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Outline

 Introduction to Distributed Intelligence Laboratory (DILab)

 Practicalities of Physical Robot Research

 Overview of some of the projects in the DILab

 Brief Overview of Distributed Robotic Research
– Applications
– Architectures for Multi-Robot Systems
– Communication
– Swarm Robots
– Heterogeneity
– Task Allocation
– Learning
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Distributed Intelligence Lab, Univ. of Tenn.
Dept. of Electrical Engr. & Computer Science

 Personnel:
– Director: Prof. Lynne E. Parker
– Ph.D. Students: Richard Edwards, Mike Franklin, John Hoare, Sudarshan

Srinivasan, Chris Reardon, Hao Zhang, Tony Zhang
– M.S. Students: Bob Lowe, Nick Overfield

 Mission: Create autonomous software solutions for distributed intelligent 
systems, including teams of multiple agents and robots, sensor networks, 
and embedded systems.

 Sponsors:
– NSF, Lockheed Martin, ORNL, Georgia Tech, SAIC, DOE, JPL, DARPA, Intel

DILab URL: http://www.cs.utk.edu/dilab

Research Robots and Sensors
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Some Practicalities of 
Physical Robot Research

 Robots have physical size – they can’t move through each other, 

can’t share the same location, and must avoid collisions

 Robots rarely operate in wide-open spaces; they must act 

around obstacles (e.g., trees, walls), other agents that are not 

part of the team.

 Sensors are affected by noise, occlusion and poor/variable 

operating conditions (e.g., low light, shadows, hot temperatures, 

etc.)

 Perfect localization is rare; uncertainty in position fluctuates 

over time
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Some Practicalities of 
Physical Robot Research (con’t.)

 Problems caused by symmetry/deadlock sometimes resolve 

themselves due to noise

 Robot motions are constrained by physics, and robot design 

(e.g., limited turning radius, limited acceleration, inefficiencies 

when stopping after each unit move, etc.); they often cannot 

move to arbitrary points

 Robots are faulty – sensors/actuators break

 The outcome of deterministic algorithms on robots is             

non-deterministic (e.g., due to sensing/motion/comms

uncertainty)
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Some Practicalities of 
Physical Robot Research (con’t.)

 Uncertainties (e.g, in position) are typically not uniform, but 

grow over time

 Often, performance (e.g., time, energy) is the metric of most 

significance, not just convergence

 Defining unique IDs for each robot is fairly easy

 Communication of a few bytes of information is fairy easy (via 

wireless or infrared (IR))



© Lynne E. Parker, 2010

Some Practicalities of 
Physical Robot Research (con’t.)

 For many capabilities, SW is not a good substitute for HW.  (i.e., 

in general, a little extra hardware can often make the software 

much simpler)
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How Do You Design Smart Robot Teams?

Sense Reason Act

Environment

Sense Reason Act
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How Does a Robot “Sense”?
Can use vision…

Camera

Marker 3:

ID = 0011000

d = 26”

q = 61o

a = 32o

Marker 2:

ID = 0101010

d = 42” 

q = 86o

a = 0o

Marker 1:

ID = 1010110

d = 23” 

q = 117o

a = 76o

Raw data

“Perceived” info. (using 
intelligent software 

algorithms on robot):



Example of Robots Using Cameras
to Cooperatively Follow the Leader

Parker’s DI Lab, UTK, 2004

Simple camera (CMUCam)

for color blob tracking

Sample image from camera
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How Does a Robot “Sense”?  
Can use laser range scanner…

Laser range
scanner

Raw data
(multiple scans)

“Perceived” info. (using 
intelligent software 

algorithms on robot):
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Example of Robots Using Laser Range
Scanners to Help Push Box

Hoare, UTK, 2009

Lm-hri/visulalization--slowed
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And, there are lots of other sensors…

 “Low-end” camera

 Infrared

 Sonar

 Microphone

 DGPS 

 Compass

 Odometry (wheel encoders)

 Inclinometer (tilt)

 Tactile

 Chemical, radiation, wind, …
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But it’s not so easy for a robot to sense…

What if camera breaks,

or the grass is too high,

or the lens gets dirty,

or the sensor gives bad data,

or 2 sensors tell you contradictory things, 

or the lights get turned off,

or it starts raining,

or, … ?
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How Does a Robot “Reason”?

“Hmm … I see that the blue 

block is on the table.  But I 

want the blue block to be on 

the red block.  So, I’ll pick up 

the blue block and move it.” 

