# Network Exploration by Asynchronous Oblivious Robots 

Paola FloCCHini ${ }^{1}$ David ILCINKAS ${ }^{2}$ Andrzej Pelc ${ }^{3}$ Nicola Santoro ${ }^{4}$<br>${ }^{1}$ University of Ottawa, Canada<br>${ }^{2}$ CNRS, Université de Bordeaux, France<br>${ }^{3}$ Université du Québec en Outaouais, Canada<br>${ }^{4}$ Carleton University, Canada

MAC '10<br>August 18, 2010

## Problem

Focus of the talk: robots operating in Look-Compute-Move cycles in networks

## Problem

Focus of the talk: robots operating in Look-Compute-Move cycles in networks

## Model/context

- Anonymous graphs
- Team of robots
- sensing the environment by taking a snapshot of it
- that do not communicate
- that are anonymous and oblivious


## Problem

Focus of the talk: robots operating in Look-Compute-Move cycles in networks

## Model/context

- Anonymous graphs
- Team of robots
- sensing the environment by taking a snapshot of it
- that do not communicate
- that are anonymous and oblivious

Goal: exploration with stop

- Each node must be visited by at least one robot.
- All robots must stop after finite time.


## The Look-Compute-Move cycle

## Look

The robot takes a rooted instantaneous snapshot of the network and its robots, with (weak) multiplicity detection.

## Compute

Based on this observation, it decides to stay idle or to move to some neighbouring node.

## Move

In the latter case it instantaneously moves towards its destination.

## Identical oblivious asynchronous robots

## Identical

Robots have no IDs. They execute the same program.
Oblivious
The robots have no memory of observations, computations and moves made in previous cycles.

## Asynchronous (CORDA with unbounded fair scheduler)

The time between Look, Compute, and Move operations is finite but unbounded.

Reminder:

## Non-communicating

No communication mechanisms between robots, even locally.

## Precisions concerning the model

## Initial configurations <br> Arbitrary but without multiplicity (at most 1 robot / node) (necessary for termination)

## Precisions concerning the model

## Initial configurations

Arbitrary but without multiplicity (at most 1 robot / node) (necessary for termination)

## In case of symmetry



- Compute : choice of an equivalence class of neighbors
- Actual choice: made by the adversary (i.e. worst case)


## Precisions concerning the model

## Initial configurations

Arbitrary but without multiplicity (at most 1 robot / node) (necessary for termination)

## In case of symmetry



- Compute : choice of an equivalence class of neighbors
- Actual choice: made by the adversary (i.e. worst case)

Multiplicity detection (global weak)
"zero", "one", or "more than one" robots

## Smallest exploring team

## Exploration

We say that exploration of a graph is possible with $k$ robots, if there exists an algorithm enabling the robots to perform exploration with stop of this graph starting from any initial configuration of the $k$ robots (thus, without multiplicity).

## Smallest exploring team

## Exploration

We say that exploration of a graph is possible with $k$ robots, if there exists an algorithm enabling the robots to perform exploration with stop of this graph starting from any initial configuration of the $k$ robots (thus, without multiplicity).

## Smallest exploring team

Minimum number of robots that can explore any graph of a given family.

## Related work

## In the plane

Rich literature (gathering, pattern formation, etc.)

## In graphs

- [Klasing, Markou, Pelc. ISAAC 2006 \& TCS 2008] Feasibility of gathering in rings (except one case)
- [Klasing, Kosowski, Navarra. OPODIS 2008 \& TCS 2010] Feasibility of gathering in rings in all cases (symmetry preserving algorithm)


## Outline

(1) Introduction
(2) Rings

- Our results
- Lower bound
- Upper bound
(3) Trees
(4) Conclusion


## Results (rings)

[Flocchini, I., Pelc, Santoro. OPODIS 2007]

## Lemma

Exploration of a $n$-node ring by $k$ robots is

- impossible if $k \mid n$ but $k \neq n$;
- possible if $\operatorname{gcd}(n, k)=1$, for $k \geq 17$.


## Results (rings)

[Flocchini, I., Pelc, Santoro. OPODIS 2007]

## Lemma

Exploration of a $n$-node ring by $k$ robots is

- impossible if $k \mid n$ but $k \neq n$;
- possible if $\operatorname{gcd}(n, k)=1$, for $k \geq 17$.


