The Gathering Problem for Two Oblivious Robots with Unreliable Compasses

Koichi Wada* (Nagoya Institute of Technology, Japan) Joint work with
Taisuke Izumi*, Samia Souissi, Yoshiaki Katayama*,
Nobuhiro Inuzuka (Nagoya Institute of Technology, Japan)
Xavier Defago* (JAIST, Japan)
Masafumi Yamashita*(Kyusyu University, Japan)

* : attendees of this meeting

Coordination of Autonomous Mobile Robots

■ Autonomous Mobile Robots
Multiple, Fully decentralized

■ Coordination task of Mobile Robots
■ Gathering, Convergence, Formation ...
\square Challenges from the theoretical aspect

- Clarifying the "weakest capability" to solve a given task

Autonomous Mobile Robots

■ Robot: Point on an infinite 2D-space

- Anonymous (No distinguished ID)
- Oblivious(No memory)
- Deterministic
- No communication (Observe the environment and Move)

Observation

- Each robot has a local $x-y$ coordinate system(LCS)
- The current position is the origin
- The + direction of y-axis follows the local compass
- Agreement level of LCSs depends on the model (compass model)

Execution of Robots (Behavior of Each Robot)

■ Wait-look-compute-move cycle

- Wait: Idle state
- Look: Take a snapshot of all robots' current locations (in terms of LCS)
- Compute: Deciding the next position
- Move: Move to the next position(unpredictable move)

Timing Model(How Cycles are Synchronized)

- Asynchronous(CORDA): No bound for length of each step

- Semi-synchronous(SYm, ATOM): Synchronized Round (one cycle=one round)
- Only a subset of all robots becomes active in each round

■ Synchronous: All robots are completely synchronized

Compass Models

Inaccurate Compasses

- Every robot has its own local coordinate system
- Compass gives y-axis' positive direction of the local coordinate system.
- a compass varies, a local coordinate system varies

- Inaccuracy of Compass
- Variance of Compasses
- the variance of indicated directions of compasses
- Deviation from the absolute direction
- the difference of indicated direction between compasses

Compass Models - Variance -1

-Fully-Dynamic Compass(FDC)
-Semi-Dynamic Compass(SDC)

- FiXed Compass(FXC)

Fully-dynamic Compass (FDC)
A compass whose indicated direction may vary at any time during execution.

FDC

Gathering is impossible on FDC.

Compass Models - Variance -2

Semi-dynamic Compass (SDC) Dynamic Compass

A compass whose indicated direction may vary at the time between any two cycles (never change during one cycle).
Fixed Compass (FXC) Static Compass
A compass whose indicated direction never varies.

Compass Models -Deviation-

α-error Compass

The absolute north

A direction of "the absolute north" is assumed. The each angle which is formed by the indicated direction of robots' compass and the absolute north is at most α.

Note that the angle between two robots' compasses is at most 2α on α-error compass model

Gathering Problem

- All robots meet at one point on a plane
- Not convergence

■ Known Results

- Agreed Compass: Solvable
- CORDA / Arbitrary \#robots
- Disagreed Compass:Unsolvable
- SYm / \#robots = 2

Our results (summary)

Two-robot Gathering problem on α-error compass

	SYm	CORDA
Semi-DC	impossible $(\alpha=\pi / 4)$	open
	possible $(\alpha<\pi / 4)$	possible $(\alpha<\pi / 6)$
FiXedC	impossible $(\alpha=\pi / 2)[1]$	\leftarrow
	\rightarrow	possible $(\alpha<\pi / 2)$

[1] I. Suzuki, M. Yamashita, SIAM J. Computing, 28, 4, 1347-1363, 1999.

