 𝑡1
1
(𝑝1) | = 2. Since, before 𝑡 , particles 𝑝1 and 𝑝2 occupy

neighboring nodes and 𝐺 (𝑁 𝑡1
1
(𝑝1)) is connected, then there must

be a third particle 𝑝3 located at a node that is adjacent to both 𝑝1
and 𝑝2. According to Algorithm lesc, 𝑝1 must be expanded along

(𝑝1, 𝑝2) or along (𝑝1, 𝑝3). Now, if 𝑝3 has two neighbors only (namely

𝑝1 and 𝑝2), then 𝑝2 can decide to expand only after that both 𝑝1
and 𝑝3 are expanded as otherwise 𝐺 (𝑁1 (𝑝2)) is not connected.
This is a contradiction as it implies that 𝑡 ′

1
< 𝑡2. It follows that the

only possible case is 𝑝3 having other neighbors, different from 𝑝1
and 𝑝2, and hence any expansion of 𝑝2 toward any of its occupied

neighbors cannot disconnect 𝐺𝑡 .

(c) |𝑁 𝑡1
1
(𝑝1) | = 3 and |𝑁 𝑡1

1
(𝑝2) | ≤ 2. In this case, 𝑝1 cannot

expand at time 𝑡1 according to Algorithm lesc.

(d) |𝑁 𝑡1
1
(𝑝1) | = 3 and |𝑁 𝑡1

1
(𝑝2) | ≥ 3. We have two cases: 𝑝2 is

the central node in 𝑁
𝑡1
1
(𝑝1) (i.e., node 𝑞 in Line 6) and there are 2

occupied nodes, 𝑠 and 𝑡 , that are neighbors of both 𝑝1 and 𝑝2 (see

Fig. 2 (c)), or 𝑝1 and 𝑝2 share a common central neighbor 𝑞 and have

two further different occupied neighbors, 𝑠 and 𝑟 (see Fig. 2 (d)).

In the first case, 𝑝1 decides to expand along edge (𝑝1, 𝑝2). Since
|𝑁 𝑡1

1
(𝑝1) | = 3 and 𝑝1 will not expand before 𝑡2, then according

to Algorithm lesc, 𝑝2 is not allowed to expand until some other

particles expand. Moreover, again since 𝑡 ′
1
≥ 𝑡2, the only chances

for 𝑝2 to decide to expand at time 𝑡2 are that {𝑝1, 𝑟 } ⊆ 𝑁
𝑡2
1
(𝑝2) =

(i.e., particle 𝑠 is expanded), in which case 𝑝2 expands toward 𝑝1

or 𝑟 ; or, symmetrically, that {𝑝1, 𝑠} ⊆ 𝑁
𝑡2
1
(𝑝2) (i.e., particle 𝑟 is

expanded), in which case 𝑝2 expands toward 𝑝1 or 𝑠 . In either case

the expansion of 𝑝1 and 𝑝2 does not disconnect 𝐺𝑡 .

In the second case, according to Line 7, 𝑝1 will expand along

edge (𝑝1, 𝑞), while 𝑝2 will expand along one of its neighbors. In

any case 𝐺𝑡 is not disconnected as node 𝑞 in the time interval

between 𝑡1 and 𝑡 can only expand toward one of the nodes in

({𝑝1, 𝑝2} ∪ 𝑁
𝑡1
1
(𝑝1) ∪ 𝑁

𝑡1
1
(𝑝2)) ∩ 𝑁

𝑡1
1
(𝑞). In particular, observe

that in any time of this interval, at most one among 𝑝1 and 𝑝2

can be expanded, and depending on the way in which the other

nodes in 𝑁
𝑡1
1
(𝑞) expand, 𝑞 can expand because it has one neighbor

(either 𝑝1 or 𝑝2), two neighbors ({𝑝1, 𝑝2}, {𝑝1, 𝑠}, or {𝑝1, 𝑟 }), or
three neighbors ({𝑝1, 𝑝2, 𝑠} or {𝑝1, 𝑝2, 𝑟 }). In any of these cases the

resulting graph𝐺𝑡 is not disconnected. In any other case𝐺 (𝑁1 (𝑞))
would be disconnected and so 𝑞 will not expand.