## Main result

Size of the smallest exploring team $\rho(n) \in \Theta(\log n)$

- There exists a constant $c$ such that, for infinitely many $n$, we have $\rho(n) \geq c \log n$.
- $\rho(n) \in O(\log n)$


## Lower bound (1/2)

## Lemma

Impossible to stop (and sometimes to explore) when $k \mid n$.


## Lower bound (1/2)

## Lemma

Impossible to stop (and sometimes to explore) when $k \mid n$.


## Lower bound (2/2)

## Theorem

There exists a constant $c$ such that, for infinitely many $n$, we have $\rho(n) \geq c \log n$.

## Lower bound (2/2)

## Theorem

There exists a constant $c$ such that, for infinitely many $n$, we have $\rho(n) \geq c \log n$.

## Proof

## Lower bound (2/2)

## Theorem

There exists a constant $c$ such that, for infinitely many $n$, we have $\rho(n) \geq c \log n$.

## Proof

- Let $n$ be the least common multiple of integers $1,2, \ldots, q$.


## Lower bound (2/2)

## Theorem

There exists a constant $c$ such that, for infinitely many $n$, we have $\rho(n) \geq c \log n$.

## Proof

- Let $n$ be the least common multiple of integers $1,2, \ldots, q$.
- From the previous slide, we have $\rho(n) \geq q+1$.


## Lower bound (2/2)

## Theorem

There exists a constant $c$ such that, for infinitely many $n$, we have $\rho(n) \geq c \log n$.

## Proof

- Let $n$ be the least common multiple of integers $1,2, \ldots, q$.
- From the previous slide, we have $\rho(n) \geq q+1$.
- The Prime Number Theorem implies $q \sim \ln n$.


## Lower bound (2/2)

## Theorem

There exists a constant $c$ such that, for infinitely many $n$, we have $\rho(n) \geq c \log n$.

## Proof

- Let $n$ be the least common multiple of integers $1,2, \ldots, q$.
- From the previous slide, we have $\rho(n) \geq q+1$.
- The Prime Number Theorem implies $q \sim \ln n$.
- This implies the existence of a constant $c$ such that, for infinitely many $n, \rho(n) \geq c \log n$.


## Upper bound

Lemma
Exploration is possible if $\operatorname{gcd}(n, k)=1$, for $k \geq 17$.

## Upper bound

Lemma
Exploration is possible if $\operatorname{gcd}(n, k)=1$, for $k \geq 17$.

## Theorem

The size $\rho(n)$ of the smallest exploring team is in $O(\log n)$.


## Upper bound

Lemma
Exploration is possible if $\operatorname{gcd}(n, k)=1$, for $k \geq 17$.

## Theorem

The size $\rho(n)$ of the smallest exploring team is in $O(\log n)$.

## Proof

## Upper bound

## Lemma

Exploration is possible if $\operatorname{gcd}(n, k)=1$, for $k \geq 17$.

## Theorem

The size $\rho(n)$ of the smallest exploring team is in $O(\log n)$.

## Proof

Let $p_{j}$ be the $j$-th prime, and $p_{j} \#=\prod_{i=1}^{j} p_{i}$ the $p_{j}$-primorial.

## Upper bound

## Lemma

Exploration is possible if $\operatorname{gcd}(n, k)=1$, for $k \geq 17$.

## Theorem

The size $\rho(n)$ of the smallest exploring team is in $O(\log n)$.

## Proof

Let $p_{j}$ be the $j$-th prime, and $p_{j} \#=\prod_{i=1}^{j} p_{i}$ the $p_{j}$-primorial.

- Take $j$ such that $\frac{p_{j} \#}{13 \#} \leq n<\frac{p_{j+1} \#}{13 \#}$. We have $\rho(n) \leq p_{j+1}$. (all primes in $\left\{17, \ldots, p_{j+1}\right\}$ divide $n \Longrightarrow n \geq \frac{p_{j+1} \#}{13 \#}$ )


## Upper bound

## Lemma

Exploration is possible if $\operatorname{gcd}(n, k)=1$, for $k \geq 17$.

## Theorem

The size $\rho(n)$ of the smallest exploring team is in $O(\log n)$.

## Proof

Let $p_{j}$ be the $j$-th prime, and $p_{j} \#=\prod_{i=1}^{j} p_{i}$ the $p_{j}$-primorial.

- Take $j$ such that $\frac{p_{j} \#}{13 \#} \leq n<\frac{p_{j+1} \#}{13 \#}$. We have $\rho(n) \leq p_{j+1}$. (all primes in $\left\{17, \ldots, p_{j+1}\right\}$ divide $n \Longrightarrow n \geq \frac{p_{j+1} \#}{13 \#}$ )
- From [Ruiz, Math. Gaz. '97], we have $p_{j} \sim \ln \left(p_{j} \#\right)$.


