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The Rendezvous Problem

Problem
How should two mobile agents move along the nodes of a
network so as to ensure that they meet (rendezvous)?

Interesting questions
What is the ‘weakest’ possible condition which makes rendezvous
possible?

power (e.g. agents leaving messages at nodes, or having
tokens)
memory (e.g. for counting)
knowledge (e.g. number of nodes in the network)
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Strong Models...

[Yu, Yung, 1996]
Unsolvable in an arbitrary graph if the agents use the same
deterministic algorithm.

[Baston, Gal, 2001]
Randomized algorithms or different deterministic algorithms.

[Kowalski, Pelc, 2004], [De Marco et al, 2005], [Dessmark et al,
2006]
Symmetry was broken by assuming that robots have distinct labels.
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...and Weaker Models.

[Barriere et al, 2003], [Dobrev et al, 2004]
Anonymous agents leaving messages at nodes.

[Kranakis et al, 2003], [Sawchuk, 2004], [Gasieniec et al, 2006],
[Czyzowicz et al, 2008
Anonymous agents using tokens in a ring.

[Flocchini et al, 2004]
Multiple agents in a ring.
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Our model (I) [Kranakis, Krizanc, Markou, LATIN06]

Two identical mobile agents
1 placed in an n×m anonymous, synchronous and oriented

torus.
2 running the same deterministic algorithm and carrying

indistinguishable tokens.
3 have no knowledge about the size of the torus.
4 know the number of tokens they have.
5 start at the same time.
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Our model (II)

At any single time unit a mobile agent occupies a node v of the
torus and may

stay there or move to an adjacent node,
detect the presence of one or more tokens at v ,
release/take one or more tokens to/from v .

Agent’s power
Memory permitting, an agent can count the number of nodes
between tokens.
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Our Questions

Is it possible to construct a deterministic algorithm
which, after a finite time, leads the agents to rendezvous at a node
or while crossing an edge?
(no matter what are their starting positions or the size of the
torus).

What is the minimum
time (edge traversals) needed for rendezvous?
memory needed?
number of tokens?

Trade-offs
Between memory and movable or unmovable tokens
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Two Identical Agents Using Tokens
in an Anonymous Oriented Synchronous Ring.

[Kranakis et al, 2003]
One unmovable token: Ω(log log n) memory for rendezvous
with detection.
One movable token: Constant memory for rendezvous
without detection.

[Gasieniec et al, 2006]
One movable token: Ω(log log n) memory for rendezvous with
detection.
Two movable tokens: Constant memory for rendezvous with
detection.
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Rendezvous With Detection vs
Rendezvous Without Detection.

Lemma [KKM]
Let (0, 0) be the initial position of agent A on the torus. If B’s
initial position is either (n/2, 0) or (0, m/2) or (n/2, m/2) then the
agents are incapable of meeting each other (no matter how many
movable tokens, or how much memory they have).

Definitions
Rendezvous Without Detection (RV): the agents meet each
other if their initial distance is other than above,
Rendezvous With Detection (RVD): otherwise they stop and
declare that rendezvous is impossible.
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Ring vs Torus

RVD requires Θ(log log n) RVD requires Θ(log n)

RV in constant mem RVD requires Θ(log n)

RVD in constant mem n x n: RVD in constant mem
n x m: RV in constant mem

RVD in constant mem
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Memory Lower Bounds for Rendezvous. [KKM]

Two agents in a n × n torus:
With a constant number of unmovable tokens need at least
Ω(log n) memory, each.
With one movable token need at least Ω(log n) memory, each.
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Rendezvous Algorithms in a n ×m Torus. [KKM]

One unmovable token and O(log n + log m) memory
RVD in O(n ·m) time units.

Two movable tokens and constant memory
RVD in a n × n torus after O(n2) time units,
RV in a n ×m torus after O(n2 + m2) time units; (can be
adapted to RVD if n, m have a specific relation).

Three movable tokens and constant memory
RVD in O(n2 + m2) time units.
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One Agent in a n × n Torus.

Lemma
An agent without any tokens needs at least Ω(log n) memory to
visit all nodes of the torus.

Idea: After at most n repetitions of the first repeated state the
agent does not visit new nodes.

Lemma
An agent with a constant number of unmovable tokens needs at
least Ω(log n) memory to visit all nodes of the torus.
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Two Agents with one Unmovable Token
need at least Ω(log n) Memory to Rendezvous.

