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Gathering Problem

All robots meet at one point

Basic Results (Deterministic Algs.)
Impossible [Suzuki and Yamashita SICOMP’96]

ATOM (Semi-sync, SYm) & 1-bounded
#robots = 2
No multiplicity
No agreement of coordinate systems
Oblivious



Gathering Problem

All robots meet at one point

Known Results (Deterministic Algs.)
Impossible [Suzuki and Yamashita SICOMP’96]

ATOM (Semi-sync, SYm) & 1-bounded
#robots = 2
No multiplicity
No agreement of coordinate systems
Oblivious

In the following slides of the first topic, 
we assume them without explicit statement … 

We use terminology “ATOM”



Employing Randomization

Key difficulty : Hardness of symmetry 
breaking

Randomized gathering is easy
A simple algorithm for two robots

stay with probability 1/2
approach to the other with probability 1/2

Randomization will be helpful !!



Exponential Growth of Running Time

It achieves gathering for n robots, but..
not poly(n) ,  but exp(n) expected running 
time

Can we have poly(n) algorithm? 

x robots

n-x robots

the prob. all robots approach = (1/2)x

the prob. all robots stay = (1/2)n-x



Impossibility

No probabilistic gathering with poly(n) 
expected running time

ATOM & 2-bounded
No multiplicity

activated activated
activated・・・

exponentially
small prob.

Gathered

decrease #location 
by round-robin activation

#location  = 2



The Question

The impossibility implies an additional 
assumption is necessary to achieve 
poly(n)-time probabilistic gathering

What is the weakest assumption?



Our Focus : Multiplicity Detection

Detection capability of two or more 
robots on the same location

Known class of multiplicity detection
1. No multiplicity : observed as a single robot
2. Weak multiplicity : detect more than one

1. the observer cannot know the exact #robots
3. Strong multiplicity : detect  #robots

There exists a deterministic gathering alg.
CORDA & ∞-bounded, no initial multiple location  
[Cieliebak et al. TCS’05]



The Cases of Initial Multiple Locations

Deterministic algs. : impossible
The argument of two points with n/2 robots
ATOM & 1-bounded, Strong

Randomized algs. : possible[Clement et al. IPL’10]

ATOM & ∞-bounded,                            
predictable and unlimited move

Complexity
Strong : O(n) movements, O(1) async. rounds
Weak : O(n ・logn loglogn) movements, 

O(lognloglogn) asyhc. rounds



Locality of Multiplicity Detection

How about further weaker capability?
New criterion of multiplicity  : Locality

The observer can detect only the multiplicity of 
its current location

New five classes of multiplicity 
detection

No multiplicity
Local weak multiplicity
Global weak multiplicity
Local strong multiplicity
Global strong multiplicity 



Known Randomized Solutions

Local Strong
Upper bound: O(n) move, O(1) async. rounds

ATOM & 1-bounded, initial multiple locations, 
predictable and unlimited move
but easy to extend it to k-bounded for k < ∞

Local Weak 
Lower bound: Ω(exp(n))

ATOM & 1-bounded, initial multiple locations 
Upper bound: O(n) move, O(1) async. rounds

ATOM & 1-bounded, no initial multiple locations, 
predictable and unlimited move
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Algorithm for Local-Strong Multiplicity

Composition of two subalgorithms
ML (Making Line)

All robots are lined with O(n) movements
no randomness necessary
no multiplicity detection necessary

GfL(Gathering from Line)
Probabilistic Gathering on one-dimensional space
Taking O(n) movements and One round, all 
robots are gathered with constant prob.
Multiplicity detection plays an important role 



Algorithm GfL(1)

First, reduce to a two-point 
configuration

Inner robots moves to the nearest endpoint

PkP2
move to Pk

P1
move to P1

P3 Pk-1・・・・

move to P1

PkP1



Algorithm GfL(2)

Two points to one
Idea: Higher multiplicity stays with higher 
probability

stay with prob. (          )1- 1
2m

n-m robots m robots

P1 P2 move to P3
with prob. 1/4m

2|P1P2|

P3
move to P1
with prob. 1/4m

The algorithm



n-1 robots

P1 P3

one robot

n-m robots m - 1 robots

P1 P2 P3

one robot

With const. prob.

Expected  Behavior 

n-m robots m robots

P1 P2 2|P1P2| P3

With a constant prob.
no robot moves

n robots

P1

Deterministic

With. cont. prob.With a constant prob.
no robot moves

With a constant prob.  
exactly one robot moves to P3

With a constant prob.  
the robot moves to P1

Gathered !