## Upper bound

## Lemma

Exploration is possible if $\operatorname{gcd}(n, k)=1$, for $k \geq 17$.

## Theorem

The size $\rho(n)$ of the smallest exploring team is in $O(\log n)$.

## Proof

Let $p_{j}$ be the $j$-th prime, and $p_{j} \#=\prod_{i=1}^{j} p_{i}$ the $p_{j}$-primorial.

- Take $j$ such that $\frac{p_{j} \#}{13 \#} \leq n<\frac{p_{j+1} \#}{13 \#}$. We have $\rho(n) \leq p_{j+1}$. (all primes in $\left\{17, \ldots, p_{j+1}\right\}$ divide $n \Longrightarrow n \geq \frac{p_{j+1} \#}{13 \#}$ )
- From [Ruiz, Math. Gaz. '97], we have $p_{j} \sim \ln \left(p_{j} \#\right)$.
- Hence $\rho(n) \leq p_{j+1} \in O(\log n)$.


## Some definitions

## Interdistance

Minimum distance taken over all pairs of distinct robots.

Here interdistance $=2$.


## Some definitions

## Interdistance

Minimum distance taken over all pairs of distinct robots.

Here interdistance=2.

## Block

Maximal set of robots, of size at least 2 , forming a line with a robot every $d$ nodes. ( $d=$ interdistance)


## Our algorithm

## Set-Up Phase

Goal: to transform the (arbitrary) initial configuration into a configuration of interdistance 1 where there is a single block or two blocks of the same size.
Method: decrease the number of blocks whenever possible. Otherwise, decrease the interdistance.

## Tower-Creation Phase

Goal: to create one or two multiplicities inside each block; furthermore a number of robots become uniquely identified as explorers.

## Exploration Phase

Goal: to perform exploration thanks to the explorers until reaching an identified final configuration.

## An example



An example


## An example



An example


An example


An example


## An example



An example


An example


## An example



## An example



## An example



## An example



## An example



An example


## Other results on the ring (1)

[Devismes, Petit, Tixeuil. SIROCCO 2009]

## Main result

Four probabilistic robots are always necessary and sufficient (ATOM model)

## Other results on the ring (1)

[Devismes, Petit, Tixeuil. SIROCCO 2009]

## Main result

Four probabilistic robots are always necessary and sufficient (ATOM model)

## Ideas of the algorithm

Use randomization to break symmetries

- Create one block of interdistance 1 (deterministic/randomized)
- Create a multiplicity (randomized)
- Explore the ring (deterministic)


## Other results on the ring (2)

[Lamani, Gradinariu Potop-Butucaru, Tixeuil. SIROCCO 2010]
Focus
Size of the smallest exploring team for "good" values of $n$

## Other results on the ring (2)

[Lamani, Gradinariu Potop-Butucaru, Tixeuil. SIROCCO 2010]

## Focus

Size of the smallest exploring team for "good" values of $n$

## Main results

- Lower bound on deterministic algorithm:
- Five robots (when $n$ is even)
- Four robots (when $n$ is odd)
- Deterministic algorithm for 5 robots when $n$ and 5 are co-prime


## Outline

## (1) Introduction

(3) Trees

- Our results
- Lower bound
- Upper bound

4. Conclusion

## Results (trees)

[Flocchini, I., Pelc, Santoro. SIROCCO 2008 \& TCS 2010]

## Main result

Trees of maximum degree 3:

- $\Theta(\log n / \log \log n)$ robots


## Results (trees)

[Flocchini, I., Pelc, Santoro. SIROCCO 2008 \& TCS 2010]

## Main result

Trees of maximum degree 3:

- $\Theta(\log n / \log \log n)$ robots

Justification of the restrictions
$\Theta(n)$ robots in some trees of maximum degree 4
(complete ternary trees)


## Results (trees)

[Flocchini, I., Pelc, Santoro. SIROCCO 2008 \& TCS 2010]

## Main result

Trees of maximum degree 3:

- $\Theta(\log n / \log \log n)$ robots

Justification of the restrictions
$\Theta(n)$ robots in some trees of maximum degree 4
(complete ternary trees)


## Results (trees)

[Flocchini, I., Pelc, Santoro. SIROCCO 2008 \& TCS 2010]

## Main result

Trees of maximum degree 3:

