Gathering Problem Assorted

Taisuke Izumi (Nagoya Institute of Technology)

MAC2010 meeting @ Ottawa

Gathering with Local-Multiplicity Detection

Taisuke Izumi (Nagoya Institute of Technology) Tomoko Izumi (Ritsumeikan University) Sayaka Kamei (Hiroshima University) Fukuhito Ooshita (Osaka University)

All robots meet at one point

Basic Results (Deterministic Algs.)

Impossible [Suzuki and Yamashita SICOMP'96]

- ATOM (Semi-sync, SYm) & 1-bounded
- #robots = 2
- No multiplicity
- No agreement of coordinate systems
- Oblivious

All robots meet at one point

Known Results (Deterministic Algs.)

Impossible [Suzuki and Yamashita SICOMP'96]

- ATOM (Semi-sync, SYm) & 1-bounded
- #robots = 2
- No multiplicity We use terminology "ATOM"

No agreement of coordinate systems
Oblivious

In the following slides of the first topic, we assume them without explicit statement ...

Key difficulty : Hardness of symmetry breaking

Randomization will be helpful !!

Randomized gathering is easy
 A simple algorithm for two robots
 stay with probability 1/2
 approach to the other with probability 1/2

Exponential Growth of Running Time

It achieves gathering for n robots, but.. not poly(n), but exp(n) expected running time

n-x robots the prob. all robots stay = (1/2)^{n-x}

x robots the prob. all robots approach = (1/2)[×]

Can we have poly(n) algorithm?

No probabilistic gathering with poly(n) expected running time

- ATOM & 2-bounded
- No multiplicity

decrease #location by round-robin activation

The impossibility implies an additional assumption is necessary to achieve poly(n)-time probabilistic gathering

What is the weakest assumption?

Our Focus : Multiplicity Detection

Detection capability of two or more robots on the same location

Known class of multiplicity detection

- 1. No multiplicity : observed as a single robot
- 2. Weak multiplicity : detect more than one
 - 1. the observer cannot know the exact #robots
 - 3. Strong multiplicity : detect #robots

There exists a deterministic gathering alg. CORDA & ∞ -bounded, no initial multiple location [Cieliebak et al. TCS'05] Deterministic algs. : impossible
 The argument of two points with n/2 robots
 ATOM & 1-bounded, Strong
 Randomized algs. : possible[clement et al. IPL'10]
 ATOM & ∞-bounded, predictable and unlimited move

Complexity

Strong : O(n) movements, O(1) async. rounds

Weak : O(n · logn loglogn) movements, O(lognloglogn) asyhc. rounds How about further weaker capability?

- New criterion of multiplicity : Locality
 - The observer can detect only the multiplicity of its current location
- New five classes of multiplicity detection
 - No multiplicity
 - Local weak multiplicity
 - Global weak multiplicity
 - Local strong multiplicity
 - Global strong multiplicity

Local Strong

- Upper bound: O(n) move, O(1) async. rounds
 - ATOM & 1-bounded, initial multiple locations, predictable and unlimited move
 - but easy to extend it to k-bounded for k < ∞

Local Weak

- Lower bound: $\Omega(\exp(n))$
 - ATOM & 1-bounded, initial multiple locations
- Upper bound: O(n) move, O(1) async. rounds
 - ATOM & 1-bounded, no initial multiple locations, predictable and unlimited move

Local Strong

- Upper bound: O(n) move, O(1) async. rounds
 - ATOM & 1-bounded, initial multiple locations, predictable and unlimited move
 - but easy to extend it to k-bounded for k < ∞

Local Weak

- Lower bound: $\Omega(exp(n))$
 - ATOM & 1-bounded, initial multiple locations
- Upper bound: O(n) move, O(1) async. rounds
 - ATOM & 1-bounded, no initial multiple locations, predictable and unlimited move

Algorithm for Local-Strong Multiplicity

Composition of two subalgorithms

ML (Making Line)

- All robots are lined with O(n) movements
- no randomness necessary
- no multiplicity detection necessary

GfL(Gathering from Line)

- Probabilistic Gathering on one-dimensional space
- Taking O(n) movements and One round, all robots are gathered with constant prob.
- Multiplicity detection plays an important role

First, reduce to a two-point configuration

Inner robots moves to the nearest endpoint

Two points to one

Idea: Higher multiplicity stays with higher probability

Expected Behavior (Occurring With Const. Prob.)

Local Strong

- Upper bound: O(n) move, O(1) async. rounds
- ATOM & 1-bounded, initial multiple locations, predictable and unlimited move
 - but easy to extend it to k-bounded for k < ∞</p>

Local Weak

- Lower bound: Ω(exp(n))
 ATOM & 1-bounded, initial multiple locations
- Upper bound: O(n) move, O(1) async. rounds
 - ATOM & 1-bounded, <u>no initial multiple locations</u>, predictable and unlimited move

How can we avoid two-point symmetric case?

