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Timing Models

ASYNC/CORDA  -  Fully asynchronous 
[Flocchini et. Al, 1999] 

Arbitrary & varying operation rates and delays 

SSYNC/SYM  -  Semi-synchronous [Suzuki
+Yamashita, 1996] 

Fixed time cycles, but robots may be active / inactive 
FSYNC/SYM  -  Fully synchronous [Suzuki
+Yamashita, 1996] 

Fixed time cycles, all robots active in every cycle 

MAC 2010, Ottawa August 15, 2010 

Problem 1: Gathering, 
(Aggregation, rendez-vous, homing) 

MAC 2010, Ottawa 

August 15, 2010 

Initially the robots are in arbitrary distinct positions. 

Gathering - Unlimited Visibility 

MAC 2010, Ottawa August 15, 2010 

Motivations 

Fred Allen (1894-1956) 
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Gathering 

  In spite of its apparent simplicity, this 
problem has been tackled in several 
studies 
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  Istantaneous activities 

  n=2, the problem is unsolvable 

Ando, Oasa, Suzuki, Yamashita 
Siam Journal Of Computing, 1999 

Gathering 
Unlimited Visibility - SSYNC 

MAC 2010, Ottawa 

August 15, 2010 

In fact, since the robots have no dimension… 

…moving them towards each other is not useful… 

…but it works if they can bump! 

…and cannot bump... 

Gathering, n=2 
Unlimited Visibility - SSYNC 
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  Istantaneous activities 

  n=2, the problem is unsolvable 

  n>2, they provide an oblivious algorithm that let 
   the robots gather in finite time 

Ando, Oasa, Suzuki, Yamashita 
Siam Journal Of Computing, 1999 

Gathering 
Unlimited Visibility - SSYNC 

MAC 2010, Ottawa 

August 15, 2010 

  MAIN IDEA: Starting from distinct initial 
positions, we move the robots in such a way that 
eventually there will be exactly one position that 
two or more robots occupy 

  Each time a robots becomes active, it 
recognizes the configuration of the robots (7 
possible configurations) 

  It moves accordingly  

Gathering 
Unlimited Visibility - SSYNC 

MAC 2010, Ottawa August 15, 2010 

 Few examples: 

  Let C be the smallest enclosing circle of the observed 
configuration 
  If n > 3, and there is exactly one robot r inside C 

  r moves towards one of the robots on the rim of C; 
the others do not move 

  If n > 3, and there are more than two robots inside C 
  The robots inside C move towards the center of C, 
while the other do not move (the center of C does not 
change) 

Gathering 
Unlimited Visibility - SSYNC 

MAC 2010, Ottawa 
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  If n > 3, and all robots are on the rim of C 
  All robots move towards the center of C 

  In the last case, at the next time instant 
  Either some robots are inside C and some on the rim 
of C 
  One of the previous cases applies 

  Or all robots are again on the rim of C 
  This same case applies again  

Gathering 
Unlimited Visibility - SSYNC 
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Gathering, ASYNC 

  In ASYNC, several factors render this 
problem difficult to solve 

  Major problems arise from symmetric 
configurations.... 
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Difficulties 

If at the beginning.... 
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Difficulties 

Not symmetric.... 
General Algorithm!! 

If at the beginning.... 
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Difficulties 

....after a while.... 

The image cannot be 
displayed. Your 
computer may not 
have enough 
memory to open the 
image, or the image 

The image 
cannot be 
displayed. 
Your 
computer 
may not 

MAC 2010, Ottawa August 15, 2010 

Difficulties 

Symmetric… 
go to c 

General Algorithm… 

....hence, they might never gather!!!! 

MAC 2010, Ottawa 
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Gathering—easy solution 

Easy Solution: Weber Point (Weiszfeld, ‘36)! 
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1. It is unique (Weiszfeld, ‘36) 

WP 
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Gathering—easy solution 

2. WP is Weber Point of points  
    on [ri,WP] (Weiszfeld, ‘36) 
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Gathering—easy solution 

2. WP is Weber Point of points  
    on [ri,WP] (Weiszfeld, ‘36) 

1. It is unique (Weiszfeld, ‘36) 
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Gathering—easy solution 

Easy Solution: Weber Point (Weiszfeld, ‘36)! 