- $\Theta(\log n / \log \log n)$ robots

Justification of the restrictions
$\Theta(n)$ robots in some trees of maximum degree 4
(complete ternary trees)


## Results (trees)

[Flocchini, I., Pelc, Santoro. SIROCCO 2008 \& TCS 2010]

## Main result

Trees of maximum degree 3:

- $\Theta(\log n / \log \log n)$ robots

Justification of the restrictions
$\Theta(n)$ robots in some trees of maximum degree 4
(complete ternary trees)


## Results (trees)

[Flocchini, I., Pelc, Santoro. SIROCCO 2008 \& TCS 2010]

## Main result

Trees of maximum degree 3:

- $\Theta(\log n / \log \log n)$ robots

Justification of the restrictions
$\Theta(n)$ robots in some trees of maximum degree 4
(complete ternary trees)


## Results (trees)

[Flocchini, I., Pelc, Santoro. SIROCCO 2008 \& TCS 2010]

## Main result

Trees of maximum degree 3:

- $\Theta(\log n / \log \log n)$ robots

Justification of the restrictions
$\Theta(n)$ robots in some trees of maximum degree 4
(complete ternary trees)


## Results (trees)

[Flocchini, I., Pelc, Santoro. SIROCCO 2008 \& TCS 2010]

## Main result

Trees of maximum degree 3:

- $\Theta(\log n / \log \log n)$ robots

Justification of the restrictions
$\Theta(n)$ robots in some trees of maximum degree 4
(complete ternary trees)


## Results (trees)

[Flocchini, I., Pelc, Santoro. SIROCCO 2008 \& TCS 2010]

## Main result

Trees of maximum degree 3:

- $\Theta(\log n / \log \log n)$ robots

Justification of the restrictions
$\Theta(n)$ robots in some trees of maximum degree 4
(complete ternary trees)


## Results (trees)

[Flocchini, I., Pelc, Santoro. SIROCCO 2008 \& TCS 2010]

## Main result

Trees of maximum degree 3:

- $\Theta(\log n / \log \log n)$ robots

Justification of the restrictions
$\Theta(n)$ robots in some trees of maximum degree 4
(complete ternary trees)


## Lower bound: $\Omega(\log n / \log \log n)$ robots

## Observation

Many configurations are equivalent for the robots


- few robots $\Rightarrow$ few different snapshots, say $x$

0 at most x dirrerent snaps'iots $\Rightarrow$ aimosi $\times \cdot$, explored
nodes before stopping

## Lower bound: $\Omega(\log n / \log \log n)$ robots

## Observation

Many configurations are equivalent for the robots


## Sketch of the proof

Complete binary tree, synchronous case

## Lower bound: $\Omega(\log n / \log \log n)$ robots

## Observation

Many configurations are equivalent for the robots


## Sketch of the proof

Complete binary tree, synchronous case

- few robots $\Rightarrow$ few different snapshots, say $x$


## Lower bound: $\Omega(\log n / \log \log n)$ robots

## Observation

Many configurations are equivalent for the robots


## Sketch of the proof

Complete binary tree, synchronous case

- few robots $\Rightarrow$ few different snapshots, say $x$
- at most $x$ different snapshots $\Rightarrow$ at most $x \cdot k$ explored nodes before stopping


## Upper bound: $O(\log n / \log \log n)$ robots

## Theorem

For any $n$, there exists a team of $k \in \Theta(\log n / \log \log n)$ robots, with $k \equiv 5(\bmod 6)$ that can explore all $n$-node trees of maximum degree 3 , starting from any initial configuration.

## Upper bound: $O(\log n / \log \log n)$ robots

## Theorem

For any $n$, there exists a team of $k \in \Theta(\log n / \log \log n)$ robots, with $k \equiv 5(\bmod 6)$ that can explore all $n$-node trees of maximum degree 3 , starting from any initial configuration.

## Main ideas

- A team of three robots aims at exploring the tree
- All other robots are used to keep track of progress
- A visual pattern, called the "brain", formed by the robots counts the number of explored leaves
- The tree is divided into few pieces and is explored piece by piece.

The centroid defines pieces in the tree.


## Pieces

The centroid defines pieces in the tree.


## Property

The two largest pieces have size at least $n / 4$.

