Gathering Problem Assorted

Taisuke Izumi
(Nagoya Institute of Technology)

MAC2010 meeting @ Ottawa

Gathering with Local-Multiplicity Detection

Taisuke Izumi (Nagoya Institute of Technology)
Tomoko Izumi (Ritsumeikan University)
Sayaka Kamei (Hiroshima University)
Fukuhito Ooshita (Osaka University)

Gathering Problem

- All robots meet at one point
- Basic Results (Deterministic Algs.)
- Impossible [Suzuki and Yamashita SICOMP'96]
- ATOM (Semi-sync, SYm) \& 1-bounded \#robots = 2
- No multiplicity

No agreement of coordinate systems

- Oblivious

Gathering Problem

- All robots meet at one point
- Known Results (Deterministic Algs.)
- Impossible [Suzuki and Yamashita SICOMP'96]
- ATOM (Semi-sync, sym) \& 1-bounded
\#robots = 2
- No multiplicity

We use terminology "ATOM"

In the following slides of the first topic, we assume them without explicit statement ...

Employing Randomization

- Key difficulty: Hardness of symmetry breaking

Randomization will be helpful !!

- Randomized gathering is easy
- A simple algorithm for two robots
stay with probability $1 / 2$
- approach to the other with probability $1 / 2$

Exponential Growth of Running Time

- It achieves gathering for n robots, but.. - not poly(n), but exp(n) expected running time

$n-x$ robots

The prob. all robots stay $=(1 / 2)^{n-x}$
x robots
the prob. all robots approach $=(1 / 2)^{x}$

- Can we have poly(n) algorithm?

Impossibility

- No probabilistic gathering with poly(n) expected running time
- ATOM \& 2-bounded
- No multiplicity
decrease \#location by round-robin activation

The Question

- The impossibility implies an additional assumption is necessary to achieve poly(n)-time probabilistic gathering

What is the weakest assumption?

Our Focus : Multiplicity Detection

- Detection capability of two or more robots on the same location
- Known class of multiplicity detection

1. No multiplicity : observed as a single robot
2. Weak multiplicity: detect more than one the observer cannot know the exact \#robots
3. Strong multiplicity: detect \#robots

There exists a deterministic gathering alg. CORDA \& ∞-bounded, no initial multiple location [Cieliebak et al. TCS'05]

The Cases of Initial Multiple Locations

- Deterministic algs. : impossible
- The argument of two points with $n / 2$ robots
- ATOM \& 1-bounded, Strong
- Randomized algs. : possible[clement et al. IpL'10]
- ATOM \& ∞-bounded, predictable and unlimited move
- Complexity
- Strong: $O(n)$ movements, $O(1)$ async. rounds
- Weak: $O(n \cdot \log n$ toglogn $)$ movements, $O(\log n$ toglogn) asyhc. rounds

Locality of Multiplicity Detection

- How about further weaker capability?
- New criterion of multiplicity : Locality

The observer can detect only the multiplicity of its current location

- New five classes of multiplicity detection
- No multiplicity
- Local weak multiplicity
- Global weak multiplicity
- Local strong multiplicity
- Global strong multiplicity

Known Randomized Solutions

- Local Strong

- Upper bound: $O(n)$ move, $O(1)$ async. rounds ATOM \& 1-bounded, initial multiple locations, predictable and unlimited move
- but easy to extend it to k-bounded for k < ∞
- Local Weak
- Lower bound: $\Omega(\exp (n))$

ATOM \& 1-bounded, initial multiple locations

- Upper bound: $O(n)$ move, $O(1)$ async. rounds ATOM \& 1-bounded, no initial multiple locations, predictable and unlimited move

Known Randomized Solutions

- Local Strong
- Upper bound: $O(n)$ move, $O(1)$ async. rounds

ATOM \& 1-bounded, initial multiple locations, predictable and unlimited move
but easy to extend it to k-bounded for $k<\infty$

Algorithm for Local-Strong Multiplicity

- Composition of two subalgorithms
- ML (Making Line)

All robots are lined with $O(n)$ movements

- no randomness necessary
- no multiplicity detection necessary
- GfL(Gathering from Line)
- Probabilistic Gathering on one-dimensional space
- Taking $O(n)$ movements and One round, all robots are gathered with constant prob.
- Multiplicity detection plays an important role

Algorithm GfL(1)

- First, reduce to a two-point configuration
- Inner robots moves to the nearest endpoint

Algorithm GfL(2)

- Two points to one
- Idea: Higher multiplicity stays with higher probability

The algorithm
stay with prob. (1- $\frac{1}{2 m}$)

Expected Behavior (Occurring With Const. Prob.)