Algorithm:  
  1. Compute WP 
  2. Move Towards WP 

MAC 2010, Ottawa 
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Gathering 
(Unlimited Visibility, no agreement) 

MAC 2010, Ottawa August 15, 2010 

Gathering 
(Unlimited Visibility, no agreement) 

MAC 2010, Ottawa 

August 15, 2010 

Gathering, n=3 
(Unlimited Visibility, no agreement) 

r2 r1 r3 

p p 

r2 

r3 

r1 

p 
≥120° p 

MAC 2010, Ottawa August 15, 2010 

ce 

Gathering, n=3 
(Unlimited Visibility, no agreement) 

r3 r1 

r2 

ce=center of equiangularity 

Properties of ce: 

MAC 2010, Ottawa 
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Gathering, n=3 
(Unlimited Visibility, no agreement) 

r3 r1 

r2 

ce=center of equiangularity 

Properties of ce: 

  r1cer2 
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Gathering, n=3 
(Unlimited Visibility, no agreement) 

r3 r1 

r2 

ce=center of equiangularity 

Properties of ce: 

  r1cer2 = r2cer3 
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Gathering, n=3 
(Unlimited Visibility, no agreement) 

r3 r1 

r2 

ce=center of equiangularity 

Properties of ce: 

  r1cer2= r2cer3  = r3cer1 
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Gathering, n=3 
(Unlimited Visibility, no agreement) 

r3 r1 

r2 

ce=center of equiangularity 

Properties of ce: 

  r1cer2= r2cer3 = r3cer1 

 Invariant under  
   movement 
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Gathering, n=3 
(Unlimited Visibility, no agreement) 

r3 r1 

r2 

ce 
r3 r1 

r2 

ce 
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r3 r1 

r2 

r2 r1 r3 

p 
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r2 
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r1 

p 
≥120° p 

ce 

Gathering, n=3 
(Unlimited Visibility, no agreement) 

MAC 2010, Ottawa 
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General Schema 

 Use of Multiplicity Detection 
  n=3,4 (and even with the use of Weber Point) 

Is there 1 or more than 1 robot at a point? 

>1 

>1 

>1 

MAC 2010, Ottawa August 15, 2010 

1. At the beginning, robots on distinct positions 

2. Get a scenario where there is only one point p  
    with multiplicity greater than one 

3. All robots move towards p 

General Schema 

MAC 2010, Ottawa 

August 15, 2010 

Multiplicity Detection 

p 

P’ 

p 

P’ 
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Multiplicity Detection 

For n=2, the problem is not solvable (Suzuki et al., 1999)! 

p 

P’ 

It is possible to design an adversary that lets the 
robots occupy two distinct positions on the plane 
in a finite number of cycles… 

MAC 2010, Ottawa 

August 15, 2010 

Multiplicity Detection 

Problem not solvable with n=2 

No multiplicity detection 

MAC 2010, Ottawa August 15, 2010 

Gathering 

MAC 2010, Ottawa 
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The Main Idea (ICALP 2003) 

  All distinct positions in initial configuration 
  Some robots gather at a point p 
  Point p is unique point with multiplicity >1 
  All robots move to p  

p >1 

MAC 2010, Ottawa August 15, 2010 

A Special Case 

 The robots can be in a totally symmetric 
configuration.  

α

α

α

αα

α

α

α

e
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Equiangular Configurations 

  All adjacent robots have angle α w.r.t. center e  
  Center e is easy to compute 
  Move all robots towards e   α

α

α

αα

α

α

α

e
>1 
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Algorithm Skeleton 

If  strict multiplicity: move there 

  

 Else If  equiangular: move to center 

  

  Else elect some robots to gather 

MAC 2010, Ottawa 

August 15, 2010 

Smallest Enclosing Circle 

  Unique 
  Easy to compute 
  Invariant if suitable  

robots move 
c

MAC 2010, Ottawa August 15, 2010 

String of  Angles 

  W.r.t. center of smallest  
enclosing circle 

  Circular string 
  Can contain 0’s 

α 

α 

β 

γ 

δ 

ε 

Lex. minimum: αβδαεγγ 

γ 

MAC 2010, Ottawa 
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1 Starting Position 

  Lex. min string: αβδαεγγ  
  Unique ordering of robots 

α 

α 

β 

γ 

δ 

ε γ 

>1 
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2 Starting Positions 

  Palindrome: αβγδδγβ 

  or Periodic: αβγδ αβγδ 

α 

γ 

δ 

β 

γ 

δ 

β 

>1 
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3..n-1 Starting Positions 