- Only the way is using multiplicity information
 But #robots is not available
- So, we need the following situation

The problem caused by locality
 No robot can detect which location is multiple

- Invariant : Circular Configuration
 There exists a circle C (corresponding circle) s.t.
 - At least one robot is on the center of C
 - All other robots are on the boundary of C

Easy to construct from the smallest enclosing circle

All robots on the boundary go to the center of C

The Center is almost invariant until #location = 2

Two exceptional cases

- Regular Diamond
- Regular Triangle

Circular but C is not uniquely determined

The necessary condition to occur exceptional cases

Two robots on the boundary form the center angle $\pi/3$

The main idea:

- "Shake" center angles via randomization
- Moves to the center after angle $\pi/3$ disappears

Deterministic alg. with Local multiplicity

- Strong, ATOM & k-bounded, Predictable and unlimited move, No initial multiple points
- Randomized alg. with Local multiplicity
 - Strong/Weak, Atom & k-bounded,
 - Unpredictable move,
 - No initial multiple point
- How can we measure the complexity on unpredictable move models?
 - An idea: measuring on predictable models.

Lower Bound for Global-Weak multiplicity
 Known Upper bound: O(log n) (maybe)
 Is it optimal?

Randomized Gathering on CORDA
 Initial multiple points

Strong Impossibility Results for Byzantine Gathering via BG-simulation

Taisuke Izumi¹ Zohir Bouzid² Sebastien Tixeuil² Koichi Wada¹

> 1 Nagoya Institute of Technology 2 *Université Pierre et Marie Curie - Paris 6*

Fault model

- Crash : Stop working
- Byzantine : Arbitrary Behavior
- We assume Byzantine behavior is bound by k-bounded scheduler constraint
 - If we remove this assumption, our impossibility is strengthened

Impossibility for Stronger Condition

All of previous results derive from :

Geometric Argument + Hardness of Symmetry Breaking

Not easy (not possible?) to apply them to non-oblivious, non-uniform, or agreed-coordinate-system robots New versatile proof technique not relying on geometric argument

(Byzantine) Gathering \Rightarrow Consensus Problem

- (Binary) Consensus problem
 - Not a problem on robot systems
 - Each process first proposes one or zero
 - All correct processes decide a common value
 - The decision must be one of proposals

Reduction from Shared-memory Consensus

- Consensus problem is not solvable
 Asynchronous shared-memory systems
 One crash fault (not Byzantine!)
- Reduction Strategy (Case of f = 1)
 - Simulate 1-Byzantine Robot system on Asynchronous 1-Crash shared-memory system
 - Solving Consensus via Gathering

Asynchronous Atomic Snapshot Model

We use a variation of Asynchronous shared-memory models

Read, Write, and Snapshot

Atomic reading of all shared memory

- Equivalent to the standard model
 - 1-crash resilient consensus is not solvable

For each proposal v

- Set initial location to (v, 0)
- Decision
 - All robots gathered at (1,0) → decide(1)
 Otherwise → decide(0)

 The simulation is not 1-crash resilient
 If some process is initially crashed, one robot is lost → Simulation failed!

Our 1-reisilient Simulation

Key Technology: BG-simulation [Borowski and Gafni, STOC'93]

- Simulation by two processes
- Use Slot structure
 - One value is committed when no process is at the slot

Array of slots with infinite size One slot = one movement of robot

- Each process simulates all n robots in round-robin manner
 - k-th Slot = (k mod n+f)-th robot's movement

Simulation of k-th Slot

- Observe (k-n)-th to (k-1)-th
- Compute the destination and write it to k-th

Uncommitted slot has two values only one is committed

- Main Idea: uncommitted value = Byzantine
 - Actually, we simulate (n+1)-robot systems!
 - Interpretation of the below situation
 - Current Conf. = $(x_i, y_{i+1}, y_{i+2}, x_{i+3}, x_{i+4} \dots x_{i+n-1}, y_{i+3})$

Byzantine

When all slots are correctly committed
 Add a "dummy" location for Byzantine robots
 Interpretation of the below situation
 Current Conf. = (x_i, y_{i+1}, y_{i+2}, x_{i+3}, x_{i+4} ... x_{i+n-1}, (0,0))

Strong Impossibility Result for Byzantine Formation

New Proof Technique

- Reduction from the consensus problem on Asynchronous Atomic Snapshot models
- Reduction = simulation algorithm
 - A number of tricks to achieve 1-resiliency

Classical DC theory helps robot theory!

Deterministic Byzantine gathering

- ATOM & k-bounded for k < n/f, nonoblivious, non-uniform, agreed coord., predictable and unlimited move
- poly(n)-Randomized Byzantine gathering
 Weaker condition than the above

 Further strong impossibility for CORDA
 Conjecture: Only one-shot Byzantine behavior prevents the gathering

Byzantine Formation

- Some patterns are probably impossible
 Even if we assume strong assumptions
 What are formable patterns?
- Finding other bridges to classical DC theory
 - e.g. reduction from renaming, set consensus, and so on...

Thank you!