## Phase 1 (1)

Goal: Make room in the pieces and create one multiplicity

## Phase 1 (1)

Goal: Make room in the pieces and create one multiplicity

## Steps

- Any robot goes down if it does not create a multiplicity
- A leader is elected in the heaviest piece $P$ (i.e. the one with the largest number of robots)
- The leader helps in creating a single multiplicity in $P$


## Phase 1 (1)

Goal: Make room in the pieces and create one multiplicity

## Steps

- Any robot goes down if it does not create a multiplicity
- A leader is elected in the heaviest piece $P$ (i.e. the one with the largest number of robots)
- The leader helps in creating a single multiplicity in $P$


## Property

The core zone is connected and is formed by at least $\frac{n}{\log n}$ nodes.

P. Flocchini, D. Ilcinkas, A. Pelc and N. Santoro

## Phase 1 (2)

## Observation

In a piece, the number of robots having the same view is always a power of two and thus either even or one (solitaire).

## Phase 1 (2)

## Observation

In a piece, the number of robots having the same view is always a power of two and thus either even or one (solitaire).

## Corollary

- A piece of odd weight has a (local) leader
- Since $k \equiv 5(\bmod 6)$, there always exists a global leader
- It is possible to have a single heaviest piece $P$, having a leader


## Phase 2

## The brain <br> It synchronizes the actions of the robots and counts the number of explored leaves.

## Phase 2

## The brain

It synchronizes the actions of the robots and counts the number of explored leaves.

## Goal of Phase 2

- Construct and initialize the brain in the core zone of the largest piece $Q$ (different from $P$ ) by moving robots from the heavy piece $P$, using the leader to break symmetries.
- Form the exploring team of three robots in $P$.
- Remove (move in $Q$ ) all other robots in $Q$.


## A counter



## A counter



## A counter



## Lemma

In a core zone of size $m$, one can construct $\log ^{2} m$ disjoint descending paths of length $\frac{1}{4} \log m$.

## Counter <br> One can construct a counter with range $n$ by using $\Theta(\log n / \log \log n)$ descending paths and thus $\Theta(\log n / \log \log n)$ robots.

## Phase 3

Goal: Explore $P^{\prime \prime}$, the largest of the pieces other than $Q$.

## Phase 3

Goal: Explore $P^{\prime \prime}$, the largest of the pieces other than $Q$.

## Exploration of a pair of leaves



## Phase 3

Goal: Explore $P^{\prime \prime}$, the largest of the pieces other than $Q$.

## Exploration of a pair of leaves



Use the counter value to determine the next leaf/pair of leaves to be explored

## Phase 3

Goal: Explore $P^{\prime \prime}$, the largest of the pieces other than $Q$.

## Exploration of a pair of leaves



Use the counter value to determine the next leaf/pair of leaves to be explored

## Phase 3

Goal: Explore $P^{\prime \prime}$, the largest of the pieces other than $Q$.

## Exploration of a pair of leaves



Use the counter value to determine the next leaf/pair of leaves to be explored

## Phase 3

Goal: Explore $P^{\prime \prime}$, the largest of the pieces other than $Q$.

## Exploration of a pair of leaves



Use the counter value to determine the next leaf/pair of leaves to be explored

## Phase 3

Goal: Explore $P^{\prime \prime}$, the largest of the pieces other than $Q$.

## Exploration of a pair of leaves



Use the counter value to determine the next leaf/pair of leaves to be explored

## Phase 3

Goal: Explore $P^{\prime \prime}$, the largest of the pieces other than $Q$.

## Exploration of a pair of leaves



Use the counter value to determine the next leaf/pair of leaves to be explored

## Phase 3

Goal: Explore $P^{\prime \prime}$, the largest of the pieces other than $Q$.

## Exploration of a pair of leaves



Use the counter value to determine the next leaf/pair of leaves to be explored

## Phase 3

Goal: Explore $P^{\prime \prime}$, the largest of the pieces other than $Q$.

## Exploration of a pair of leaves



Use the counter value to determine the next leaf/pair of leaves to be explored

## Phase 3

Goal: Explore $P^{\prime \prime}$, the largest of the pieces other than $Q$.

## Exploration of a pair of leaves



Use the counter value to determine the next leaf/pair of leaves to be explored

## Phase 3

Goal: Explore $P^{\prime \prime}$, the largest of the pieces other than $Q$.

## Exploration of a pair of leaves



Use the counter value to determine the next leaf/pair of leaves to be explored

## Phase 3

Goal: Explore $P^{\prime \prime}$, the largest of the pieces other than $Q$.

## Exploration of a pair of leaves



Use the counter value to determine the next leaf/pair of leaves to be explored

## Phase 3

Goal: Explore $P^{\prime \prime}$, the largest of the pieces other than $Q$.