A's token B's token

Idea: After placing agent A, place agent B so that:
B releases its token at a node not visited by agent A and
B avoids visiting the node where A’s token lies.
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Constant number of Unmovable Tokens vs
one Movable Token.

Lemma
Two agents with a constant number of unmovable tokens need at
least Ω(log n) memory to rendezvous.

Lemma
Two agents with one movable token each need at least Ω(log n)
memory to rendezvous.

Idea: place the agents so that in any phase which starts when the
agents move their tokens, up to the moment that they move their
tokens again they do not meet each other’s token.
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RVD in a n ×m Torus with one Unmovable Token and
O(log n + log m) Memory in O(n ·m) steps.

A's token B's token

Same-Ring: count horizontally; count vertically.
Different-Ring: search one by one the horizontal rings.
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RVD in a n × n Torus with two Movable Tokens and
Constant Memory in O(n2) steps (I).

start

1. Scan Horizontally
Decide whether you have started on the same ring or not.
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RVD in a n × n Torus with two Movable Tokens and
Constant Memory O(n2) steps (II).

2. RVD in a Ring
If you have started in the same
ring then RVD in the ring.
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RVD in a n × n Torus with two Movable Tokens and
Constant Memory O(n2) steps (III).

T1(A)

T2(A)

T2(B)

T1(B)

3. Mark a path
Mark a path with your tokens and try to ‘catch’ the other.
Not succeeded? then it should hold dy = n/2.
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RVD in a n × n Torus with two Movable Tokens and
Constant Memory O(n2) steps (IV).

start

4. Scan Vertically
Scan vertically and try to ‘catch’ the other.
Not succeeded? then it should also hold dx = n/2.
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RV in a n ×m Torus with two Movable Tokens and
Constant Memory in O(n2 + m2).

1

2 3

4

(a)

1

2 3

4

(b)

Different ring?
1 Build-Rectangle,
2 Chase the other

Can be adapted to an
RVD algorithm when:
m−1

10 ≤ n ≤ 10m + 1
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RVD in a n ×m Torus with three Movable Tokens and
Constant Memory in O(n2 + m2).

1

2 3

4

(a)

1

2 3

4

(b)

Different ring?
Build rectangle and move your third token along the rectangle (like
the RVD algorithm in a ring with two tokens)
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Conclusion - Open Questions

Conclusion on the torus
A constant number of unmovable tokens are less powerful
than two movable tokens.
The hierarchy collapses on three tokens.

Open - Questions
Are three movable tokens strictly more powerful than two with
respect to RVD? (Is RVD possible with two movable tokens
and constant memory in a n ×m torus?)
d−dimensional torus? (Is it true that with d − 1 movable
tokens the agents need Ω(log n) memory? Is RVD possible
with d movable tokens and constant memory?)
not oriented, asynchronous torus? gathering?
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Other Results.

Multiple agents [Flocchini et al, 2004]
k robots equipped with one stationary token each, in a n-nodes
synchronous unoriented ring.

If both n, k are unknown to robots then rendezvous is
unsolvable
If k is known rendezvous can be solved with O(log n) memory.
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Other Results.

Failing tokens [Flocchini et al, 2004]
k robots equipped with one stationary token each, in a n-nodes
synchronous unoriented ring. At most k − 1 tokens may fail (no
longer visible to any robots).

If all tokens fail or gcd(k ′, n) 6= 1 for some k ′ ≤ k, then
rendezvous is unsolvable
If both n, k are unknown to robots then rendezvous is
unsolvable
If n or k is known, gcd(k ′, n) = 1 for all k ′ ≤ k, rendezvous
can be solved with O(k log n) memory.
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Other Results.

Faulty tokens
asynchronous rings [Das, 2008]
arbitrary graphs [Das et al, 2008]
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Other Results.

Rendezvous in spite of a black-hole [Dobrev et al, 2003]
k robots in a n-nodes asynchronous ring in spite of a black hole.

It is impossible for all k agents to rendezvous
If the ring is unoriented, then it is impossible for k − 1 agents
to rendezvous
Either n or k must be known
If k is known then rendezvous is solvable in an oriented ring
with whiteboards
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The Gathering Problem

The Gathering Problem
Mobile entities (robots), initially situated at different locations,
have to gather at the same location (not determined in advance)
and remain in it.
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The Gathering Problem

A very weak scenario
decentralized
asynchronous
no common knowledge
no identities
no central coordination
no direct communication
oblivious
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The Gathering Problem

Difficulties
The robots have to break symmetry by agreeing on a common
meeting location,
they cannot communicate directly but have to make decisions
about their moves only by observing the environment,
they have no memory and they operate asynchronously in an
anonymous network.
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Related Work.
Anonymous identical robots that cannot send any messages and
communicate with the environment only by observing it. This
model was initially used to study deterministic gathering in the
case of robots moving freely in the plane.