(Occurring With Const. Prob.)



Known Randomized Solutions

Local Strong
Upper bound: O(n) move, O(1) async. rounds
ATOM & 1-bounded, initial multiple locations, 
predictable and unlimited move

but easy to extend it to k-bounded for k < ∞

Local Weak 
Lower bound: Ω(exp(n))

ATOM & 1-bounded, initial multiple locations 
Upper bound: O(n) move, O(1) async. rounds

ATOM & 1-bounded, no initial multiple locations, 
predictable and unlimited move



The difficulty

How can we avoid two-point symmetric 
case?

Only the way is using multiplicity information
But #robots is not available

So, we need the following situation

The problem caused by locality
No robot can detect which location is multiple

n-1 robots 1 robot



Algorithm for Local-Weak Multiplicity(1/3)

Invariant : Circular Configuration
There exists a circle C (corresponding circle) 
s.t.

At least one robot is on the center of C
All other robots are on the boundary of C

Easy to construct from 
the smallest enclosing 
circle



Algorithm for Local-Weak Multiplicity(2/3)

All robots on the boundary go to the 
center of C

The Center is almost invariant until 
#location = 2

Corresponding 
Circle C

Center of C



Algorithm for Local-Weak Multiplicity(2/3)

Two exceptional cases
Regular Diamond
Regular Triangle

P3P1

P2

P4

P1 P2

P3

Circular but C is not uniquely determined



Algorithm for Local-Weak Multiplicity(2/3)

The necessary condition to occur 
exceptional cases

Two robots on the boundary form the 
center angle π/3

P3P1

P2

P4

P1 P2

P3

π/3
π/3



Algorithm for Local-Weak Multiplicity(2/3)

The main idea:
“Shake” center angles via randomization
Moves to the center after angle π/3 
disappears

Center of C



Open Problems (1)

Deterministic alg. with Local multiplicity
Strong, ATOM & k-bounded,              
Predictable and unlimited move,                
No initial multiple points

Randomized alg. with Local multiplicity
Strong/Weak, Atom & k-bounded,
Unpredictable move, 
No initial multiple point

How can we measure the complexity on 
unpredictable move models?

An idea: measuring on predictable models.



Open problem (2)

Lower Bound for Global-Weak multiplicity
Known Upper bound: O(log n) (maybe)
Is it optimal?

Randomized Gathering on CORDA
Initial multiple points
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Byzantine Gathering Problem

All correct robots meet at one point
Known Results

Impossible for n=3 and f=1                                 
[Agmon and Peleg SODA’03,SICOMP’06]

ATOM, ∞-bounded, uniform, oblivious,                
no agreed coord. , deterministic

Impossible for general n and f                        
[Clement et al. DISC’06]

ATOM, n/f-bounded, anonymous ,oblivious, no 
agreed coord. , deterministic

Possible for general n and f s.t. n > 3f+1
[Agmon and Peleg SODA’03,SICOMPY06]

Full-Sync, uniform, oblivious, no agreed coord., 
deterministic

Sorry, I made mistake 
yesterday



Faulty Robots

Fault model
Crash : Stop working
Byzantine : Arbitrary Behavior

We assume Byzantine behavior is bound 
by k-bounded scheduler constraint

If we remove this assumption, our 
impossibility is strengthened



Impossibility for Stronger Condition

All of previous results derive from :

Not easy (not possible?) to apply them 
to non-oblivious, non-uniform, or 
agreed-coordinate-system robots

Geometric Argument
+ Hardness of Symmetry Breaking



Our Result

Strong Impossibility for Byz. Gathering
general n and f
ATOM, (n/f+1)-bounded
non-oblivious
non-uniform
agreement of coordinate systems

both orientation and direction

New versatile proof technique not 
relying on geometric argument

Formation
(Any pattern)



The Proof Idea : An Analogy to Consensus Problem 

(Binary) Consensus problem
Not a problem on robot systems
Each process first proposes one or zero
All correct processes decide a common value
The decision must be one of proposals

(Byzantine) Gathering ≒ Consensus Problem

Processes Processescooperation

1 0 0 1 1 1 1 1



Reduction from Shared-memory Consensus

Consensus problem is not solvable
Asynchronous shared-memory systems
One crash fault (not Byzantine!)