## Exploration of a pair of leaves



Use the counter value to determine the next leaf/pair of leaves to be explored

## Phase 3

Goal: Explore $P^{\prime \prime}$, the largest of the pieces other than $Q$.

## Exploration of a pair of leaves



Use the counter value to determine the next leaf/pair of leaves to be explored

## Remaining phases

## Phase 4 <br> Relocate the brain from $Q$ to $P^{\prime \prime}$

## Remaining phases

## Phase 4

Relocate the brain from $Q$ to $P^{\prime \prime}$

## Phase 5

Explore piece $Q$ and stop if there are only two pieces

## Remaining phases

## Phase 4

Relocate the brain from $Q$ to $P^{\prime \prime}$

## Phase 5

Explore piece $Q$ and stop if there are only two pieces

## Phase 6

Reinitialize the brain and relocate the exploring team in the unexplored piece

## Remaining phases

## Phase 4

Relocate the brain from $Q$ to $P^{\prime \prime}$

## Phase 5

Explore piece $Q$ and stop if there are only two pieces

## Phase 6

Reinitialize the brain and relocate the exploring team in the unexplored piece

## Phase 7

Explore the last piece and stop

## A small sample of the problems to solve

- How to create a single multiplicity in Phase 1 without blocking the other robots?


## A small sample of the problems to solve

- How to create a single multiplicity in Phase 1 without blocking the other robots?
- How to break symmetries using the leader? (problem of trapped solitaires)


## A small sample of the problems to solve

- How to create a single multiplicity in Phase 1 without blocking the other robots?
- How to break symmetries using the leader? (problem of trapped solitaires)
- How to move multiplicities? How to move robots to their precise targets?


## A small sample of the problems to solve

- How to create a single multiplicity in Phase 1 without blocking the other robots?
- How to break symmetries using the leader? (problem of trapped solitaires)
- How to move multiplicities? How to move robots to their precise targets?
- How do the leader and the other robots cross each other in path-like trees?


## A small sample of the problems to solve

- How to create a single multiplicity in Phase 1 without blocking the other robots?
- How to break symmetries using the leader? (problem of trapped solitaires)
- How to move multiplicities? How to move robots to their precise targets?
- How do the leader and the other robots cross each other in path-like trees?
- Is the counter up-to-date or currently updating?


## A small sample of the problems to solve

- How to create a single multiplicity in Phase 1 without blocking the other robots?
- How to break symmetries using the leader? (problem of trapped solitaires)
- How to move multiplicities? How to move robots to their precise targets?
- How do the leader and the other robots cross each other in path-like trees?
- Is the counter up-to-date or currently updating?
- How to remember the phase number?


## A small sample of the problems to solve

- How to create a single multiplicity in Phase 1 without blocking the other robots?
- How to break symmetries using the leader? (problem of trapped solitaires)
- How to move multiplicities? How to move robots to their precise targets?
- How do the leader and the other robots cross each other in path-like trees?
- Is the counter up-to-date or currently updating?
- How to remember the phase number?
- ...


## Outline


(4) Conclusion

## Conclusion (1)

## My experience

- Very complicated algorithms
- Unreasonable complexity coming from the model


## Conclusion (1)

## My experience

- Very complicated algorithms
- Unreasonable complexity coming from the model


## Potential "solutions"

- degree 3 vs $>3 \rightarrow$ strong multiplicity detection
- complicated algorithm $\rightarrow$ ATOM?


## Conclusion (1)

## My experience

- Very complicated algorithms
- Unreasonable complexity coming from the model


## Potential "solutions"

- degree 3 vs $>3 \rightarrow$ strong multiplicity detection
- complicated algorithm $\rightarrow$ ATOM?

Another (ideal?) solution: sense of direction (port numbers)
[Chalopin, Flocchini, Mans, Santoro. WG 2010] Study in more general classes of graphs (CORDA model)

## Conclusion and perspectives

## Perspectives

- Limited visibility
- Fault tolerant protocols


## Conclusion and perspectives

Perspectives

- Limited visibility
- Fault tolerant protocols

Perpetual exploration without collision

- [Baldoni, Bonnet, Milani, Raynal. IPL 2008] Partial study (FSYNCH, unlimited vision)
- [Baldoni, Bonnet, Milani, Raynal. OPODIS 2008]

Characterization in partial grids (FSYNCH, limited vision)

- [Blin, Milani, Gradinariu, Tixeuil. DISC 2010] Study in rings (ASYNCH, unlimited vision)


## Thank You for your attention