Deterministic

one robot

With a constant prob. no robot moves
${ }_{s}$ GatheredMith a constant prob. the robot moves to P_{1}

Known Randomized Solutions

- Local Strong

■ Upper bound: O(n) move, O(1) async. rounds
\square

- Lower bound: $\Omega(\exp (n))$
- Upper bound: $O(n)$ move, $O(1)$ async. rounds ATOM \& 1-bounded, no initial multiple locations, predictable and unlimited move

The difficulty

- How can we avoid two-point symmetric case?
- Only the way is using multiplicity information - But \#robots is not available
- So, we need the following situation

- The problem caused by locality
- No robot can detect which location is multiple

Algorithm for Local-Weak Multiplicity(1/3)

- Invariant : Circular Configuration
- There exists a circle C (corresponding circle) s.t.

At least one robot is on the center of C

- All other robots are on the boundary of C

Easy to construct from the smallest enclosing circle

Algorithm for Local-Weak Multiplicity(2/3)

- All robots on the boundary go to the center of C
- The Center is almost invariant until \#location = 2

Algorithm for Local-Weak Multiplicity(2/3)

- Two exceptional cases
- Regular Diamond
- Regular Triangle

Circular but C is not uniquely determined

Algorithm for Local-Weak Multiplicity(2/3)

The necessary condition to occur exceptional cases

- Two robots on the boundary form the center angle $\pi / 3$

Algorithm for Local-Weak Multiplicity(2/3)

- The main idea:
- "Shake" center angles via randomization
- Moves to the center after angle $\pi / 3$ disappears

Open Problems (1)

- Deterministic alg. with Local multiplicity
- Strong, ATOM \& k-bounded, Predictable and unlimited move, No initial multiple points
- Randomized alg. with Local multiplicity
- Strong/Weak, Atom \& k-bounded, Unpredictable move,
No initial multiple point
- How can we measure the complexity on unpredictable move models?
- An idea: measuring on predictable models.

Open problem (2)

- Lower Bound for Global-Weak multiplicity
- Known Upper bound: O(log n) (maybe)
- Is it optimal?
- Randomized Gathering on CORDA
- Initial multiple points

Strong Impossibility Results for Byzantine Gathering via BG-simulation

Taisuke Izumi ${ }^{1}$
Zohir Bouzid²
Sebastien Tixeuil²
Koichi Wada ${ }^{1}$

1 Nagoya Institute of Technology
2 Université Pierre et Marie Curie - Paris 6

Byzantine Gathering Problem

- All correct robots meet at one point
- Known Results
- Impossible for $n=3$ and $f=1$ [Agmon and Peleg SODA'03,SICOMP'06]

ATOM, ∞-bounded, uniform, oblivious, no agreed coord. , deterministic

- Impossible for general n and f [Clement et al. DISC'O6] Sorry, I made mistake ATOM, n / f-bounded, yesterday agreed coord. , detertmer
- Possible for general n and f s.t. $n>3 f+1$ [Agmon and Peleg SODA'O3,SICOMPY06]

Full-Sync, uniform, oblivious, no agreed coord., deterministic

Faulty Robots

- Fault model
- Crash : Stop working
- Byzantine : Arbitrary Behavior
- We assume Byzantine behavior is bound by k-bounded scheduler constraint
- If we remove this assumption, our impossibility is strengthened

Impossibility for Stronger Condition

- All of previous results derive from :

Geometric Argument

+ Hardness of Symmetry Breaking
- Not easy (not possible?) to apply them to non-oblivious, non-uniform, or agreed-coordinate-system robots

Our Resul \dagger

- Strong Impossibility for Byz. Formation
general n and f
(Any pattern)
- ATOM, ($n / f+1$)-bounded
- non-oblivious
- non-uniform
- agreement of coordinate systems
both orientation and direction
New versatile proof technique not relying on geometric argument

(Byzantine) Gathering \fallingdotseq Consensus Problem

- (Binary) Consensus problem
- Not a problem on robot systems
- Each process first proposes one or zero
- All correct processes decide a common value
- The decision must be one of proposals

Processes
cooperation
Processes

1

Reduction from Shared-memory Consensus

- Consensus problem is not solvable
- Asynchronous shared-memory systems
- One crash fault (not Byzantine!)
- Reduction Strategy (Case of $f=1$)
- Simulate 1-Byzantine Robot system on Asynchronous 1-Crash shared-memory system
- Solving Consensus via Gathering

Asynchronous Atomic Snapshot Model

onous

 shared-memory models- Read, Write, and Snapsho \dagger

Atomic reading of all shared memory

- Equivalent to the standard model

1-crash resilient consensus is not solvable

Processes

$\downarrow \uparrow$

Read, Write, Snapshot

Shared Memory

Naïve Idea(1/2)