Current Situation Desired Situation
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This Reasoning is called
“Autonomous Planning”

Uses Logical Reasoning (“First Order Predicate Calculus”)

Rules expressed in Logic:

 Action:  MoveBlock(x,y)
– Preconditions:   

Clear(y)  Have(x)
– Effects:  On(x,y)

 Action:  Grab(x)
– Preconditions:  

Clear(x)
– Effects:  Have(x)

 Action: Release(x)
– Preconditions:  

Have(x)
– Effects:  ¬Have(x)

Start

Goal

On(Blue, Table)
On(Red, Green)

On(Blue, Red) On(Red, Green)

Grab(Blue)

MoveBlock(Blue,Red)

Release(Blue)

Clear(Blue)
Clear(Red)

Have(Blue)

¬Have(Blue)

On(Blue,Red)
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And, there are lots of
other ways to “reason”…

 Constraint propagation

 Production (“expert”) systems

 Decision networks

 Probabilistic reasoning

 Dynamic Bayesian networks

 Hidden Markov Models

 Genetic algorithms

 Neural networks

 …
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But it’s not so easy for a robot to reason…

What if blue block is glued to table, 

or you accidentally drop your block,

or somebody keeps knocking down your blocks,

or the pathway is blocked,

or you don’t know what to do,

or by the time you’ve figured out what to do, the world has 

changed,

or the building catches on fire, 

or, … ? 
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How does a robot “act”?
Can use potential fields…

Attractive potential field

Repulsive potential field

Combine

Result:  Avoid obstacles while 

going toward goal
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How Does a Robot Convert “Potential Fields”
to Motion?    Can use wheels…

 “Go forward at 1 meter per second”
– SetMotorState(1)

– SetSpeed(1000,0)

 “Steer hard to the right”
– SetMotorState(1)

– SetSpeed(50,90)

 “Stop!”
– SetSpeed(0,0)

– SetMotorState(0)
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And, there are lots of other ways to move…

 Legs

 Tracks

 Arms

 Wings…
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Example of Robots
Pushing Boxes

L.  Parker, MIT, 1994
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But it’s not so easy for a robot to act…

What if your wheels get stuck,

or your gripper breaks,

or you collide with something,

or your battery gets too low,

or you try to grip something, but it doesn’t work,

or you fall into a hole,

or a car is coming, 

or, …?
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How do Robots Cooperate?
Can communicate local info to each other…

 Share and compare local sensor data:
– Acoustics
– Chemical concentrations
– Visual tracks, …

Parker’s DI Lab, UTK, 2004

Acoustic sensor network:



Example of Sensor Network 
Cooperating with Mobile Robot

Y. Li, UTK, 2007
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But, it’s not so easy for robots to cooperate…

What if some of the robots fail,

or the wireless communication goes down,

or robots can’t find each other,

or one robot un-does what another robot just did,

or one robots thinks push while the other thinks pull,

or one robot refuses to help another,

or, … ?
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Primary Research Challenge 
is Dealing with Uncertainty

 Uncertainties abound in:
– Sensing
– Reasoning
– Acting
– Communicating/Cooperating
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Sensing Uncertainties Abound!

 Sensor failures
 Noisy data
 Conflicting data from multiple 

sensors
 Specular reflection
 Poor operating conditions
 Lack of calibration
 (etc.)



© Lynne E. Parker, 2010

Reasoning Uncertainties Abound!

 Incomplete (often only local) 
information

 “Non-Markovian” environments
 Incomplete models of the world
 Dynamic environments
 Unexpected events
 NP-hard problems require 

approximate solutions
 Lack of common sense reasoning
 (etc.)
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Acting Uncertainties Abound!

 Wheels/legs/etc. do not execute 
perfectly

 Slipping, sliding, friction
 Collisions
 Battery levels
 Mechanisms degrade or fail
 Robot localization difficult
 Poor repeatability
 (etc.)
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Communication/Cooperation 
Uncertainties Abound!

 Noisy wireless communications
– Lost messages
– Delayed messages
– Signal interference

 Unknown state of other robots
 Robots may not recognize each other
 Inter-robot interference/collisions
 Competing priorities
 Heterogeneous robots
 (etc.)
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Illustration of Uncertainty

Parker, et al., 2004
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UT Collaborative Project 
with Univ. degli Studi della Basilicata (Italy):  

Multi-Robot Perimeter Patrol

Impact:

 Allows robots to patrol border in fully 
decentralized fashion, with no 
communication

 Can enable dynamic reaction in 
patrolling due to robot failures, or to 
allow a “friend” robot to pass 
through

Marino, Parker, Antonelli, Caccavale, “Behavioral 

Control for Multi-Robot Perimeter Patrol: A Finite State 

Automata approach”, ICRA 2008.