  Periodic: αβγ αβγ ... 
α 

γ 

β 

α 

γ 

β 

α β 

γ 

γ 

β 

α >1 
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Problem: Case Switches 

The algorithm: 

 If  strict multiplicity: move there 

    Else If  equiangular: move to center 

           Else elect some robots to gather α 

γ 

δ 

β 
α 

γ 

δ 

β 

c>1 

>1 
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Cautious Movements 

   The moving robots stop at any critical point where the 
configuration becomes equiangular. 

α 

γ 

δ 

β 
α 

γ 

δ 

β 

c
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Finding Critical Points 

  
  1 starting position:  

is there center of equiangularity with 1 gap 

  2 starting positions:  
same with 2 gaps 

  3..n-1 starting positions:  
cannot generate equiangular configurations 

e

MAC 2010, Ottawa 
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Other Studies on Gathering 

 Cieliebak, LATIN 2004 
  Non-oblivious robots, ASYNC 
  No multiplicity detection 

 Gathering via Center of Gravity 
  Peleg et al. 

 Gathering with faulty robots 

MAC 2010, Ottawa August 15, 2010 

Other Studies on Gathering 

 Gathering with dynamic compasses 
  Katayama et al., SemiSync 

 Gathering with limited visibility 
  Flocchini et al., TCS 2005, ASYNC 

MAC 2010, Ottawa 

August 15, 2010 

Problem 1.a: Gathering via CoG 
Peleg et al. 

MAC 2010, Ottawa August 15, 2010 

Center-of-Gravity (CoG) 
algorithms 

General approach:  
In each cycle, the robots:  
1. calculate some median position of the group  
2. move towards that position 

Natural variant: 
Use the Center-of-Gravity (CoG) 
(a.k.a. center of mass / barycenter) 
of the robot group 

  

€ 

 
c [t] =

1
N

 
r i[t]i=1

N
∑
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Note 

 The analysis is performed in a d-
dimensional space 

 Easy consequence: convergence for 
n=2 robots using CoG algorithm 

MAC 2010, Ottawa August 15, 2010 

Analyzing CoG algorithm 

In fully synchronous model: easy to analyze  

In semi-synchronous / asynchronous model 
(more involved): 

  Robots take measurements at different times, 
including while other robots are in movement  

 Might cause oscillatory effects on the CoGs 
calculated by the various robots 

 Might cause robots to pass each other by 
MAC 2010, Ottawa 
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Advantages of  CoG algorithm 

  Requires simple & efficient calculation - simple hardware, 
low computational effort. 

  Applies to 1/2/3 dimensions and any # of robots. 
  Bounded and simple-to-calculate rounding error 
  Oblivious (i.e., requires no memory of previous actions & 

positions), hence  
  Memory-efficient  
  Self-stabilizing (i.e., finite number of transient errors cannot prevent 

eventual convergence). 

  Prevents deadlocks (i.e., every robot can move at any given 
position unless already at center of gravity) 

MAC 2010, Ottawa August 15, 2010 

Results 

 CoG algorithm is correct in both the 
semi-synchronous and asynchronous 
model, for any # of robots 

MAC 2010, Ottawa 

August 15, 2010 

Notation 

Assume: Robots reside on x-axis. 
               (Handle each axis separately) 

ri[t] = location of robot i at time t 
ci[t] = CoG last calculated by robot i prior to time 

t 
c[t] = True CoG at time t 
H[t] =  convex hull (smallest containing interval)  

of all ri[t] & ci[t]  
MAC 2010, Ottawa August 15, 2010 

Monotonicity of  convex hull 

Lemma: H[t] cannot increase in time. 

MAC 2010, Ottawa 

Lemma: In ASYNC, in any execution of CoG 
algorithm, over any O(n2) time interval, the 
convex hull of robot locations + CoGs is 
halved (in each dimension separately). 

August 15, 2010 

Semi-synchronous model 

Lemma:  
In any execution of CoG algorithm, over 
any O(n) time interval, the convex hull of 
robots + CoGs is halved (in each 
dimension separately). 