[Cieliebak, 2004]
Robots have memory.

[Ando et al, 1999], [Flocchini, Peleg, Prencipe, ...]
Robots are oblivious, i.e., they do not have any memory of past
observations.

[Ando et al, 1999], [Suzuki, Yamashita, 1999]
Cycles are executed synchronously by all active robots.
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Getting closer to our model.

[Cieliebak et al, 2004], [Cohen, Peleg, 2004]
Cycles are executed asynchronously.

[Flocchini, Prencipe, Santoro, Widmayer, 2005]
Gathering is possible in the asynchronous model if robots have the
same orientation of the plane, even with limited visibility.

[Cieliebak, 2003], [Prencipe, 2005]
Without orientation:

gathering is possible when the robots have the capability of
multiplicity detection,
gathering is impossible otherwise.
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Our model (I) [Klasing, Markou, Pelc, TCS08]

A number of identical mobile agents (robots)
placed in an anonymous and unoriented ring (at most one
robot at a node),
operate in Look-Compute-Move cycles.

In one cycle, a robot based on the perceived configuration,
takes a snapshot of the current configuration (Look), then,
makes a decision to stay idle or to move to one of its adjacent
nodes (Compute),
and in the latter case makes an instantaneous move to this
neighbor (Move).
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Our model (II) [KMP]

Rules
1 Cycles are performed asynchronously for each robot.
2 Moves are instantaneous.
3 The robots are memoryless (oblivious), i.e. they do not have

any memory of past observations.
4 The robots are anonymous and execute the same

deterministic algorithm.

Observations
Robots move based on significantly outdated perceptions.
The target node is decided by the robot during a Compute
operation, solely on the basis of the location of other robots
perceived in the previous Look operation.
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Main Results [KMP]

Gathering is impossible for any number of robots under this weak
scenario. We add multiplicity detection capability.

For an odd number of robots:
Gathering is feasible if and only if the initial configuration is
not periodic.
We give a gathering algorithm for any such configuration.

For an even number of robots:
We decide feasibility of gathering except for one type of
symmetric configurations.
We provide gathering algorithms for initial configurations
proved to be gatherable.
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A view of a configuration

A B

C

D

E

Configuration by A
((2, 3, 3, 1, 3), (5, 9))

Configuration by B
((3, 3, 1, 3, 2), (3, 7))

Configuration by C
((3, 1, 3, 2, 3), (0, 4))

View of robot A

{((2, 3, 3, 1, 3), (5, 9)), ((3, 1, 3, 3, 2), (3, 7))}
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A periodic configuration

A
B

C

DE

F

Periodic configuration
A configuration without
multiplicities is called periodic
if it is a concatenation of at
least two copies of a
subsequence p.

Configuration by A
(2, 3, 1, 2, 3, 1)

View of robot A

{(2, 3, 1, 2, 3, 1), (1, 3, 2, 1, 3, 2)}
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A symmetric (and periodic configuration)

A
B

C

D

E

FG

H

I

Symmetric configuration
A configuration without
multiplicities is called
symmetric if there exists an
axis of symmetry of the ring,
such that the set of the nodes
occupied by robots is
symmetric with respect to this
axis.

View of robot A

{(2, 2, 1, 2, 2, 1, 2, 2, 1), (1, 2, 2, 1, 2, 2, 1, 2, 2)}
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Property lemmas

Definition
A configuration without multiplicities is called rigid if the views of
all robots are distinct.

Lemma
A configuration without multiplicities is non-rigid, if and only if it
is either periodic or symmetric.

Lemma
If a configuration without multiplicities is non-rigid and
non-periodic then it has exactly one axis of symmetry.
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Impossibility results

Lemmas
1 Gathering any 2 robots is impossible on any ring.
2 If multiplicity detection is not available then gathering any

k > 1 robots is impossible on any ring.

Theorems
1 Gathering is impossible for any periodic configuration.
2 Gathering is impossible for any edge-edge symmetric

configuration.
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Gathering configurations with a single multiplicity

Procedure Single-Multiplicity-Gathering

if R is at the multiplicity then do not move
else

if none of the segments between R
and the multiplicity is free

then do not move
else move towards the multiplicity along the shortest

of the free segments or along any of them
in the case of equality.

