
Methodology for Embedded
(Robotic) Software Development

Prof. Gabriel A. Wainer
Dept. of Systems and Computer Engineering

http://www.sce.carleton.ca/faculty/wainer

The problem
•  Development of complex software (robotic controllers):

 time consuming, error prone, expensive

•  Software techniques focus on software only
•  Models of the controlled environment? (i.e., robot engines, dynamics?)

•  Decision-making: lack of good visualization tools (training?)

•  Formal methods and tools (???? Experimental)

•  Model and Simulation-based solutions: higher quality products
•  Models discarded in early stages of development ($$$)

Research Proposal

•  Using Model-Based Engineering for software development

•  Integrating complex applications with varied hardware
 components, software and 3D visualization

•  Models reused throughout the process (not only for
exploration) => cost improved

•  Truly collaborative environment: distributed algorithms and
 mashups

•  Advanced visualization facilities (serious games; training)

Methodology

Middleware/OS (WS/HLA/P2P/MPI/Corba/ …;
Windows/Linux/RTOS…)

Execution Engines (Simulators)
 (single/multi Proc/RT)

Models

Applications

Hardware (Workstations/Clusters/SBC…)

A Layered View

Visualization

The DEVS Formalism
•  Discrete-Event formalism: time advances due to occurrence of events

•  Basic models that can be hierarchically coupled to build complex ones (systems
 theoretical approach)

•  Separation of models and simulators

•  Introduction to DEVS: http://en.wikipedia.org/wiki/DEVS

http://cell-devs.sce.carleton.ca ;

 http://www.sce.carleton.ca/courses/sysc-5104/TutorialSpringSim.ppt

Cell-DEVS models

•  Discrete-Events cell spaces
•  Cells: atomic models. Automated coupling.

•  Asynchronous execution using explicit delay functions

•  Abstract simulation mechanism.

Introduction to Cell-DEVS: http://cell-devs.sce.carleton.ca

Cell-DEVS Atomic Models

 Transport Delay Inertial Delay

•  N inputs to a given cell
•  Local computing function
•  Inertial or Transport delays
•  Outputs only if the cell state changes

TDC= < X,Y, θ, N, d, τ, δint, δext, λ, D>

Methodology (1 – Model Specification)

Model Specification

Model Specification

- High level specifications translated into
executable code

model circuit
 Modelica.Electrical.Analog.Sources.PulseVoltage
 V(V=10, width=50, period=2.5);
 Modelica.Electrical.Analog.Basic.Resistor R1(R=0.001);
 Modelica.Electrical.Analog.Basic.Inductor I1(L=500);
 Modelica.Electrical.Analog.Basic.Inductor I2(L=2000);
 Modelica.Electrical.Analog.Basic.Capacitor C(C=10);
 Modelica.Electrical.Analog.Basic.Resistor R2(R=1000);
 Modelica.Electrical.Analog.Basic.Ground Gnd;
equation
 connect(V.p, R1.p);
 connect(R1.n, I1.p);
 connect(R1.n, I2.p);
 connect(I2.n, C.p);
 connect(I2.n, R2.p);
 connect(C.n, I1.n);
 connect(R2.n, C.n);
 connect(I1.n, V.n);
 connect(V.n, Gnd.p);
end circuit;

Modelling the Environment’s Physics

[maze]
type : cell

dim : (20, 20)

neighbors : maze(-1,0)

neighbors : maze(0,-1) maze(0,0) maze(0,1)

neighbors : maze(1,0)

localtransition : maze-rule

(…)

[maze-rule]

rule : 1 100 { (0,0) = 0 and (truecount = 3 or
 truecount = 4) }

rule : 0 100 { (0,0) = 0 and truecount < 3 }

rule : 1 100 { t }

1 1 1 1 1 1 1 1 1 1
0 0 1 0 0 0 0 0 0 1
1 0 1 0 1 1 1 1 0 1
1 0 1 0 0 0 0 1 0 1
1 0 1 0 1 1 0 1 0 1
1 0 0 0 1 0 0 1 0 1
1 0 1 1 1 1 0 1 1 1
1 0 1 0 0 0 0 0 0 1
1 0 1 0 1 0 1 1 0 1
1 1 1 0 1 1 1 1 1 1