MAC 2010, Ottawa August 15, 2010 

Fully synchronous model 

Lemma: In any execution of CoG 
algorithm, robots achieve gathering in  
4 h[0] d3/2 time. 

      d: #dimensions 
      h[0]: max width of H[0] 

MAC 2010, Ottawa 
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Problem 1.b: Self-stabilizing 
Deterministic Gathering  
Petit et al., ALGOSENSORS 2009 

MAC 2010, Ottawa August 15, 2010 

We know that….

Petit et al. presented a deterministic protocol for 
solving the self-stabilizing gathering 

 SSYNC 
 Multiplicity Detection 

That is, even if the robots are oblivious, the 
solutions are not truly self-stabilizing 

MAC 2010, Ottawa 
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We know that….

We know that the problem is unsolvable for 2 
robots in SSYNC; hence, it is also unsolvable for 
an even number or robots 

  The robots occupy at the beginning only two 
distinct positions on the plane, with n/2 
robots on each position 

MAC 2010, Ottawa August 15, 2010 

We know that….

Petit et al presented a deterministic protocol for 
solving the (self-stabilizing) gathering for an odd 
number of robots, starting from any configuration 

 SSYNC 
 Strong Multiplicity Detection 

MAC 2010, Ottawa 

August 15, 2010 

Problem 2: Scattering 
Petit et. al., FUN 2007  

MAC 2010, Ottawa August 15, 2010 

Scatter Problem 

MAC 2010, Ottawa 
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Scatter Problem  

MAC 2010, Ottawa August 15, 2010 

Scatter Problem  

  Studied in SSYNC 
  Convergence 

Regardless of the initial positions of the  
robots, no two robots are eventually located at the same position  

  Closure 
Starting from a configuration where non two  
robots are located at the same position, 
no two robots are located at the same position thereafter 

MAC 2010, Ottawa 
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Deterministic Scatter 
Impossib

le 
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Randomized Scatter 
Compute the Voronoi Diagram 
If Random() = 0  

then move arbitrarily in my cell   

No mult. Det. 

No agreement 
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Randomized Scatter 
Compute the Voronoi Diagram 
If Random() = 0  

then move arbitrarily in my cell   

MAC 2010, Ottawa 
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Randomized Scatter 
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Randomized Scatter 
Compute the Voronoi Diagram 
If Random() = 0  

then move arbitrarily in my cell   
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Randomized Scatter 
Compute the Voronoi Diagram 
If Random() = 0  

then move arbitrarily in my cell   

MAC 2010, Ottawa 

Randomized Scatter 

  It could be used as a starting procedure 
for using previous gathering or arbitrary 
pattern formation 
  Multiplicity detection is necessary to switch 
  Eliminates the initial condition of having 

“distinct position” 
  Randomized Self-Stabilizing Solutions 

August 15, 2010 MAC 2010, Ottawa 
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Problem 3: Flocking 

MAC 2010, Ottawa August 15, 2010 

Flocking 
Unlimited Visibility 

Leader Follower 

Followers recognize Leader 
No Agreement on Local Axes 

MAC 2010, Ottawa 
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Flocking 
Unlimited Visibility 

Leader acts independently (e.g., human driven) 

MAC 2010, Ottawa August 15, 2010 

Flocking 
Unlimited Visibility 

MAC 2010, Ottawa 
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Flocking 
Unlimited Visibility 

MAC 2010, Ottawa August 15, 2010 

Flocking 
Unlimited Visibility 

MAC 2010, Ottawa 
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Flocking 
Unlimited Visibility 

MAC 2010, Ottawa August 15, 2010 

Assumption 

Time spent in Look and Compute is negligible 
w.r.t. the time spent in Move 

MAC 2010, Ottawa 
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The constraints 

  No shared 
coordinate system 

  No way to observe 
direction of 
movement 

  No common velocity 

  Common pattern 
  In order for the 

problem to be 
significant! 

MAC 2010, Ottawa August 15, 2010 

Necessary conditions 

  Common distance 
unit 
  Otherwise, the 

followers could scale 
the pattern instead 
of following the 
leader 

  Fast enough 
  The leader cannot be 

faster than the 
followers 

MAC 2010, Ottawa 
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Followers do not know the path  
to follow in advance 

The Solution (Dam 2004) 

MAC 2010, Ottawa August 15, 2010 

Baricenter 

The Solution (Dam 2004) 

MAC 2010, Ottawa 
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The Algorithm (Dam 2004) 

S1 

S2 

Baricenter 

1 

2 3 4 
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The Algorithm (Dam 2004) 
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S2 

Baricenter 

1 

2 3 4 

1 
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The Algorithm (Dam 2004) 

S1 

S2 

Baricenter 

1 

2 
3 4 

1 

2 

1 2 3 

1 

2 

3 
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Fleet symmetry 

  Other patterns may be 
formed with more 
agreement (e.g., 1 axis) 
  Not studied yet!! 