For more information:

New Ideas:

 Defines behavioral control based on the 
concept of action, obtained by 
combining elementary behaviors in the 
Null-Space-Behavioral Framework

 Uses a finite state automata as a 
supervisor in charge of selecting 
appropriate action
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Movies of Perimeter Patrol
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UT Project in Heterogeneity:  ASyMTRe –
Automated Synthesis of Task Solutions for Teams

Impact:

 Enables robots to share 
sensory/perceptual resources across 
the network

 Enables robots to determine 
appropriate teaming behaviors when 
how to solve a task is dependent on 
team capabilities 

New Ideas:

 Changes fundamental abstraction from 
task to schemas, which can be 
recombined in multiple ways to solve the 
same task in different ways

 Find solutions based on information flow
through network

Parker and F. Tang, “Building Multi-Robot Coalitions 

through Automated Task Solution Synthesis”, 

Proceedings of the IEEE, Special Issue on Multi-Robot 

Systems, 2006

F. Tang and Parker, “Layering ASyMTRe-D with Task 

Allocation for Multi-Robot Tasks”, in ICRA 2007. 

For more information:
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Movie of Heterogeneous Sensor Sharing
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UT Project in Learning:  Schema-Based 
Constructivist Robot Learning via “Chunking”

New Ideas:

 Uses evolutionary learning to generate highly 
fit partial solutions

 Extracts “chunks” of schemas for hierarchical 
learning and future online search

 Extends ASyMTRe search algorithm to employ 
“chunks” of schemas in the online search 
process

Y. Tang and L. E. Parker, “Towards Schema-Based, 

Constructivist Robot Learning: Validating an 

Evolutionary Search Algorithm for Schema Chunking”, 

in ICRA 2008. 

For more information:

Impact:

 Provides a robot learning architecture 
for continuous online and offline 
learning

 Enables schema based learning via 
“chunking” (building higher hierarchical 
schemas as a congregation of lower 
hierarchical schemas)
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UT Project in Learning: 
Anomaly Detection in Mobile Sensor Networks

Impact:

 Provides general approach to anomaly 
detection 

 Approach applicable to many 
applications (e.g., intruder detection, 
environmental monitoring, etc.)

New Ideas:

 Make use of FuzzyART (Adaptive Resonance 
Theory) for learning “normal” and detecting 
anomalies

 Create new category when sensor input is 
significantly different from what has been seen 
before

 Mobile nodes (robots) respond to anomalies in 
sensor network

Parker and Li, “Detecting and monitoring time-related 

abnormal events using a wireless sensor network and 

mobile robot”, in Proc. of IEEE Int’l. Conf. on 

Intelligent Robots and System, 2008.

Li and Parker, “A spatial-temporal imputation 

technique for classification with missing data in a 

wireless sensor network”, in Proc. of IEEE Int’l. Conf. 

on Intelligent Robots and System, 2008.

For more information:
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UT Project in Fault Detection – SAFDetection:
Cooperative behavior monitoring for fault detection 

Impact:
 General approach to cooperative fault 

detection that does not require extensive 
modeling of control

 Increases robustness of team through 
easier detection of tightly-coupled task 
problems

New Ideas:
 Monitor sensor data in multi-robot coalitions to 

learn model of expected behavior

 “Black box” sensor model makes use of feature 
selection, fuzzy c-means clustering, HMMs to 
learn “normal”

 Use online monitoring to detect errors in 
cooperation – either hard faults, logic faults, or 
coalition faults

• Li and Parker, “Sensor Analysis for Fault 

Detection in Tightly-Coupled Multi-Robot    

Team Tasks”, in Proc. of IEEE Int’l. Conf.  

on Robotics and Automation, 2007.

• Li and Parker, “Distributed Sensor Analysis 

for Fault Detection in Tightly-Coupled Multi-

Robot Team Tasks”, Proc. of IEEE Int’l. 

Conf. on Robotics and Automation, 2009.