Impossibility(п/2-error compass, FXC and SYm)

$■$ Opposite directions of two compasses

- Approach to another : Swap occurs

- Meet at the center : Only Convergence

Impossibility($\pi / 4$-error compass, SDC and SYm)

A necessary condition for any gathering algorithm :
stable configuration
a) There exists a configuration such that

1) One robot r_{0} stays at own position
2) Another robot r_{1} moves to the robot r_{0}
b) This configuration is regardless of the current local coordinate systems of both robots

Impossibility(т/4-error compass , SDC and Sym)

Possibility results

Two-robot Gathering problem on α-error compass

	SYm	CORDA
Semi-DC	impossible $(\alpha=\pi / 4)$	open
	possible $(\alpha<\pi / 4)$	possible $(\alpha<\pi / 6)$
FiXedC	impossible $(\alpha=\pi / 2)[1]$	\leftarrow
	\rightarrow	possible $(\alpha<\pi / 2)$

[1] I. Suzuki, M. Yamashita, SIAM J. Computing, 28, 4, 1347-1363, 1999.

m/8-error SDC Algorithm on SYm

Point: How to decide the robots' behavior?

Dividing the world (a view of a robot) into 8 sectors.
Coloring the divided world with three colors:

m/8-error SDC Algorithm on SYm

Algorithm

Result of observing the other robot case: no robot except me gathering is achieved case: in blue sectors (1), (2) or (3) move toward the other case: in red sectors (4), (5) or (6) no move
case: in white sectors (7) or (0)
move toward a right above point where I will be able to observe the other robot in the sector (6)

$\pi / 8$-error SDC Algorithm on SYm

Why the robots can gather ?

To show the correctness, three names of robots are introduced:

m/8-error SDC Algorithm on SYm

The Observation-Relation Graph

All nodes have three edges because of deviation of compass.

- Vi represents a robot who observes the other in sector (i).
- An edge $(\mathbf{V i}, \mathbf{V} \mathbf{j})$ represents that a configuration can exist such that robots observe each other in sector (i) and (\mathbf{j}), respectively.

$\pi / 8$-error SDC Algorithm on SYm

■ Dangerous Configurations never occur

- From the observation-relation graph with our sectoring and coloring, we know "red-red / blue-blue configurations never occur through executions."

Only
blue-red, blue-white, red-white configurations can exist.

$\pi / 8$-error SDC Algorithm on SYm

■ Blue and Red configuration will be eventually reached.

- We need to show
"From blue-white/red-white configuration, if r0
 We need to co
two cases:r1

In both case, blue-red conf. can be reached.

■ This algorithm can behave on CORDA

- The difficulty of proof on CORDA
- Some robot r_{0} observes r_{1}, r_{1} may be moving
\rightarrow The relation when r_{1} stops is different from the relation when r0 observed.
(In SYm, such situation can not occur.)
- Fast robot and very slow robot
\rightarrow Most problems do not occur for 2 robots

m/8-error SDC Algorithm on CORDA(SYm)

a-error SDC Algorithm on SYm

$\alpha<\pi / 4$
rotate

a-error SDC Algorithm on CORDA

$\alpha<\pi / 3$

rotate

α-error FXC Algorithm on CORDA(SYm)

Conclusions

Two-robot Gathering problem on α-error compass

	SYm	CORDA
Semi-DC	impossible $(\alpha=\pi / 4)$	open
	possible $(\alpha<\pi / 4)$	possible $(\alpha<\pi / 6)$
FiXedC	impossible $(\alpha=\pi / 2)[1]$	\leftarrow
	\rightarrow	possible $(\alpha<\pi / 2)$

[1] I. Suzuki, M. Yamashita, SIAM J. Computing, 28, 4, 1347-1363, 1999.

Open Problems

- Angle gap of SDC on CORDA
- Impossible for $\alpha<\pi / 6$ on CORDA
- Possible for $\pi / 4>\alpha>\pi / 6$ on CORDA

■ Extension to n-robot system

- SDC $(\alpha<\pi / 4)$ on SYm is possible [DISC2007]

Thank you!

m/3-relative error FXC Algorithm

Basic idea is

same with $\pi / 4$-absolute error SDC algorithm

Dividing the world into 6 sectors

The observation-relation graph

Impossibility(т/4-error compass , SDC and Sym)

Weakly-agreed compass

- Measuring Compass Agreement Level by tilt angle [Imazu et al., 05][Souissi et al., 06]

Tilt angle $=\angle$ formed by the global and local axis

■ Tilt angle of every robot $<\pi$: Solvable[Yamashita et al., 07]

- Asynchronous / \#robots = 2

Global Coordinate

Dynamic Compass

- Tilt Angle varies with time[Katayama et al., 07]
- At the beginning of each cycle
- Bounded by φ