Lemma
Procedure Single-Multiplicity-Gathering performs gathering of
robots for any configuration with a single multiplicity.
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Gathering configurations with a single multiplicity

A B

C

D

E

Configuration by A
((2, 3, 3, 1, 3), (5))

Configuration by B
((3, 3, 1, 3, 2), (3))

Configuration by C
((3, 1, 3, 2, 3), (0))

View of robot A

{((2, 3, 3, 1, 3), (5)), ((3, 1, 3, 3, 2), (7))}
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Gathering rigid configurations

Procedure Rigid-Gathering
elect a pair of neighboring robots A, B at a maximum distance
choose the robot which has the other neighboring robot closer
(∗ ties can be broken easily ∗)
move the elected robot towards the direction which increases
the maximum distance

Lemma
Procedure Rigid-Gathering performs gathering of robots for any
rigid configuration without multiplicities.
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choose the robot which has the other neighboring robot closer
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move the elected robot towards the direction which increases
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Gathering rigid configurations

A
B

C

D

E

Configuration by A
(3, 3, 3, 2, 1)

Configuration by B
(3, 3, 2, 1, 3)

Configuration by C
(3, 2, 1, 3, 3)

View of robot A

{(3, 3, 3, 2, 1), (1, 2, 3, 3, 3)}
Euripides Markou Deterministic Algorithms for the Rendezvous problem in Networks



Motivation
Tokens model

Look-Compute-Move model
Conclusion - Open Questions

Related Work
Our Model
Impossibility Results
Gatherable Configurations

Gathering an odd number of robots

Algorithm Odd-Gathering

if the configuration is periodic then gathering is impossible
else

if the configuration has a single multiplicity
then Single-Multiplicity-Gathering
else

if the configuration is rigid then Rigid-Gathering
else

if R is axial then move (to any of the
adjacent nodes)
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Gathering an odd number of robots

A

D

E B

C

Configuration by A
(2, 2, 4, 2, 2)

Configuration by B
(2, 4, 2, 2, 2)

Configuration by C
(4, 2, 2, 2, 2)

View of robot A

{(2, 2, 4, 2, 2), (2, 2, 4, 2, 2)}
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Gathering an odd number of robots

Let C be a symmetric configuration of an odd number of robots,
without multiplicities. Let C ′ be the configuration resulting from C
by moving the axial node to any of the adjacent nodes.

Lemma
If C ′ does not have multiplicities then it is not periodic.
Proof: Since C is symmetric, C ′ is of the form
(a + 1, b1, . . . , bs−1, bs , bs−1, . . . , b1, a− 1). Suppose that C ′ has a
period d of length p. Then d1 = a + 1, dp = a − 1. But because
of C ’s symmetry, dp = d1. Contradiction.
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Gathering an odd number of robots

Lemma
After less than k moves, either the configuration C ′ has a single
multiplicity or it is rigid.
Proof: Let x be the distance between the axial robot and anyone
of its neighbors.

1 Exactly one value appears in C an odd number of times.
2 In C ′ this value is either x − 1 or x + 1.
3 The total number of occurrences in C ′ of integers of different

parity than this value is strictly less than in C .

Theorem
For an odd number of robots, gathering is feasible if and only if
the initial configuration is not periodic.
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Gathering an even number of robots

Theorem [Klasing, Kosowski, Navarra, 2008]
Gathering is possible for any non-periodic configuration without
edge-edge symmetry of more than 18 robots.

Euripides Markou Deterministic Algorithms for the Rendezvous problem in Networks



Motivation
Tokens model

Look-Compute-Move model
Conclusion - Open Questions

Conclusion

For an odd number of robots
gathering is feasible if and only if in the initial configuration,
robots can elect a node occupied by a robot.

For an even number of robots
gathering is impossible when

either the number of robots is 2, or
the configuration is periodic or,
there is an edge-edge symmetry

gathering is feasible for all non-periodic configurations without
edge-edge symmetry of more than 18 robots
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Other results.

Fault tolerance for robots in the plane [Agmon, Peleg, 2006]
Limited visibility in the plane [Flocchini, 2005]
Gathering in edge-labeled graphs [Chalopin, Flocchini, Mans,
Santoro, 2009]
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Open Questions

Problems
Identify impossibility of rendezvous
Other communication models
Trade-offs among time-memory-knowledge-equipment
Fault tolerance
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Thanks!
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