Property P3. We observe that, for each directed edge (𝑢, 𝑣) ∈ 𝐸,

the number of contracted particles in 𝐶𝑣 is smaller than the

number of contracted particles in𝐶𝑢 . In fact, when an expansion

is performed, at least one contracted particle in 𝐶𝑢 becomes

expanded in𝐶𝑣 toward an occupied node belonging to the interior

of the configuration. Moreover, by Property P2, expanded particles

cannot contract (they remain expanded toward occupied nodes

during the whole execution). Therefore, we can define a topological

ordering on the vertices of 𝐻 as a linear extension of the partial

ordering given by the number of contracted particles of the

corresponding configurations. It follows that 𝐻 is acyclic, hence P3

follows.

Furthermore, by Property P3, any path in 𝐻 that starts from

the vertex corresponding to the initial configuration and ends in a

vertex corresponding to a configuration in Π, has a length at most

equal to the number of initially contracted particles. Thus, the

algorithm converges in at most 𝑛 rounds. □

4 DEALINGWITH HOLES

In this section, we show that, if PLE has to be solved while pre-

serving connectivity, then the initial configuration must be simply

connected, otherwise further assumptions become necessary.

Figure 3: A connected configuration with a hole, used in the

proof of Theorem 4.1. Colors identify equivalent particles.

Theorem 4.1. Starting from a connected configuration, PLE cannot

be solved without disconnecting the set of particles. This holds even if

the particles are endowed with unlimited memory and chirality.

Proof. Consider a connected configuration of particles as shown

in Fig. 3. For the sake of our analysis, we assigned the same color to

particles having the same 2-hop neighborhood (colors have no other

purpose and all particles are identical). Since any decision taken by

any particle depends on its local neighborhood, particles having

the same color also behave the same, if activated concurrently.

Clearly, starting from the configuration in Fig. 3, PLE cannot be

solved if all particles maintain their positions. This is evident due to

the initial symmetry of the configuration which is conserved as long

as no particle moves. Thus, any algorithm for PLE must instruct

some particles to move (by expanding toward empty nodes).

We now claim that any algorithm that instructs a particle to

move, based on local information, may cause the configuration

to become disconnected. In the following we assume a particular

execution where any particle is activated twice in sequence, thereby

eliminating any delays between the expansion and contraction of

the particle. In this particular execution, moves of the particles

can be considered to be atomic. We analyze moves of equivalent

particles (i.e., colors) separately. We can do this without loss of

generality, since the adversarial scheduler can force only one group

to move, while all the other particles are not activated.

(a)

(b)

(c)

Figure 4: (a) The configuration after one move by green par-

ticles. Arrows depict the performed moves. (b) A connected

configuration without holes. (c) The configuration obtained

after one move by red particles.

Suppose the algorithm makes the blue particles move. We ob-

serve any move of a blue particle to any of the four neighboring

empty nodes cause the set of particles to be disconnected (it is suf-

ficient that the scheduler forces only one particle in each group of

consecutive blue particles to move). For yellow particles, a similar

reasoning holds. No matter which of the four neighboring empty

nodes is chosen as destination if the scheduler moves all the yellow

particles at the same time, then the configuration is disconnected.

For green particles, the situation is slightly different. They all

have the same view irrespective of chirality, and the only possible

move is toward the neighboring node that is surrounded by two

other particles. Any other move clearly causes disconnection if

all green particles move concurrently. If such a move is chosen,

the scheduler can activate all the green particles at the same time

(twice in succession). After such moves, the situation would be as

shown in Fig. 4 (a), where a portion of Fig. 3 is reported. Hence, the

resulting configuration is disconnected. Thus, the only possibility

is that the algorithm instructs all red particles to move first to the

neighboring nodes that are inside the hole (see Fig. 3); this is the

only move maintaining connectivity even if all the red particles are

activated simultaneously.

Let us now consider a different initial configuration as shown

in Fig. 4 (b). Note that the red particles in this configuration have

the same view as the red particles in the configuration from Fig. 3.