  The pattern must be 
symmetric wrt the 
direction of 
movement of the 
leader 

MAC 2010, Ottawa 

August 15, 2010 

A few quirks 

 Stability: ships may have to give way 
  Limits on the angular velocity of the 

leader 
 Real heading of the leader (and thus 

formation) different from estimated 

MAC 2010, Ottawa August 15, 2010 

Real vs estimated heading 

Baricenter 

Real 

MAC 2010, Ottawa 
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Measures 

 Given a set of ships F and a set of 
points Z (the pattern), we define: 

 Experimental measures: 
  Distance from estimated formation (Δe) 
  Distance from real formation (Δr) 

€ 

ΔF ,Z (t) =min
π ∈Π

d( fi(t),zπ i
(t))

i=1

F

∑
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Tests of the solution with four formations: 

Line (4) 

Wedge (6) 

Spread (10) 

Experimental results 

Random (2-8) 
MAC 2010, Ottawa 

August 15, 2010 

Experimental results 

MAC 2010, Ottawa August 15, 2010 

Experimental results 

MAC 2010, Ottawa 

August 15, 2010 

Experimental results 

Leader 
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Problem 4: Intruder 

MAC 2010, Ottawa 
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The intruder problem 

  An intruder is trying to 
sneak through a 
restricted area 

  A number of 
autonomous units 
(robotic cops) is 
patrolling the area 

  The cops have to 
surround the intruder 

MAC 2010, Ottawa August 15, 2010 

The intruder problem 

 Example: sensible infrastructures 
  Airfield runway 
  Logistic compound 
  Dam or power plant 

 Example: hostile area 
  Battlefield 
  Police operation 

MAC 2010, Ottawa 
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The cops 

 Units must be truly autonomous 
  Completely asynchronous 
  Undistinguishable (i.e., no IDs) 
  No explicit communications (i.e., no radio) 
  No shared knowledge 

  No common compass 
  No common chirality 

MAC 2010, Ottawa August 15, 2010 

The cops 

  Units must be truly autonomous 
  Completely asynchronous 
  Undistinguishable (i.e., no IDs) 
  No explicit communications (i.e., no radio) 
  No shared knowledge 

  No common compass 
  No common chirality 

  Algorithm must work with a variable number of 
cops 
  Cops could be knocked-off by the intruder 

MAC 2010, Ottawa 

August 15, 2010 

Computational model 

 We consider an infinite plane 
 Both the intruder and the cops are 

modeled as units that can freely move 
on the plane 

•  All cops move 
according to a given 
algorithm (the 
same for all the 
units) 

•  The intruder moves 
independently from 
other units; its 
course is not known 
in advance 

MAC 2010, Ottawa August 15, 2010 

Computational model 

 Cops have sensors that report the 
positions of the intruder and of other 
cops 

 Cops are oblivious – they have no 
memory, and do not rely on stored 
information about the past 

MAC 2010, Ottawa 
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Computational model 

  As in the flocking, we assume that 

  Time spent in Look and Compute is 
negligible w.r.t. the time spent in Move 

MAC 2010, Ottawa August 15, 2010 

Formalizing the problem 

  The cops must 
occupy a ring 
around the intruder: 

  The cops must be 
evenly spaced, 
minimazing the 
maximal “escape 
hole” in the ring 

c 

I 

€ 

r1 ≤ dist(c,I) ≤ r2

MAC 2010, Ottawa 
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Formalizing the problem 

  Both conditions can 
be met by forming a 
regular n-gon of 
characteristic angle 
2π/n and radius r1 

c 

I 

MAC 2010, Ottawa August 15, 2010 

Two Algorithms: Heuristic 
(FUN 2004) 