For more information:
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Movies of SAFDetection
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UT Project in 
Peer-to-Peer Human-Robot Teaming

Impact:

 Should be more natural to humans

 Could enable human-robot 
coordination in communications-
limited environments

 Could allow humans and robots to 
work together in a manner similar to 
human-only teams today

New Ideas:

 Humans and robots work on shared 
cooperative activity in same physical 
space 

 Robot and human work as equal peers, 
with robot being attentive to goals and 
intentions of human

 No explicit communication between 
human and robot

Example of human-only peer-to-peer team:

Fireteam of soldiers clearing a building; 

through training, they understand well 

how to interact and work as a team, with 

minimal need for explicit communication

Our objective is to add robots to this type of team, 

while maintaining the same “natural” interaction 

capabilities within the team
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Movie of HRI

 P2P-Robot-Right-2x.mpeg
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Some Unifying Themes

 Make use of sensor-based machine learning to learn relevant patterns:
– E.g., patterns of “normal” behavior; or patterns of “useful” behavior
– Examples of techniques employed:

• Fuzzy Adaptive Resonance Theory Neural Networks
• Hidden Markov Models, extended with time duration in state
• Conditional Random Fields
• Case-based reasoning
• Fuzzy C-Means clustering
• Principal components analysis

 Use learned models:
– To detect “off-normal” events, for fault detection
– To recognize current state of cooperation, for proper action selection
– To extend robot capabilities

• Via constructivist learning
• Via genetic algorithms
• Via cross-application transfer of learning
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Overview of Multi-Robot Systems

 Applications
 Communication
 Swarm Robots
 Heterogeneity
 Task Allocation
 Learning
 Architectures for Multi-Robot Systems
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Categorizing Multi-Robot Systems

 Cooperative robotics field is often divided according to a 
number of criteria:
– Collective (swarm) cooperation

• Many robots; sub-symbolic communication
(possibly implicit)

• Typically uses insect society cooperation model

– Homogeneous vs. Heterogeneous systems
• Sensors, actuators and behavior
• Affects communication possibilities

– Centralized vs. Distributed
• Centralized systems typically use classical-AI planning, rather than 

being “behavior-based” (new AI)

[Mataric et. al. USC/MIT]

[Murphy et. al. 

USF]



© Lynne E. Parker, 2010

Commonly Studied Tasks
for Multi-Robot Teams

 Foraging and Coverage: collection of randomly placed items

 Formations and flocking: team maintains a geometric pattern while 
moving

 Box pushing / cooperative manipulation: team collectively moves 
object

 Multi-target observation: team maintains targets within field of view

 Traffic control / multi-robot path planning: coordinating actions in 
shared space

 Multi-robot soccer: game that incorporates challenging aspects of 
cooperation
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Multi-Robot  Communication

Objective of communication:  Enable robots to 
obtain “enough” information about teammates’ 
states/actions to allow team to achieve globally 
coherent solution.

Three (3) most common techniques:
– Implicit communication through the world (stigmergy)

– Passive action recognition, which uses sensors to 
observe actions/state of teammates

– Explicit communication, involving active, intentional 
transmission of signals (e.g., wireless comms or 
flashing lights)

Balch and Arkin

Jung and Zelinsky
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Swarm-Type Motion Coordination

 Lots of types of motion coordination:

– Relative to other robots:

• E.g., formations, flocking, aggregation, dispersion…

– Relative to the environment:

• E.g., search, foraging, coverage, exploration …

– Relative to external agents:

• E.g., pursuit, predator-prey, target tracking …

– Relative to other robots and the environment:

• E.g., containment, perimeter search …

– Relative to other robots, external agents, and the environment:

• E.g., evasion, soccer …
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Some recent “swarm” robotics (2004)

 James McLurkin, MIT and iRobot
 Developed libraries of “swarm” behaviors, such as:

– avoidManyRobots
– disperseFromSource
– disperseFromLeaves
– disperseUniformly
– computeAverageBearing
– followTheLeader
– navigateGradient
– clusterIntoGroups
– …

 For more information:  “Stupid Robot Tricks: A Behavior-
Based Distributed Algorithm Library for Programming 
Swarms of Robots, James McLurkin, Master’s thesis, 
M.I.T., 2004. 

http://people.csail.mit.edu/jamesm/McLurkin-SM-MIT-2004(72dpi).pdf

SwarmBots
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McLurkin’s Robot Swarms

 Approach to generating behaviors is similar to early work 
of Reynolds (Boids) and  Mataric (Nerd Herd), in principle

 Primary differences:  
– Algorithms more tuned to the SwarmBot
– More exhaustively tested
– Parameters explored, 
– More kinds of behaviors,
– etc.
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Movies of SwarmBots
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Movies of SwarmBots (con’.t)
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Movies of SwarmBots (con’.t)
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Movies of SwarmBots (con’.t)
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Additional Topics to be 
Discussed in Next Talk

 Heterogeneity

 Task Allocation

 Architectures for Multi-Robot Systems