Thus, the same algorithm would instruct the red particles to move

in the same way as in the previous case. Consider any two adjacent

red particles: if they have the same chirality and they are activated

simultaneously, then they would move in opposite directions. The

resulting configuration as shown in Fig. 4 (c) is one where the set

of particles is disconnected. Hence it is impossible to solve PLE

without disconnecting the set of particles. □

Note that it is not straightforward to re-establish a connected

configuration once the particles are disconnected. In fact, due the

asynchrony of the system, there might be arbitrary delays before

the particles that moved are activated again; during this time, other

particles might move (they might not be aware of the disconnec-

tion). The local vision, the lack of communication between the

particles and the lack of memory make it difficult to reconnect the

particles, and thus achieve leader election. Clearly, if the configura-

tion remains disconnected, there may be too many leaders elected.

On the one hand, it is clear that Theorem 4.1 does not prove the

impossibility of solving PLE once the configuration disconnects.

On the other hand we observe it is of practical interest to maintain

connectivity. To this end, we empower particles with a very simple

capability, called exterior awareness, that informally is the power of

detecting what is “outside” the configuration and what is “inside”

(that is, holes). Formally, the capability is defined as follows:

Definition 4.2 (Exterior Awareness). A particle can distinguish

whether a node 𝑣 within its visibility range is either cont, exp, in

or out where: a cont node is a node occupied by a contracted

particle; an exp node is a node occupied by an expanded particle,

an in node is an empty node that is part of a hole; an out node is

an exterior empty node (a node that is not part of any hole).

In what follows we show that particles with exterior awareness

are able to reduce any connected configuration to a simply con-

nected one while solving PLE at the same time. Notice that, during

the process the set of particles always forms a connected configu-

ration, thus overcoming the impossibility result of Theorem 4.1.

5 COMPACTION AND ELECTION

In this section, we assume particles are endowed with the Exterior

Awareness capability and show how, starting from any arbitrary

connected configuration (hence not necessarily simply, possibly

containing holes), we can obtain a deeply simply connected con-

figuration, i.e., we provide an algorithm to achieve compaction of

holes. We then show how this process also leads to elect a set of at

most three leaders as Algorithm lesc.

Our algorithm achieving compaction and leader election is named

Algorithm chle and its pseudocode is provided in Algorithm 2,

again from the point of view of a single particle. To describe it, we

use the following further notation: given a particle 𝑝 , we denote by

𝑁1 (𝑝, c) and 𝑁1 (𝑝, i) the set of cont and in nodes adjacent to 𝑝 ,

resp., and by 𝑁1 (𝑝, ic) the set {𝑁1 (𝑝, c) ∪ 𝑁1 (𝑝, i)}.
The rationale of Algorithm chle is similar to that of Algorithm lesc,

that is we aim at shrinking the envelope of the standard planar

embedding of the subgraph of lattice 𝐺 induced by the nodes oc-

cupied by contracted particles until we obtain a configuration in

Π, with the difference that now we take into account in nodes in

the envelope. In detail, we consider the standard planar embedding

of the subgraph of lattice 𝐺 induced by cont and in nodes, and

we take the envelope that contains all the nodes in this embedding

(that is, the nodes occupied by contracted particles plus the holes).

To this aim, similarly to Algorithm lesc, Algorithm chle al-

lows to expand only particles 𝑝 such that𝐺 (𝑁1 (𝑝, ic)) is connected
and |𝑁1 (𝑝, ic) | ≤ 3. The main difference is that, when a node in

𝑁1 (𝑝, ic) is an empty internal node (i.e.|𝑁1 (𝑝, i) | = 1) and 𝑝 is

allowed to expand, then 𝑝 always expands toward the internal

node. In particular, if there exists a contracted particle 𝑝 such that

|𝑁1 (𝑝, ic) | = |𝑁1 (𝑝, i) | = 1, then 𝑝 expands toward the only inter-

nal node, while if |𝑁1 (𝑝, ic) | = |𝑁1 (𝑝, c) | = 1 it expands toward

the only contracted particle (see Line 3). If |𝑁1 (𝑝, ic) | = 2 and

𝐺 (𝑁1 (𝑝, ic)) is connected, instead, then: i) if there is a node 𝑞 in

𝑁1 (𝑝, i), 𝑝 expands along edge (𝑝, 𝑞) (Line 5); ii) otherwise, it ex-
pands toward any contracted particle (Line 6). Finally, if |𝑁1 (𝑝, ic) | =
3 and 𝐺 (𝑁1 (𝑝, ic)) is connected, then we have two cases: either

there is one empty internal node or all the three neighbors in

𝑁1 (𝑝, ic) are occupied by contracted particles. In the former case,

𝑝 expands toward the internal node (Line 10), otherwise it expands

along the central contracted neighbor only if the condition at Line 11

is satisfied. Note that a particle 𝑝 with connected 𝐺 (𝑁1 (𝑝, ic)),
|𝑁1 (𝑝, ic) | = 3, and |𝑁1 (𝑝, i) | ≥ 2 cannot exist.