Heuristic approach 
  All robots are subject 

to two forces: 
  Attractive, towards the 

enemy 
  Repulsive, mutual 

  Parameters are tuned 
so that the aequilibrium 
is a solution for the 
problem 

Emergent Solution 

MAC 2010, Ottawa 
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The HEUR-S Algorithm 

MAC 2010, Ottawa August 15, 2010 

The HEUR-S Algorithm 

MAC 2010, Ottawa 
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Two Algorithms: LAT 

Algorithmic approach 
  The robots reach an 

agreement on their 
ordering 

  Each one establishes its 
own target 

  They reach the target 
(taking care not to 
overtake each other) 

0 

5 
4 

3 

2 
1 

1 

5 
4 

3 

2 

Precise Solution 
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The LAT algorithm (idea) 

 The closest cop to the intruder is 
identified and declared Chief 

MAC 2010, Ottawa 
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I 

The LAT algorithm (idea) 
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I 

Chief 

The LAT algorithm (idea) 
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 The closest cop to the intruder is 
identified and declared Chief 

 The Chief moves towards the intruder, up 
to a distance r1 

The LAT algorithm (idea) 

MAC 2010, Ottawa August 15, 2010 

I 

Chief 

r1 

The LAT algorithm (idea) 

MAC 2010, Ottawa 
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 The closest cop to the intruder is 
identified and declared Chief 

 The Chief moves towards the intruder, up 
to a distance r1 

 The other cops scale and align the n-gon 
so that the center is on I and a vertex on 
the Chief 

The LAT algorithm (idea) 
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I 

Chief 

The LAT algorithm (idea) 
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 The closest cop to the intruder is 
identified and declared Chief 

 The Chief moves towards the intruder, up 
to a distance r1 

 The other cops scale and align the n-gon 
so that the center is on I and a vertex on 
the Chief 

 All cops are lexicographically sorted 
according to their angle with I-Chief 
  Orientation is Chief  2nd Chief 

The LAT algorithm (idea) 
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I 

Chief 0 

5 4 

3 

2 
1 

The LAT algorithm (idea) 

2nd Chief 
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  The closest cop to the intruder is identified and 
declared Chief 

  The Chief moves towards the intruder, up to a 
distance r1 

  The other cops scale and align the n-gon so that the 
center is on I and a vertex on the Chief 

  All cops are lexicographically sorted according to their 
angle with I-Chief 
  Orientation is Chief  2nd Chief 

  The i-th cop in the ordering moves (up to ε) toward 
the i-th vertex of the scaled and aligned n-gon 

The LAT algorithm (idea) 
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Some pitfalls.… 

 Multiple candidate chiefs 
  All cops wait for the intruder to move, 

breaking the tie 

 A cop may have to go to the opposite side 
of the ring 
  Perform a sideway step to avoid a change of 

Chief 

MAC 2010, Ottawa 
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Two Algorithms 

HEUR-S trace LAT trace 
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Evaluation of  the algorithm 

  Numerical simulations 
  Two kind of measures: 

  What fraction of the 
cops is inside the target 
ring? 

  How large is the largest 
hole in the ring, w.r.t. 
the optimal hole? 

φ
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Fraction of  Robots in  
the Capture Area 
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Size of  Largest Hole (relative) 
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Adaptiveness 

August 15, 2010 

 The algorithms adapts to dynamic changes 
in the number of cops 
 Cops can join 
 Cops can leave 

MAC 2010, Ottawa August 15, 2010 

Fault Tolerance 
 Robots could be blocked, knocked off by 

the enemy, or otherwise suffer faults 
 We consider transient faults 
  A faulty robot stops moving, but continues 

sensing and computing 
  Fault model based on two parameters: 

  pf  – probability of occurrence of a fault 
  pr  – probability of resuming normal behaviour 

 Faults occur indefinitely 

MAC 2010, Ottawa 
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Robots in the Capture Area 
(in the presence of  faults) 

} 

} 
} 

pf =1% 
pr =4% 

pf =1% 
pr =1% 

pf =1% 
pr =0.25% 
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Size of  the Largest Hole 
(in the presence of  faults) 

} pf =1% 
pr =4% 

pf =1% 
pr =1% 

pf =1% 
pr =0.25% 
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Summary 

  Gathering 
  ASYNC 

  CoG (ASYNC and SSYNC) 

  Self-Stabilizing Gathering in SSYNC 

  Scattering (SSYNC) 

  Flocking 

  Intruder 
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