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Problem

Two or more mobile entities, starting at distinct initial
positions, have to meet. This task, called rendezvous, has
numerous applications in domains ranging from human
interaction and animal behavior to programming of
autonomous mobile robots and software agents.
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Examples (human)

Two astronauts land in two distant places on a spherical
body, without any orientation, and have to minimize the
expected time of getting within their detection radius.

Two parachutists that have to meet after separately
parachuting from a plane.

Rescuers want to find a lost hiker in the mountains.
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Examples (animals)

Gathering of migratory birds or undersea animals.

Penguin parents that need to find their offspring coming
back with food.

Searching for a mate for species living in small densities
over a large territory
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Examples (networks and robotics)

Software agents, i.e., mobile pieces of software that travel
in a communication network in order to perform
maintenance of its components or to collect data
distributed in nodes of the network. Such software agents
need to meet periodically, in order to exchange collected
data and plan further moves.

Autonomous mobile robots that start in different
locations of a planar terrain or a labyrinth and have to
meet, e.g., in order to exchange information obtained
while exploring the terrain and coordinate further actions.
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Main alternative scenarios

The environment in which the agents navigate: it can be
either a terrain in the plane, or a network modeled as an
undirected graph.

In the second case, the agents may be capable or
incapable of marking nodes.

The way in which the agents move: it can be either
deterministic or randomized.

In this talk we survey results concerning
deterministic rendezvous in networks with unmarked nodes.
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Common assumptions

Modeling the network as a simple undirected connected
graph.

Anonymity of the underlying network:
the absence of distinct names of nodes that can be
perceived by the navigating agents.

A node of degree d has ports 0, 1, . . . , d − 1
corresponding to the incident edges. Ports at each node
can be perceived by an agent visiting this node, but there
is no coherence assumed between port labelings at
different nodes.
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Breaking symmetry

Three ways to break symmetry in the deterministic scenario:

Distinguishing the agents: each of them has a label and
the labels are different. Each agent knows its label, but
we do not need to assume that it knows the label of the
other agent.

Exploiting either non-symmetries of the network itself, or
the differences of the initial positions of the agents, even
in a symmetric network.

Marking nodes (unmovable tokens, movable tokens,
whiteboards): NOT in this talk.
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Amount of memory

The memory of the agents is unbounded and agents are
modeled as Turing machines,
or
the memory is bounded, in which case the model of
input/output automata (finite state machines) is usually used.
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Synchronous vs. asynchronous scenario

In the synchronous scenario agents move from node to node in
synchronous rounds and the meeting has to occur at a node.
Asynchrony is captured in two different ways.

In one model, an adversary decides when each agent
moves, but the move itself is instantaneous, thus it is
possible to require meeting at a node, as previously.

In the second model, the agent chooses an edge but the
adversary determines the actual walk of the agent on this
edge and can, e.g., speed up or slow down the agent.
Under this scenario it may be impossible to meet at a
node, and thus the requirement is relaxed to that of
meeting at a node or inside an edge.
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What is being sought, apart from meeting

Feasibility: for what classes of networks and what initial
positions is rendezvous possible under a particular
scenario.

Minimizing rendezvous cost: the (maximum or average)
number of steps made by an agent until rendezvous.

Minimizing memory with which agents have to be
equipped in order to solve the rendezvous problem in a
given class of networks.
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Synchronous rendezvous

Agents move in synchronous steps. In every step, an agent
may either remain at the same node or move to an adjacent
node. Rendezvous means that all agents are at the same node
in the same step. Agents that cross each other when moving
along the same edge, do not notice this fact.
Two scenarios:

simultaneous startup, when both agents start executing
the algorithm at the same time,

arbitrary delay, when starting times are arbitrarily decided
by an adversary.
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Cost of synchronous rendezvous

[Dessmark, Fraigniaud, Kowalski, Pelc (Algorithmica 2006)]

Agents have different labels, which are positive integer
numbers, and each agent knows its own label (which is a
parameter of the common algorithm that they use), but is
unaware of the label of the other agent. In general, agents do
not know the topology of the graph in which they have to
meet.

The smaller of the two labels is denoted by l . The delay (the
difference between startup times of the agents) is denoted by
τ . n denotes the number of nodes in the graph, and D – the
distance between initial positions of agents.
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Cost of synchronous rendezvous (cont.)