Notice that, unlike Algorithm lesc, which forces particles to

expand toward occupied nodes only, here it may happen that a

particle is expanded toward an internal empty node. Consider a

particle 𝑝 that was contracted on node 𝑢 and then expands along

an edge (𝑢, 𝑣), where 𝑣 is an internal empty node. If the scheduler

activates 𝑝 when it is expanded, then 𝑝 is forced to contract in 𝑣 . If

more then one particle tries to contract on the same internal node,

only one of them (decided by the scheduler) will succeed and the

other ones will remain expanded. In two steps, particle 𝑝 moved

from 𝑢 to 𝑣 and, by repeating these movements, the hole containing

𝑣 is eventually filled with contracted particles.

We observe that in simply connected configurations Algorithm

chle is equivalent to Algorithm lesc. The next theorem uses ar-

guments similar to those used in Theorem 3.1 to show that Algo-

rithm chle converges to a configuration in Π in a finite number

of rounds. The main difference is that now the vertices of graph

𝐻 represent all (not necessarily simply) connected configurations

(including semi-occupied nodes) with at most 𝑛 contracted particles.

Algorithm 2: Algorithm chle (Compaction of Holes and PLE)

Precondition :A connected configuration where each particle is

contracted.

Postcondition :A configuration in Π.
1 if (𝑝 is contracted) ∧ (𝐺 (𝑁1 (𝑝, ic)) is connected) ∧

(𝐺 (𝑁1 (𝑝, c) ∪ 𝑁2 (𝑝) ∪ {𝑝 }) ∉ Π) then
2 if 𝑁1 (𝑝, ic) = {𝑞 } then
3 Expand along (𝑝,𝑞) ;
4 if 𝑁1 (𝑝, ic) = {𝑞, 𝑟 } then
5 if 𝑞 ∈ 𝑁1 (𝑝, i) then Expand along (𝑝,𝑞) ;
6 else Expand along (𝑝, 𝑟) ;
7 if 𝑁1 (𝑝, ic) = {𝑟, 𝑞, 𝑠 } then
8 if {𝑟, 𝑞, 𝑠 } ∩ 𝑁1 (𝑝, i) ≠ ∅ then

9 Let 𝑥 be the only element of {𝑟, 𝑞, 𝑠 } ∩ 𝑁1 (𝑝, i) ;
10 Expand along (𝑝, 𝑥) ;
11 else if |𝑁1 (𝑟, c) | > 2 ∧ |𝑁1 (𝑞, c) | > 3 ∧ |𝑁1 (𝑠, c) | > 2

then Expand along (𝑝,𝑞) ;

Theorem 5.1. Starting from any connected configuration of con-

tracted particles, Algorithm chle terminates after 𝑂 (𝑛2) rounds in
a configuration in Π. Moreover, any configuration (including semi-

occupied nodes) generated during the execution of chle is connected.

Sketch of Proof. Since from simply connected configurations

Algorithm chle behaves like Algorithm lesc, we can assume that,

in the initial configuration, 𝑛 contracted particles form a non-

simply connected configuration, i.e. there is at least one in node.

To prove the statement, we use an argument similar to that used

in the proof of Theorem 3.1, that is we model an execution of Al-

gorithm chle as a path in a directed graph 𝐻 = (𝑉 , 𝐸). However,
in this case, vertices of the graph represent connected configu-

rations (including semi-occupied nodes) with 𝑛 contracted or

expanded particles, and edges correspond to expansions or con-

tractions induced by Algorithm chle. More precisely, each vertex

𝑢 ∈ 𝑉 corresponds to a connected configuration 𝐶𝑢 , and there is

a directed edge (𝑢, 𝑣) ∈ 𝐸 if there exists an execution schedule of

Algorithm chle that leads from 𝐶𝑢 to 𝐶𝑣 , without generating in

between further configurations different from 𝐶𝑣 .