N

W E

S

Becomes wall in 1st iteration

Becomes wall in 2nd iteration

Becomes wall in 3rd iteration

Modelling the Environment’s Physics (Cellular)

Methodology (2 – Model Checking)

RTA-DEVS to TA Example

TA Controller model in UPPAAL Elevator Controller RTA-DEVS Model

Methodology (3 – Controller simulation)

CD++ Builder Environment

Methodology (4 – Environment Simulation)

Simulating the Environment’s Physics
model circuit
 Modelica.Electrical.Analog.Sources.PulseVoltage
 V(V=10, width=50, period=2.5);
 Modelica.Electrical.Analog.Basic.Resistor R1(R=0.001);
 Modelica.Electrical.Analog.Basic.Inductor I1(L=500);
 Modelica.Electrical.Analog.Basic.Inductor I2(L=2000);
 Modelica.Electrical.Analog.Basic.Capacitor C(C=10);
 Modelica.Electrical.Analog.Basic.Resistor R2(R=1000);
 Modelica.Electrical.Analog.Basic.Ground Gnd;
equation
 connect(V.p, R1.p);
 connect(R1.n, I1.p);
 connect(R1.n, I2.p);
 connect(I2.n, C.p);
 connect(I2.n, R2.p);
 connect(C.n, I1.n);
 connect(R2.n, C.n);
 connect(I1.n, V.n);
 connect(V.n, Gnd.p);
end circuit;

Simulating the Environment’s Physics

Flow Injection Analysis Model

Fire Spread Modeling

Methodology (6 – Deploying in the target platform)

 Real time simulation on
 embedded
 microcontrollers

 Rapid design and
 testing potential
 network devices

Network Prototyping

Implementation into the Embedded Target
•  Once we are confident with the results, we download the

models into a special purpose processor.
• Same Discrete Time Controller (specified in DEVS)

•  ECD++ simulator capable to run DEVS models embedded
in Real-Time Linux.

•  Simulator as a Virtual Machine for models
•  interacting in a Hardware-In-The-Loop fashion

•  Target: Intel IXP2400 Network Processing Unit
• Libraries to communicate the ECD++ Virtual Machine with

specialized RISC microengines

Prof. E. Kofman (UNR)

Cell Processor Overview

•  Asymmetric CMP with 9 heterogeneous cores
•  Software-managed LS with explicitly-addressed DMA

transfers
•  Low-latency EIB channels – mailbox & signal

AP1000 FPGA board (Components used in our Project)

Methodology (7, 8, 9 –Validation)

SAT Building Evacuation

Collaboration with School of Architecture
(CIMS)

Mashup (Google Maps)

Application to Robotics

Some interesting results

U. of New Mexico Virtual Lab for
Autonomous Agents

Computer Network

Middleware
(HLA,CORBA,JMS)

DEVS Simulator
IDEVS SimEnv

V-Lab: DEVS M&S environment for robotic agents with physics,
 terrain and dynamics (Mars Pathfinders).

4th year Engineering Students

Videos

•  http://www.youtube.com/watch?v=R1MT8OLu8Co
•  http://www.youtube.com/watch?v=j5QhX4QFER8
•  http://www.youtube.com/watch?v=61vXI9qujZI
•  http://www.youtube.com/watch?v=w-bwwl4CP4c
•  http://www.youtube.com/watch?v=PeHO_BD46SA

Learning by Observation
Case-Based Reasoning

 a. Build Case Base

 b. Imitation Model (uses Case Base)

Videos:

http://www.youtube.com/watch?v=n5wL3rBW0qo

http://www.youtube.com/watch?v=FqQuEdNAU9I

http://www.youtube.com/watch?v=4l-SC8Pi1NM

http://www.youtube.com/watch?v=_mVco23d6n4

ePuck

http://www.youtube.com/watch?v=VoHP2kVH0Gg

http://www.youtube.com/watch?v=UFHzLk0oXyQ

Summary

•  Model-Based Engineering for software development

•  Varied hardware, software and 3D visualization

•  Models reused throughout the process => cost improved

•  Collaborative environment based on Eclipse

•  Advanced visualization facilities

Further Information

http://cell-devs.sce.carleton.ca

http://cell-devs.sce.carleton.ca/publications

