The Gathering Problem for Two Oblivious Robots with Unreliable Compasses

Koichi Wada* (Nagoya Institute of Technology, Japan) Joint work with

Taisuke Izumi*, Samia Souissi, Yoshiaki Katayama*, Nobuhiro Inuzuka (Nagoya Institute of Technology, Japan) Xavier Defago* (JAIST, Japan)

Masafumi Yamashita*(Kyusyu University, Japan)

* : attendees of this meeting

Coordination of Autonomous Mobile Robots

Autonomous Mobile Robots Multiple, Fully decentralized

- Coordination task of Mobile Robots
 Gathering, Convergence, Formation ...
- Challenges from the theoretical aspect
 Clarifying the "weakest capability" to solve a given task

- Robot: Point on an infinite 2D-space
 - Anonymous (No distinguished ID)
 - Oblivious(No memory)
 - Deterministic
 - No communication (Observe the environment and Move)

Observation

Each robot has a local x-y coordinate system(LCS)

- The current position is the origin
- The +direction of y-axis follows the local compass
- Agreement level of LCSs depends on the model (compass model)

Execution of Robots (Behavior of Each Robot)

Wait-look-compute-move cycle

- Wait: Idle state
- Look: Take a snapshot of all robots' current locations (in terms of LCS)
- Compute: Deciding the next position
- Move : Move to the next position(unpredictable move)

Timing Model(How Cycles are Synchronized)

Asynchronous(CORDA): No bound for length of each step

 Semi-synchronous(SYm, ATOM): Synchronized Round (one cycle=one round)

Only a subset of all robots becomes active in each round

Synchronous: All robots are completely synchronized

Compass Models

Inaccurate Compasses

- Every robot has its own local
- coordinate system
 - Compass gives y-axis' positive direction of the local coordinate system.
 - a compass varies, a local coordinate system varies
- Inaccuracy of Compass
 - Variance of Compasses
 - the variance of indicated directions of compasses
 - Deviation from the absolute direction
 - the difference of indicated direction between compasses

Compass Models – Variance –1

- Fully-Dynamic Compass(FDC)
- Semi-Dynamic Compass(SDC)
- FiXed Compass(FXC)

Fully-dynamic Compass (FDC)

A compass whose indicated direction may vary at any time during execution.

Gathering is impossible on FDC.

Compass Models – Variance –2

Semi-dynamic Compass (SDC) Dynamic Compass

A compass whose indicated direction may vary at the time between any two cycles (never change during one cycle).

Fixed Compass (FXC) Static Compass

A compass whose indicated direction **never varies**.

MAC2010 inOttawa 2010.8.16

Compass Models – Deviation–

α -error Compass

A direction of "the absolute north" is assumed. The each angle which is formed by the indicated direction of robots' compass and the absolute north is at most α .

Note that the angle between two robots' compasses is at most 2α on α -error compass model

The absolute north

Gathering Problem

 All robots meet at one point on a plane
 Not convergence

Known Results

- Agreed Compass : Solvable
 - CORDA / Arbitrary #robots
- Disagreed Compass : Unsolvable
 - SYm / #robots = 2

Our results (summary)

Two-robot Gathering problem on α-error compass

	SYm	CORDA
Semi-DC	impossible($\alpha = \pi/4$) possible($\alpha < \pi/4$)	<mark>open</mark> possible(α<π/6)
FiXedC	impossible($\alpha = \pi/2$)[1] \rightarrow	← possible(α<π/2)

[1] I. Suzuki, M. Yamashita, SIAM J. Computing, 28, 4, 1347-1363, 1999.

The set of patterns formable
 by non-oblivious robots on SYm

The set of patterns formable by oblivious robots on SYm

Impossibility($\pi/2$ -error compass , FXC and SYm)

Opposite directions of two compasses
 Approach to another : Swap occurs

Meet at the center : Only Convergence

Impossibility($\pi/4$ -error compass , SDC and SYm)

A necessary condition for any gathering algorithm :

stable configuration

- a) There exists a configuration such that
 - 1) One robot r₀ stays at own position
 - 2) Another robot r_1 moves to the robot r_0
- b) This configuration is regardless of the current local coordinate systems of both robots

Impossibility($\pi/4$ -error compass , SDC and Sym)

Possibility results

Two-robot Gathering problem on α-error compass

	SYm	CORDA
Semi-DC	impossible($\alpha = \pi/4$) possible($\alpha < \pi/4$)	<mark>open</mark> possible(α<π/6)
FiXedC	impossible($\alpha=\pi/2$)[1] \rightarrow	← possible(α<π/2)

[1] I. Suzuki, M. Yamashita, SIAM J. Computing, 28, 4, 1347-1363, 1999.

Point: How to decide the robots' behavior ?

Dividing the world (a view of a robot) into 8 sectors. Coloring the divided world with three colors:

Algorithm

Why the robots can gather ?

To show the correctness, three names of robots are introduced:

The Observation-Relation Graph

All nodes have three edges because of deviation of compass.

- Vi represents a robot who observes the other in sector (i).
- An edge (Vi,Vj) represents that a configuration can exist such that robots observe each other in sector (i) and (j), respectively.