We can show the following properties:

P1. Each vertex in 𝐻 , excluding those corresponding to con-

figurations in Π, has at least one outgoing expansion edge.

Moreover, vertices in 𝐻 corresponding to configurations in

Π are connected only by pending edges as in Fig. 1 (a).

P2. Each expansion or contraction dictated by Algorithm chle

corresponds to an edge in𝐻 , i.e., the configuration (including

semi-occupied nodes) obtained by any expansion or contrac-

tion of chle is connected.

P3. Graph 𝐻 is acyclic.

The above claims can be proven separately and by Properties P1, P2

and P3 it follows that the algorithm terminates in a configuration

in Π, thus achieving compaction and leader election. Moreover,

each path in 𝐻 starting from the vertex corresponding to the initial

configuration 𝐶 and ending in a vertex corresponding to a config-

uration in Π has a length bounded by the sum of the number of

contracted particles and the number of in nodes in𝐶 . As the former

is 𝑛 and the latter is bounded by 𝑛2, the statement follows. □

6 CONCLUSIONS AND EXTENSIONS

In this paper, we have proposed the SILBOT model, a new, weaker,

and more realistic modeling approach for programmable matter,

where particles act asynchronously and independently, are silent

(no direct communication) and rely on just one bit of persistent

memory. Despite the weak computational power of this setting,

we have shown, by designing a corresponding algorithm, that the

leader election problem, one of the foundational tasks for PM sys-

tems, can be solved if the initial configuration is simply connected.

Furthermore, we have also proven that it is impossible to solve

leader election while preserving connectivity, if the initial configu-

ration contains holes. Finally, we have shown, again by giving an

appropriate algorithm, how endowing particles with the capability

of distinguishing exterior cells from interior cells of the grid suffices

to achieve both compaction of holes and leader election.

As future work, we aim at investigating which tasks, besides

leader election, can be successfully performed under SILBOT and

which cannot. Also, in the case of impossibility results it would

be worth studying what are the minimal capabilities that must be

added to the PM systems to achieve feasibility (e.g. few more states

or other very simple abilities like optical signalling [9, 12]). An in-

teresting research direction might be that of designing a simulation

environment where to test and compare existing models, and where

to handle new rules or capabilities for the particles.

7 ACKNOWLEDGEMENTS

The work has been partially supported by the European project

“Geospatial based Environment for Optimisation Systems Address-

ing Fire Emergencies” (GEO-SAFE) - contract no. H2020-691161,

by the Italian MIUR PRIN 2017 Project ALGADIMAR “Algorithms,

Games, and Digital Markets”, by the Italian National Group for Sci-

entific Computation GNCS-INdAM, and by Progetto PRA_2018_43

(Università di Pisa, Italy).

REFERENCES

[1] Andrew Adamatzky (Ed.). 2010. Game of Life Cellular Automata. Springer.

[2] Michael Amir and Alfred M Bruckstein. 2019. Minimizing Travel in the Uniform

Dispersal Problem for Robotic Sensors. In Proceedings of the 18th International

Conference on Autonomous Agents and MultiAgent Systems (AAMAS ’19). Interna-

tional Foundation for Autonomous Agents and Multiagent Systems, Richland,

SC, 113–121.

[3] Marta Andrés Arroyo, Sarah Cannon, Joshua J. Daymude, Dana Randall, and An-

dréa W. Richa. 2018. A stochastic approach to shortcut bridging in programmable

matter. Natural Computing 17, 4 (2018), 723–741.

[4] Rida A. Bazzi and Joseph L. Briones. 2019. Deterministic Leader Election in Self-

organizing Particle Systems. In Proceedings of the 21st International Symposium on

Stabilization, Safety, and Security of Distributed Systems (SSS), Vol. 11914. Springer.

[5] Aaron Becker, Yan Ou, Paul Kim, Min Jun Kim, and Agung Julius. 2013. Feedback

control of many magnetized: Tetrahymena pyriformis cells by exploiting phase

inhomogeneity. In Proc. of the International Conf. on Intelligent Robots and Systems.

IEEE, 3317–3323.

[6] Sarah Cannon, Joshua J. Daymude, Dana Randall, and Andréa W. Richa. 2016. A

Markov Chain Algorithm for Compression in Self-Organizing Particle Systems.