Theorem

Rendezvous can be completed at cost O(n + log l) on any
n-node tree, even with arbitrary delay. This is optimal.

Theorem

With simultaneous startup, the optimal cost of rendezvous on
any ring is Θ(D log l).
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Cost of synchronous rendezvous (cont.)

Theorem

With arbitrary delay, Ω(n + D log l) is a lower bound on the
cost required for rendezvous in a n-node ring. Under this
scenario, two rendezvous algorithms for the ring : an algorithm
with cost O(n log l), for known n, and an algorithm with cost
O(lτ + ln2), if n is unknown.
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For arbitrary connected graphs, the main contribution of
[DFKP] is a deterministic rendezvous algorithm with cost
polynomial in n, τ and log l .

Theorem

There exists an algorithm that solves the rendezvous problem
for any n-node graph G , for any labels L1 > L2 = l of agents
and for any delay τ between startup times, in cost
O(n5

√
τ log l log n + n10 log2 n log l).
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Cost of synchronous rendezvous (cont.)

Problem:
Does there exist a deterministic rendezvous algorithm for
arbitrary connected graphs with cost polynomial in n and l (or
even in n and log l) but independent of τ?
A positive answer due to [Kowalski, Malinowski (TCS 2008)]

Theorem

There exists a rendezvous algorithm, working in arbitrary
connected graphs for an arbitrary delay τ , whose complexity is
O(log3 l + n15 log12 n), i.e., is independent of τ and polynomial
in n and log l .

Andrzej Pelc Deterministic Rendezvous in Networks



22/60

Intro Taxonomy Unmarked nodes Conclusion

Cost of synchronous rendezvous (cont.)

Both above algorithms use a non-constructive ingredient, i.e, a
combinatorial object whose existence is proved using the
probabilistic method. Each of the agents can deterministically
find such an object by exhaustive search, which keeps the
algorithm deterministic, but may significantly increase the time
of local computations. In the described model the time of
these computations does not contribute to cost which is
measured by the number of steps, regardless of the time taken
to compute each step.
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Cost of synchronous rendezvous (cont.)

Does there exists a rendezvous algorithm for which both the
cost and the time of local computations are polynomial in n
and log l? Such an algorithm would have to eliminate any
non-constructive ingredients.

[Ta-Shma, Zwick (SODA 2007)]: Yes.
(Using Universal Exploration Sequences)
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View of a node

Definition

Let G be a graph and v a node of G . The view from v is the
infinite rooted tree V (v) with labeled ports, defined recursively
as follows. V (v) has the root x0 corresponding to v . For every
node vi , i = 1, . . . , k , adjacent to v , there is a neighbor xi in
V (v) such that the port number at v corresponding to edge
{v , vi} is the same as the port number at x0 corresponding to
edge {x0, xi}, and the port number at vi corresponding to
edge {v , vi} is the same as the port number at xi

corresponding to edge {x0, xi}. Node xi , for i = 1, . . . , k , is
now the root of the view from vi .
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Symmetric nodes

A pair (u, v) of distinct nodes is called symmetric, if these
nodes have the same view of the graph. Initial positions
forming a symmetric pair of nodes are crucial when considering
the feasibility of rendezvous in arbitrary graphs by identical
(anonymous) agents. Indeed, rendezvous is feasible, if and only
if the initial positions of the agents are not a symmetric pair.
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Optimizing memory size for synchronous

rendezvous by identical agents

Agents are identical copies A and A′ of the same abstract
state machine, starting at two distinct nodes vA and vA′ . We
will refer to such identical machines as a pair of agents.

A pair of agents is said to solve the rendezvous problem with
delay τ in a class C of graphs, if, for any graph in the class C
and for any initial positions that are not symmetric, both
agents are eventually in the same node of the graph in the
same round, provided that they start with delay τ .
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Optimizing memory size (cont.)

The optimization criterion is the size of the memory of the
agents, measured by the number of states of the
corresponding automaton, or equivalently by the number of
bits on which these states are encoded. An automaton with K
states requires Θ(log K ) bits of memory.
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Optimizing memory size: rv in trees

[Fraigniaud, Pelc (DISC 2008)]

Theorem

The minimum size of memory of the agents that can solve the
rendezvous problem in the class of trees with at most n nodes
is Θ(log n).