Dangerous Configurations never occur

From the observation-relation graph with our sectoring and coloring, we know "red-red / blue-blue configurations never occur through executions."

Blue and Red configuration will be eventually reached.

- The difficulty of proof on CORDA
 - Some robot r₀ observes r₁, r₁ may be moving
 - \rightarrow The relation when r_1 stops is different from the relation when r0 observed.
 - (In SYm, such situation can not occur.)
 - Fast robot and very slow robot
 - \rightarrow Most problems do not occur for 2 robots

α -error SDC Algorithm on SYm

α-error SDC Algorithm on CORDA

α-error FXC Algorithm on CORDA(SYm)

Conclusions

Two-robot Gathering problem on α-error compass

	SYm	CORDA
Semi-DC	impossible($\alpha = \pi/4$) possible($\alpha < \pi/4$)	<mark>open</mark> possible(α<π/6)
FiXedC	impossible($\alpha = \pi/2$)[1] \rightarrow	← possible(α<π/2)

[1] I. Suzuki, M. Yamashita, SIAM J. Computing, 28, 4, 1347-1363, 1999.

Angle gap of SDC on CORDA

 Impossible for α<π/6 on CORDA
 Possible for π/4 >α>π/6 on CORDA

 Extension to n-robot system

 SDC(α<π/4) on SYm is possible [DISC2007]

Thank you!

π/3-relative error FXC Algorithm

Basic idea is same with $\pi/4$ -absolute error SDC algorithm

Dividing the world into 6 sectors The observation-relation graph V1 $\pi/3$ V2 V0 (2)(0)X (3)V3 V5 V4no red-red, blue-blue

Impossibility($\pi/4$ -error compass, SDC and Sym)

 Measuring Compass Agreement Level by tilt angle [Imazu et al., 05][Souissi et al., 06]
 Tilt angle = ∠ formed by the global and local axis

<u>Tilt angle of every robot < π :Solvable[Yamashita et al., 07]</u>
 Asynchronous / #robots = 2

Dynamic Compass

Semi-synchronous / #robots n is arbitrary

(The first result considering any #robots with disagreed compasses)

• $\varphi \ge \pi/2$: Unsolvable

Semi-synchronous / #robots = 2

Our Result is optimal in terms of maximum tilt angle

"Conditional" Algorithm for n robots-

- Working correctly if the initial configuration has a unique Longest Distance Segment(LDS)
- LDS election algorithm
 - Starting any configuration,

terminate a configuration with unique LDS

n-robot gathering algorithm

Consists of three types of movement

- θ : the angle at which a robot sees its partner
- r : distance between two robots
 - (in terms of observer's local coordinate sys.)
- 0≦θ<π/2+ε :Wait

No movement

- $\pi \leq \theta < 3\pi/2 + \varepsilon$: Approach
 - Move to the partner's location
- Otherwise : Roundabout
 - Move toward the angle $\theta + \pi 2\epsilon$

with distance r

MAC2010 inOttawa 2010.8.16

Roundabout Movement

at round t

at round t+1

Correctness (1/5)

Correctness(2/5)

Lemma 2

- At any round, ∠ABy decreases by ε~2ε unless gathering is achieved
- A: Approach move
- B: No movement (Wait or inactive)

MAC2010 inOttawa 2010.8.16

Correctness(3/5)

Correctness (4/5)

A: Roundabout move
 B: Roundabout move
 → decrease by ε~ 2ε

Α

2ε

From Lemma 2,

 $-\varepsilon \leq \angle ABy < +\varepsilon$ eventually holds From Lemma 1,

If $-\epsilon \leq \angle ABy < +\epsilon -\epsilon$ holds, one robot approaches and the other waits.

n-robot algorithm under unique LDS(1/2)

■ Robots are located at two points

 →All robots execute the two-robot algorithm

 ■ Robots are located at more than two points

 →All robots move to one of two endpoints of LDS

Correctness of Conditional n-robot Alg.

Lemma 3

- ∠LDSy = ∠ formed by LDS and the global y-axis < ε
- \rightarrow Wait-Approach Relation is guaranteed
 - (regardless of the title angle of each robots)

Lemma 4

 At any round, ∠LDSy decreases by ε~2ε unless gathering is achieved

Unique LDS Election (1/2)

 If two or more LDSs exist, each robot calculates the convex hull(CH)

- Robots on the boundary : Wait
- Inner robots : Moves to one of vertices
- Contracting the shortest edge of the CH

#edges of the CH decreases

 \rightarrow Eventually unique \square DS is elected (or gathered)

Unique LDS Election(2/2)

- → Robots moves to the center-of-gravity of the CH
 - All robots simultaneously move → gathered
 - A part of robots move \rightarrow Symmetry is broken

Conclusion

- Tilt angle $\leq \pi/2-\varepsilon$ (Optimal)
- Semi-synchronous model
- Arbitrary #robots
- Open problem
 - Asynchronous model
 - $\pi/2 < Maximum Tilt angle < \pi/4$
 - **Recently**, two robots are solved for $<\pi/3$
 - #robots = 2, dynamic compass