- Prepare the shared array of size n
- i-th entry = the state of i-th robot
"state" includes the current location and internal state of i -th robot
- The i-th process simulates i-th robot
- Look = Atomic Snapshot
- Move = Write to the i-th entry

- For each proposal v
- Set initial location to ($\mathrm{v}, 0$)
- Decision
- All robots gathered at $(1,0) \rightarrow$ decide(1)
- Otherwise \rightarrow decide(0)

$(1,0)(0,0)(0,0)(0,0) \quad(1,0)$

Naïve Idea does not work

- The simulation is not 1 -crash resilient
- If some process is initially crashed, one robot is lost \rightarrow Simulation failed!

$$
(1,0) \quad(0,0)
$$

$(0,0)$
$(0,0)$

Our 1-reisilient Simulation

- Key Technology: BG-simulation
[Borowski and Gafni, STOC"93]
- Simulation by two processes
- Use Slot structure
- One value is committed when no process is at the slot

Our 1-resilient simulation

- Array of slots with infinite size
- One slot = one movement of robot
- Each process simulates all n robots in round-robin manner
- k-th Slot = (k mod n+f)-th robot's movement
committed entry

r_{0}
r_{1}
r_{2}
r_{3}
r_{4}
$\begin{array}{ll}r_{n-1} & r_{0}\end{array}$

Our 1-resilient simulation

- Simulation of k-th Slot
- Observe (k-n)-th to (k-1)-th
- Compute the destination and write it to k -th
committed entry
Current Confiiguration

x_{i}	x_{i+1}	x_{i+2}	x_{i+3}
y_{i}	y_{i+1}	y_{i+2}	y_{i+4}
	y_{i+4}		

$\begin{array}{lllllll}r_{i} & r_{i+1} & r_{i+2} & r_{i+3} & r_{i+4} & r_{i+n-1} & r_{i+n}\end{array}$

Our 1-resilient simulation

- Process crash (or slowdown)
- One slot may be uncommitted
\rightarrow Current configuration cannot be determined
\square committed entry
\leftarrow Current Confiiguration

not committed

Our 1-resilient simulation

- Uncommitted slot has two values
- only one is committed
- Main Idea: uncommitted value = Byzantine
- Actually, we simulate ($n+1$)-robot systems!
- Interpretation of the below situation

Current Conf. $=\left(x_{i}, y_{i+1}, y_{i+2}, x_{i+3}, x_{i+4} \ldots x_{i+n-1}, \underline{y_{i+3}}\right)$
Byzantine
Current Confiiguration

x_{i}	x_{i+1}	x_{i+2}	x_{i+3}	x_{i+4}	\ldots	x_{i+n-1}
y_{i}	y_{i+1}	y_{i+2}	y_{i+3}	y_{i+4}	\cdots	y_{i+n-1}
r_{i}	r_{i+1}	r_{i+2}	r_{i+3}	r_{i+4}		r_{i+n-1}

Our 1-resilient simulation

- When all slots are correctly committed
- Add a "dummy" location for Byzantine robots
- Interpretation of the below situation

Current Conf. $=\left(x_{i}, y_{i+1}, y_{i+2}, x_{i+3}, x_{i+4} \ldots x_{i+n-1}(0,0)\right)$

Current Confiiguration

| x_{i} | x_{i+1} | x_{i+2} | x_{i+3} | x_{i+4} | \ldots | x_{i+n-1} | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| y_{i} | y_{i+1} | y_{i+2} | y_{i+3} | y_{i+4} | \ldots | y_{i+n-1} | |
| r_{i} | r_{i+1} | r_{i+2} | r_{i+3} | r_{i+4} | | r_{i+n-1} | r_{i+n} |

Conclusion

- Strong Impossibility Result for Byzantine Formation
- New Proof Technique
- Reduction from the consensus problem on Asynchronous Atomic Snapshot models
- Reduction = simulation algorithm

A number of tricks to achieve 1-resiliency

- Classical DC theory helps robot theory!

Open problems

- Deterministic Byzantine gathering
- ATOM \& k-bounded for k < n / f, nonoblivious, non-uniform, agreed coord. , predictable and unlimited move
- poly(n)-Randomized Byzantine gathering
- Weaker condition than the above
- Further strong impossibility for CORDA
- Conjecture: Only one-shot Byzantine behavior prevents the gathering

Open Problems

- Byzantine Formation
- Some patterns are probably impossible
- Even if we assume strong assumptions
- What are formable patterns?
- Finding other bridges to classical DC theory
- e.g. reduction from renaming, set consensus, and so on...

Thank you!