A rendezvous algorithm for arbitrary delay τ is provided, that
uses only a logarithmic number of memory bits, and it is
observed that Ω(log n) is also a lower bound on the number of
bits of memory that enable rendezvous in all trees of size linear
in n.
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Optimizing memory size: rv in trees (cont.)

Due to the above lower bound, a universal pair of finite agents
achieving rendezvous in the class of all trees cannot exist.
However, the lower bound uses a counterexample of a tree
with maximum degree linear in the size of the tree.

Does there exist a pair of finite agents solving the rendezvous
problem in all trees of bounded degree? The answer is no.
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Optimizing memory size: rv in trees (cont.)

Theorem

For any pair of identical finite agents, there is a line on which
these agents cannot solve the rendezvous problem, even with
simultaneous start.

As a function of the size of the trees, this impossibility result
indicates a lower bound Ω(log log n) bits on the memory size
for rendezvous in bounded degree trees of at most n nodes.
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Optimizing memory size: rv in trees (cont.)

[Fraigniaud, Pelc (SPAA 2010)]

Theorem

If the delay between startup times of agents is arbitrary, then
the lower bound on memory required for rendezvous is
Ω(log n) bits, even for the line of length n.

This lower bound matches the upper bound from [FP 2008],
which shows that the minimum size of memory of the agents
that can solve the rendezvous problem in the class of bounded
degree trees with at most n nodes is Θ(log n).
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Optimizing memory size: rv in trees (cont.)

By contrast, for simultaneous start, it is shown in [FP 2010]
that the amount of memory needed for rendezvous depends on
two parameters of the tree: the number n of nodes and the
number ` of leaves.

Theorem

There exist two identical agents with O(log ` + log log n) bits
of memory that solve the rendezvous problem with
simultaneous start in all trees with n nodes and ` leaves.

For the class of trees with O(log n) leaves, this shows an
exponential gap in minimum memory size needed for
rendezvous between the scenario with arbitrary delay and with
delay zero.
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Optimizing memory size: rv in trees (cont.)

The following matching lower bound is also shown
in [FP 2010]:

Theorem

For infinitely many integers `, there is a class of arbitrarily
large trees with maximum degree 3 and with ` leaves, for
which rendezvous requires Ω(log `) bits of memory.

This lower bound, together with the result from [FP 2008]
showing that Ω(log log n) bits of memory are required for
rendezvous in the line of length n, implies that the upper
bound O(log ` + log log n) cannot be improved even for trees
with maximum degree 3.
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Optimizing memory size: rv in arbitrary graphs

[Czyzowicz, Kosowski, Pelc (PODC 2010)]

Theorem

The minimum size of the memory of agents that guarantees
deterministic rendezvous when it is feasible, is Θ(log n), where
n is the size of the graph, regardless of the delay between the
startup times of the agents.

The authors construct identical agents equipped with Θ(log n)
memory bits that solve the rendezvous problem in all graphs
with at most n nodes, when starting with any delay τ ,
and they prove a matching lower bound Ω(log n) on the
number of memory bits needed to accomplish rendezvous,
even for simultaneous start. In fact, this lower bound is
achieved already on the class of rings.
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Asynchronous rendezvous

Two models of asynchrony.

The first model is adapted from the CORDA model, originally
used for rendezvous in the plane.

This model assumes that the agents are very weak in terms of
memory (they cannot remember any past events), but they
have significant sensory power (they can take snapshots of the
entire network, including other agents’ positions in it).
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The Look-Compute-Move model

Agents are anonymous and execute the same algorithm.

They start at different nodes and operate in
Look-Compute-Move cycles.

In one cycle, a robot takes a snapshot of the current
configuration (Look), then, based on the perceived
configuration, makes a decision to stay idle or to move to
one of its adjacent nodes (Compute), and in the latter
case makes an instantaneous move to this neighbor
(Move). Agents do not remember previous cycles.
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The Look-Compute-Move model (cont.)