In Proceedings of the 35th Symp. on Principles of Distributed Computing (PODC).

279–288.

[7] Sarah Cannon, Joshua J. Daymude, William Savoie, Ross Warkentin, Shengkai

Li, Daniel I. Goldman, Dana Randall, and Andréa W. Richa. 2017. Phototactic

Supersmarticles. CoRR abs/1711.01327 (2017).

[8] Sonia Contera. 2019. Nano Comes to Life: How Nanotechnology Is Transforming

Medicine and the Future of Biology. Princeton University Press.

[9] Shantanu Das, Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Masafumi

Yamashita. 2016. Autonomous Mobile Robots with Lights. Theor. Comput. Sci.

609 (2016), 171–184. https://doi.org/10.1016/j.tcs.2015.09.018

[10] Joshua J. Daymude, Zahra Derakhshandeh, Robert Gmyr, Alexandra Porter, An-

dréa W. Richa, Christian Scheideler, and Thim Strothmann. 2018. On the runtime

of universal coating for programmable matter. Natural Computing 17, 1 (2018),

81–96.

[11] Joshua J. Daymude, Robert Gmyr, Andréa W. Richa, Christian Scheideler, and

Thim Strothmann. 2017. Improved Leader Election for Self-organizing Pro-

grammable Matter. In Proceedings of the 13th International Symp. on Algo-

rithms and Experiments for Wireless Sensor Networks (ALGOSENSORS), Vol. 10718.

Springer, 127–140.

[12] Mattia D’Emidio, Gabriele Di Stefano, Daniele Frigioni, and Alfredo Navarra.

2018. Characterizing the computational power of mobile robots on graphs and

implications for the Euclidean plane. Inf. Comput. 263 (2018), 57–74.

[13] Mattia D’Emidio, Daniele Frigioni, and Alfredo Navarra. 2016. Characterizing the

Computational Power of Anonymous Mobile Robots. In 36th IEEE International

Conference on Distributed Computing Systems, ICDCS 2016, Nara, Japan, June

27-30, 2016. IEEE Computer Society, 293–302.

[14] Mattia D’Emidio, Daniele Frigioni, and Alfredo Navarra. 2016. Synchronous

Robots vs Asynchronous Lights-Enhanced Robots on Graphs. Electr. Notes Theor.

Comput. Sci. 322 (2016), 169–180.

[15] Zahra Derakhshandeh, Robert Gmyr, Andréa W. Richa, Christian Scheideler, and

Thim Strothmann. 2017. Universal coating for programmable matter. Theor.

Comput. Sci. 671 (2017), 56–68.

[16] Zahra Derakhshandeh, Robert Gmyr, Thim Strothmann, Rida A. Bazzi, Andréa W.

Richa, and Christian Scheideler. 2015. Leader Election and Shape Formation

with Self-organizing Programmable Matter. In Proceedings of 21st International

Conf. on DNA Computing and Molecular Programming (DNA), Vol. 9211. Springer,

117–132.

[17] Giuseppe Antonio Di Luna, Paola Flocchini, Giuseppe Prencipe, Nicola Santoro,

and Giovanni Viglietta. 2018. Line Recovery by Programmable Particles. In Pro-

ceedings of the 19th International Conf. on Distributed Computing and Networking,

(ICDCN). ACM, 4:1–4:10.

[18] Giuseppe A. Di Luna, Paola Flocchini, Nicola Santoro, Giovanni Viglietta, and

Yukiko Yamauchi. 2020. Shape Formation by Programmable Particles. Distributed

Computing 33, 1 (2020), 69–101.

[19] Gabriele Di Stefano and Alfredo Navarra. 2014. The Game of Scintillae: From Cel-

lular Automata to Computing and Cryptography Systems. J. Cellular Automata

9, 2-3 (2014), 167–181.

[20] Yuval Emek, Shay Kutten, Ron Lavi, and William K. Moses Jr. 2019. Deter-

ministic Leader Election in Programmable Matter. In 46th International Collo-

quium on Automata, Languages, and Programming (ICALP 2019) (Leibniz Inter-

national Proceedings in Informatics (LIPIcs)), Christel Baier, Ioannis Chatzigian-

nakis, Paola Flocchini, and Stefano Leonardi (Eds.), Vol. 132. Schloss Dagstuhl–

Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 140:1–140:14. https:

//doi.org/10.4230/LIPIcs.ICALP.2019.140

[21] Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro (Eds.). 2019. Dis-

tributed Computing by Mobile Entities, Current Research in Moving and Computing.