■ $\varphi \leqq \pi / 4$: Solvable [Katayama.et.al, 07$]$

- Apinabmennun I Hnobnten 2
$\varphi>\pi / 4$: Open

Our Contribution

■ Dynamic compass with $\varphi \leqq \pi / 2-\varepsilon$: Solvable
$\square \varepsilon(>0)$: Arbitrary small constant

- Semi-synchronous / \#robots n is arbitrary
(The first result considering any \#robots with disagreed compasses)
- $\varphi \geqq \pi / 2$: Unsolvable
- Semi-synchronous / \#robots = 2
\longmapsto Our Result is optimal in terms of maximum tilt angle

Algorithm Design

- Algorithm for 2 robots with $\varphi=\pi / 2-\varepsilon$

- "Conditional" Algorithm for n robots
- Working correctly if the initial configuration has a unique Longest Distance Segment(LDS)
- LDS election algorithm
- Starting any configuration, terminate a configuration with unique LDS

2-robot Algorithm

\square Consists of three types of movement
$■ \theta$: the angle at which a robot sees its partner
$■ r$: distance between two robots
(in terms of observer's local coordinate sys.)
■ $0 \leqq \theta<\pi / 2+\varepsilon$: Wait

- No movement
- $\pi \leqq \theta<3 \pi / 2+\varepsilon$: Approach
- Move to the partner's location
- Otherwise : Roundabout
- Move toward the angle $\theta+\pi-2 \varepsilon$ with distance r

Roundabout Movement

Correctness (1/5)

- Lemma 1

- $\angle \mathrm{ABy}=\angle$ formed by AB and the global y -axis $<\varepsilon$
\rightarrow Wait-Approach Relation is guaranteed (regardless of tilt angles of robot A and B)

Correctness(2/5)

- Lemma 2
- At any round, $\angle A B y$ decreases by $\varepsilon \sim 2 \varepsilon$ unless gathering is achieved
- A: Approach move
- B: No movement (Wait or inactive)

Correctness(3/5)

- A: Roundabout Move

B: No movement
\rightarrow decrease by ε

- A: Roundabout Move

B: Approach Move
\rightarrow decrease by 2ε

Correctness (4/5)

- A: Roundabout move B: Roundabout move \rightarrow decrease by $\varepsilon \sim 2 \varepsilon$

Correctness (5/5)

- From Lemma 2,
$-\varepsilon \leqq \angle A B y<+\varepsilon$ eventually holds
- From Lemma 1,

If $-\varepsilon \leqq \angle \mathrm{ABy}<+\varepsilon-\varepsilon$ holds, one robot approaches and the other waits.

Gathered!

- Robots are located at two points
\rightarrow All robots execute the two-robot algorithm
- Robots are located at more than two points \rightarrow All robots move to one of two endpoints of LDS

Correctness of Conditional n-robot Alg.

- Lemma 3
- $\angle \mathrm{LDSy}=\angle$ formed by LDS and the global y-axis $<\varepsilon$
\rightarrow Wait-Approach Relation is guaranteed (regardless of the title angle of each robots)

■ Lemma 4

- At any round, $\angle \mathrm{LDSy}$ decreases by $\varepsilon \sim 2 \varepsilon$
unless gathering is achieved

Unique LDS Election (1/2)

- If two or more LDSs exist, each robot calculates the convex hull(CH)
- Robots on the boundary : Wait
- Inner robots : Moves to one of vertices
- Contracting the shortest edge of the CH

\#edges of the CH decreases
\rightarrow Eventually unique L DS is elected (or gathered)

Unique LDS Election(2/2)

- If all edges have a same length
\rightarrow Robots moves to the center-of-gravity of the CH
- All robots simultaneously move \rightarrow gathered
- A part of robots move \rightarrow Symmetry is broken

Conclusion

■ Gathering mobile robots with dynamic compasses

- Tilt angle $\leqq \pi / 2-\varepsilon$ (Optimal)
- Semi-synchronous model
- Arbitrary \#robots
- Open problem
- Asynchronous model
$-\pi / 2$ < Maximum Tilt angle $<\pi / 4$
- Recently, two robots are solved for $<\pi / 3$
- \#robots = 2, dynamic compass