Cycles are performed asynchronously for each agent. This
means that the time between Look, Compute, and Move
operations is finite but unbounded, and is decided by the
adversary for each agent in each cycle. The only constraint is
that moves are instantaneous, and hence any agent performing
a Look operation sees all other agents at nodes of the ring and
not on edges, while performing a move.
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Rendezvous in the ring

Agents initially situated at different nodes of the ring, have to
gather at the same node (not determined in advance) and
remain in it.
Main difficulty of rendezvous (gathering): agents have to
break symmetry by agreeing on a common meeting node, in
spite of the asynchrony in executing cycles.
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Multiplicity detection

An important capability studied in the literature on rendezvous
is the multiplicity detection. This is the ability of the agents to
perceive, during the Look operation, if there is one or more
agents at a given node (or at a given point in the case of the
plane). In the case of the ring, it is proved that without this
capability, rendezvous of more than one agent is always
impossible. Thus multiplicity detection is assumed.

During a Look operation, an agent can only tell if at some
node there are no agents, there is one agent, or there are more
than one agents: an agent does not see a difference between a
node occupied by a or b agents, for distinct a, b > 1.
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Impossibility results

[Klasing, Markou, Pelc: TCS 2008]

Proposition

1 Gathering any 2 robots is impossible on any ring.

2 If multiplicity detection is not available then gathering
any k > 1 robots is impossible on any ring.
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Impossibility results (cont.)

Theorem

Gathering is impossible for any periodic configuration.

A configuration is edge-edge symmetric if it has exactly one
axis of symmetry and this axis does not contain any node.

Theorem

Gathering is impossible for any edge-edge symmetric
configuration.
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Gathering an odd number of agents

Theorem

Gathering is possible for any non-periodic configuration of an
odd number of agents.

This solves the gathering problem on the ring for any odd
number of agents.
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Gathering in the remaining case

[Klasing, Kosowski, Navarra (OPODIS 2008)]

Theorem

Gathering is possible for any non-periodic configuration
without edge-edge symmetry of more than 18 agents.

Open problem: Characterize gatherable configurations of n
agents, where 4 ≤ n ≤ 18 and n is even.
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The second model of asynchrony

Rendezvous can occur either at a node or inside an edge.

Agents have distinct labels and each of them knows its
own label, but not that of the other agent.

Nodes are anonymous and ports at each node are labeled
in a possibly incoherent way.
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The second model of asynchrony (cont.)

Since meetings inside an edge are allowed, unwanted crossings
of edges have to be avoided. Thus, we consider an embedding
of the underlying graph in the three-dimensional Euclidean
space, with nodes of the graph being points of the space and
edges being pairwise disjoint line segments joining them. For
any graph such an embedding exists. Agents are modeled as
points moving inside this embedding.

Andrzej Pelc Deterministic Rendezvous in Networks



46/60

Intro Taxonomy Unmarked nodes Conclusion

The second model of asynchrony (cont.)

Asynchrony is modeled as follows:

When the agent, situated at a node v at time t0 has to
traverse an edge modeled as a segment [v ,w ], the adversary
performs the following choice.

It selects a time point t1 > t0 and any continuous function
f : [t0, t1] −→ [v ,w ], with f (t0) = v and f (t1) = w . This
function models the actual movement of the agent inside the
line segment [v ,w ] in the time period [t0, t1].
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The second model of asynchrony (cont.)

Hence this movement can be at arbitrary speed, the agent
may be forced by the adversary to go back and forth, as long
as it does not leave the segment and the movement is
continuous. We say that at time t ∈ [t0, t1] the agent is in
point f (t) ∈ [v ,w ]. Moreover, the adversary chooses the
starting time of the agent. Hence an agent’s trajectory is
represented by the concatenation of the functions chosen by
the adversary for consecutive edges that the agent traverses.
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The second model of asynchrony (cont.)

For a given algorithm, given starting nodes of agents and a
given sequence of adversarial decisions in an embedding of a
graph G , a rendezvous occurs, if both agents are at the same
point of the embedding at the same time.

Rendezvous is feasible in a given graph, if there exists an
algorithm for agents such that for any embedding of the
graph, any (adversarial) choice of two distinct labels of agents,
any starting nodes and any sequences of adversarial decisions,
the rendezvous does occur.

The cost of rendezvous is defined as the worst-case number of
edge traversals by both agents (the last partial traversal
counted as a complete one for both agents), where the worst
case is taken over all decisions of the adversary.
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Minimizing the cost (infinite line)

[De Marco, Gargano, Kranakis, Krizanc, Pelc, Vaccaro
(TCS 2006)]

Theorem

For agents initially situated at a distance D in an infinite line,
there is a rendezvous algorithm with cost O(D|Lmin|2) when D
is known, and O((D + |Lmax |)3) if D is unknown, where |Lmin|
and |Lmax | are the lengths of the shorter and longer label of
the agents, respectively.