Reduction Strategy (Case of f = 1)
Simulate 1-Byzantine Robot system on 
Asynchronous 1-Crash shared-memory 
system
Solving Consensus via Gathering



Asynchronous Atomic Snapshot Model

We use a variation of Asynchronous 
shared-memory models

Read, Write, and Snapshot

Equivalent to the standard model
1-crash resilient consensus is not solvable

Processes

Read, Write, Snapshot

Atomic reading of all shared memory

Shared Memory



Naïve Idea(1/2)

Prepare the shared array of size n
i-th entry = the state of i-th robot

“state” includes the current location and 
internal state of i-th robot

The i-th process simulates i-th robot
Look =  Atomic Snapshot
Move = Write to the i-th entry

・・・



Naïve Idea(2/2)

For each proposal v
Set initial location to (v, 0)

Decision
All robots gathered at (1,0) → decide(1)
Otherwise → decide(0)

(1,0) (0,0) (0,0) (0,0) (1,0) (1,0)・・・

1 0 0 0 1 1



Naïve Idea does not work

The simulation is not 1-crash resilient
If some process is initially crashed,                   
one robot is lost → Simulation failed!

(1,0) (0,0) (0,0) (0,0) (1,0)・・・

1 0 0 0 1



Our 1-reisilient Simulation

Key Technology: BG-simulation
[Borowski and Gafni, STOC’93]

Simulation by two processes
Use Slot structure

One value is committed when no process is 
at the slot

x

y

x

y
x

y
committed entry

yy y

x

y

x

y
x

y



Our 1-resilient simulation

Array of slots with infinite size
One slot = one movement of robot

Each process simulates all n robots in 
round-robin manner

k-th Slot = (k mod n+f)-th robot’s 
movement

(1,0) (1,0) (1,0) (1,0) (1,0)
・・・

0 1

(0,0) (0,0) (0,0) (0,0) (0,0)

committed entry

・・・

r0 r1 r2 r3 r4 rn-1 r0



Our 1-resilient simulation

Simulation of k-th Slot
Observe (k-n)-th to (k-1)-th
Compute the destination and write it to k-th

xi xi+1 xi+2 xi+3 xi+4
・・・

0 1

yi yi+1 yi+2 yi+3 yi+4

committed entry

・・・

ri ri+1 ri+2 ri+3 ri+4 ri+n-1 ri+n

xi+n-1

yi+n-1

Current Confiiguration



Our 1-resilient simulation

Process crash (or slowdown)
One slot may be uncommitted

→ Current configuration cannot be 
determined

xi xi+1 xi+2 xi+3 xi+4
・・・

0 1

yi yi+1 yi+2 yi+3 yi+4

committed entry

・・・

ri ri+1 ri+2 ri+3 ri+4 ri+n-1 ri+n

xi+n-1

yi+n-1

Current Confiiguration

not committed



Our 1-resilient simulation 

Uncommitted slot has two values
only one is committed

Main Idea: uncommitted value = Byzantine
Actually, we simulate (n+1)-robot systems!
Interpretation of the below situation

Current Conf. = (xi, yi+1, yi+2, xi+3, xi+4 … xi+n-1, yi+3)

xi xi+1 xi+2 xi+3 xi+4
・・・

yi yi+1 yi+2 yi+3 yi+4
・・・

ri ri+1 ri+2 ri+3 ri+4 ri+n-1 ri+n

xi+n-1

yi+n-1

Current Confiiguration
Byzantine



Our 1-resilient simulation 

When all slots are correctly committed
Add a “dummy” location for Byzantine robots
Interpretation of the below situation

Current Conf. = (xi, yi+1, yi+2, xi+3, xi+4 … xi+n-1, (0,0))

xi xi+1 xi+2 xi+3 xi+4
・・・

yi yi+1 yi+2 yi+3 yi+4
・・・

ri ri+1 ri+2 ri+3 ri+4 ri+n-1 ri+n

xi+n-1

yi+n-1

Current Confiiguration



Conclusion

Strong Impossibility Result for 
Byzantine Formation

New Proof Technique
Reduction from the consensus problem on 
Asynchronous Atomic Snapshot models
Reduction = simulation algorithm

A number of tricks to achieve 1-resiliency

Classical DC theory helps robot theory!



Open problems

Deterministic Byzantine gathering
ATOM & k-bounded for k < n/f, non-
oblivious, non-uniform, agreed coord. , 
predictable and unlimited move

poly(n)-Randomized Byzantine gathering
Weaker condition than the above

Further strong impossibility for CORDA
Conjecture: Only one-shot Byzantine 
behavior prevents the gathering



Open Problems

Byzantine Formation
Some patterns are probably impossible

Even if we assume strong assumptions
What are formable patterns?

Finding other bridges to classical DC 
theory

e.g. reduction from renaming, 
set consensus, and so on…



Thank you!
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