Vol. 11340. Springer.

[22] Nicolas Gastineau, Wahabou Abdou, Nader Mbarek, and Olivier Togni. 2019. Dis-

tributed Leader Election and Computation of Local Identifiers for Programmable

Matter. In Proceedings of the 14th International Symp. on Algorithms and Ex-

periments for Wireless Sensor Networks (ALGOSENSORS), Vol. 11410. Springer,

159–179.

[23] Melvin Gauci, Monica E. Ortiz, Michael Rubenstein, and Radhika Nagpal. 2017.

Error Cascades in Collective Behavior: A Case Study of the Gradient Algorithm on

1000 Physical Agents. In Proceedings of the 16th Conference on Autonomous Agents

and MultiAgent Systems (AAMAS ’17). International Foundation for Autonomous

Agents and Multiagent Systems, Richland, SC, 1404–1412.

[24] Kyle Gilpin, Ara Knaian, and Daniela Rus. 2010. Robot pebbles: One centime-

ter modules for programmable matter through self-disassembly. In 2010 IEEE

International Conference on Robotics and Automation. IEEE, IEEE, 2485–2492.

[25] Seth Copen Goldstein, Jason Campbell, and Todd C. Mowry. 2005. Programmable

Matter. IEEE Computer 38, 6 (2005), 99–101.

[26] Seth Copen Goldstein and Todd C. Mowry. 2004. Claytronics: An Instance of

Programmable Matter. In Wild and Crazy Ideas Session of ASPLOS. Boston, MA.

[27] Richard Mayne and Andrew Adamatzky. 2016. Slime Mould Nanotechnology.

Springer International Publishing, Cham, 133–152. https://doi.org/10.1007/

978-3-319-26662-6_7

https://doi.org/10.1016/j.tcs.2015.09.018
https://doi.org/10.4230/LIPIcs.ICALP.2019.140
https://doi.org/10.4230/LIPIcs.ICALP.2019.140
https://doi.org/10.1007/978-3-319-26662-6_7
https://doi.org/10.1007/978-3-319-26662-6_7

[28] Shuhei Miyashita, Steven Guitron, Shuguang Li, and Daniela Rus. 2017. Robotic

metamorphosis by origami exoskeletons. Science Robotics 2, 10 (2017).

[29] Jeremie Palacci, Stefano Sacanna, Asher Preska Steinberg, David J. Pine, and

Paul M. Chaikin. 2013. Living Crystals of Light-Activated Colloidal Surfers.

Science 339, 6122 (2013), 936–940.

[30] John W Romanishin, Kyle Gilpin, Sebastian Claici, and Daniela Rus. 2015. 3D

M-Blocks: Self-reconfiguring robots capable of locomotion via pivoting in three

dimensions. In 2015 IEEE International Conference on Robotics and Automation

(ICRA). IEEE, IEEE, 1925–1932.

[31] Madhuri Sharon, Angelica SL Rodriguez, Chetna Sharon, and Pio Sifuentes Gal-

lardo. 2019. Nanotechnology in the Defense Industry: Advances, Innovation, and

Practical Applications. John Wiley & Sons.

[32] Tommaso Toffoli and Norman Margolus. 1991. Programmable matter: Concepts

and realization. Physica D: Nonlinear Phenomena 47, 1 (1991), 263 – 272.

[33] Thadeu Tucci, Benoundefinedt Piranda, and Julien Bourgeois. 2018. A Distributed

Self-Assembly Planning Algorithm for Modular Robots. In Proceedings of the 17th

International Conference on Autonomous Agents and MultiAgent Systems (AAMAS

’18). International Foundation for Autonomous Agents and Multiagent Systems,

Richland, SC, 550–558.

	Abstract
	1 Introduction
	2 The SILBOT Model
	3 PLE with Simple Connectivity
	4 Dealing with holes
	5 Compaction and Election
	6 Conclusions and Extensions
	7 Acknowledgements
	References