This has been improved in [Stachowiak (SOFSEM 2009)] to
O(D log2 D + D log D|Lmax |+ D|Lmin|2 + |Lmax ||Lmin| log |Lmin|)
for unknown D.
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Minimizing the cost (ring)

[DGKKPV 2006]

Theorem

For agents initially situated at a distance D in a n-node ring,
there is a rendezvous algorithm with cost O(n|Lmin|) (and this
is optimal), if the size n of the ring is known, and with cost
O(n|Lmax |), if it is unknown.

In both these algorithms the knowledge of the initial distance
D between agents is not assumed, and for D of the order of n
their complexity is better than that of infinite line algorithms.
On the other hand, for small D and small labels of agents, the
opposite is true.
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Feasibility

[DGKKPV 2006]

Theorem

Asynchronous rendezvous is feasible for arbitrary graphs, if an
upper bound on the size of the graph is known.

As an open problem, the authors state the question if
asynchronous deterministic rendezvous is feasible in arbitrary
graphs of unknown size. The solution from [DGKKPV 2006]
heavily uses the knowledge of the upper bound on the size.
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Feasibility (cont.)

This problem has been solved in [Czyzowicz, Labourel, Pelc
(SODA 2010)] in the following strong way:

Theorem

There exists an algorithm that accomplishes asynchronous
rendezvous in any connected countable (finite or infinite)
graph, for arbitrary starting nodes.

Hence not only is rendezvous always possible, without the
knowledge of any upper bound on the size of a finite
(connected) graph, but it is also possible for all infinite
(countable and connected) graphs.
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Feasibility (cont.)

Does there exist a deterministic asynchronous rendezvous
algorithm, working for all connected finite unknown graphs,
with cost polynomial in the labels of the agents and in the size
of the graph?
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Rendezvous with GPS on the grid

Each agent knows its initial position on the grid, but not
the position of the other agent.

Ports at each node of the grid are coherently labeled
N,E,S,W.

Bampas, Czyzowicz, Gasieniec, Ilcinkas, Labourel [DISC 2010]:

Theorem

Rendezvous can be achieved at cost O(D2polylog(D)), where
D is the initial distance between the agents.
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Important assumptions

Assumptions that turn out to have a significant impact
concern labeling vs. anonymity of the agents, their
synchronous vs. asynchronous behavior, the amount of
memory with which they are equipped, and the capacity (vs.
lack of it) of marking nodes.

Andrzej Pelc Deterministic Rendezvous in Networks



57/60

Intro Taxonomy Unmarked nodes Conclusion

Research directions

Problem 1

How the capacity of communication between agents influences
the feasibility and performance of rendezvous?

Marking nodes by tokens or using whiteboards is only one
possible way of communicating. It is intrinsically local, i.e., it
assumes that the agent receiving information must visit a node
at which information has been left. A much more powerful
way of communicating would be wireless, in which agents
currently at remote nodes of the network can nevertheless
exchange messages.
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Research directions (cont.)

Problem 2

What are the trade-offs between memory of the agents and
their sensory capabilities?

In the model adapted from CORDA, an extreme scenario is
considered: agents cannot remember any information from the
previous cycles, but they can take a snapshot of the entire
network during the Look action. It is more realistic to assume
that agents have slightly larger memory of past events, but
their sensory capabilities are more limited, e.g, they can only
perceive the part of the configuration at a given radius from
their current position. Studying feasibility of rendezvous under
such more balanced scenarios would involve characterizing
initial configurations for which rendezvous is possible.
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Research directions (cont.)

Problem 3

Rendezvous under the paradigm of advice.

It has been mentioned that providing nodes with distinct labels
greatly simplifies the task of rendezvous, as agents can meet
at a predetermined node. However, this requires adding a large
amount of information, this information has to be distributed
among nodes and be visible to the agents.
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Research directions (cont.)

The problem stated in the spirit of the advice paradigm is:

What are the trade-offs between the amount of information
(advice) given to the anonymous agents and the efficiency of
rendezvous?
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