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Problem

Focus of the talk: robots operating in Look-Compute-Move
cycles in networks

Model/context

Anonymous graphs

Team of robots

sensing the environment by taking a snapshot of it
that do not communicate
that are anonymous and oblivious

Goal: exploration with stop

Each node must be visited by at least one robot.

All robots must stop after finite time.
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The Look-Compute-Move cycle

Look

The robot takes a rooted instantaneous snapshot of the
network and its robots, with (weak) multiplicity detection.

Compute

Based on this observation, it decides to stay idle or to move to
some neighbouring node.

Move

In the latter case it instantaneously moves towards its
destination.
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Identical oblivious asynchronous robots

Identical

Robots have no IDs. They execute the same program.

Oblivious

The robots have no memory of observations, computations
and moves made in previous cycles.

Asynchronous (CORDA with unbounded fair scheduler)

The time between Look, Compute, and Move operations is
finite but unbounded.

Reminder:

Non-communicating

No communication mechanisms between robots, even locally.
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Precisions concerning the model

Initial configurations

Arbitrary but without multiplicity (at most 1 robot / node)
(necessary for termination)

In case of symmetry

Compute : choice of an equivalence class of neighbors

Actual choice: made by the adversary (i.e. worst case)

Multiplicity detection (global weak)

“zero”, “one”, or “more than one” robots
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Smallest exploring team

Exploration

We say that exploration of a graph is possible with k robots, if
there exists an algorithm enabling the robots to perform
exploration with stop of this graph starting from any initial
configuration of the k robots (thus, without multiplicity).

Smallest exploring team

Minimum number of robots that can explore any graph of a
given family.
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Related work

In the plane

Rich literature (gathering, pattern formation, etc.)

In graphs

[Klasing, Markou, Pelc. ISAAC 2006 & TCS 2008]
Feasibility of gathering in rings (except one case)

[Klasing, Kosowski, Navarra. OPODIS 2008 & TCS 2010]
Feasibility of gathering in rings in all cases (symmetry
preserving algorithm)
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Outline

1 Introduction

2 Rings
Our results
Lower bound
Upper bound

3 Trees

4 Conclusion
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Results (rings)

[Flocchini, I., Pelc, Santoro. OPODIS 2007]

Lemma

Exploration of a n-node ring by k robots is

impossible if k |n but k 6= n;

possible if gcd(n, k) = 1, for k ≥ 17.

Main result

Size of the smallest exploring team ρ(n) ∈ Θ(log n)

There exists a constant c such that, for infinitely many n,
we have ρ(n) ≥ c log n.

ρ(n) ∈ O(log n)
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Lower bound (1/2)

Lemma

Impossible to stop
(and sometimes to
explore) when k |n.
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Lower bound (2/2)

Theorem

There exists a constant c such that, for infinitely many n, we
have ρ(n) ≥ c log n.

Proof

Let n be the least common multiple of integers 1, 2, . . . , q.

From the previous slide, we have ρ(n) ≥ q + 1.

The Prime Number Theorem implies q ∼ ln n.

This implies the existence of a constant c such that, for
infinitely many n, ρ(n) ≥ c log n.

P. Flocchini, D. Ilcinkas, A. Pelc and N. Santoro Network Exploration by Asynchronous Oblivious Robots



11

Introduction Rings Trees Conclusion Our results Lower bound Upper bound

Lower bound (2/2)

Theorem

There exists a constant c such that, for infinitely many n, we
have ρ(n) ≥ c log n.

Proof

Let n be the least common multiple of integers 1, 2, . . . , q.

From the previous slide, we have ρ(n) ≥ q + 1.

The Prime Number Theorem implies q ∼ ln n.

This implies the existence of a constant c such that, for
infinitely many n, ρ(n) ≥ c log n.

P. Flocchini, D. Ilcinkas, A. Pelc and N. Santoro Network Exploration by Asynchronous Oblivious Robots



11

Introduction Rings Trees Conclusion Our results Lower bound Upper bound

Lower bound (2/2)

Theorem

There exists a constant c such that, for infinitely many n, we
have ρ(n) ≥ c log n.

Proof

Let n be the least common multiple of integers 1, 2, . . . , q.

From the previous slide, we have ρ(n) ≥ q + 1.

The Prime Number Theorem implies q ∼ ln n.

This implies the existence of a constant c such that, for
infinitely many n, ρ(n) ≥ c log n.

P. Flocchini, D. Ilcinkas, A. Pelc and N. Santoro Network Exploration by Asynchronous Oblivious Robots



11

Introduction Rings Trees Conclusion Our results Lower bound Upper bound

Lower bound (2/2)

Theorem

There exists a constant c such that, for infinitely many n, we
have ρ(n) ≥ c log n.

Proof

Let n be the least common multiple of integers 1, 2, . . . , q.

From the previous slide, we have ρ(n) ≥ q + 1.

The Prime Number Theorem implies q ∼ ln n.

This implies the existence of a constant c such that, for
infinitely many n, ρ(n) ≥ c log n.

P. Flocchini, D. Ilcinkas, A. Pelc and N. Santoro Network Exploration by Asynchronous Oblivious Robots



11

Introduction Rings Trees Conclusion Our results Lower bound Upper bound

Lower bound (2/2)

Theorem

There exists a constant c such that, for infinitely many n, we
have ρ(n) ≥ c log n.

Proof

Let n be the least common multiple of integers 1, 2, . . . , q.

From the previous slide, we have ρ(n) ≥ q + 1.

The Prime Number Theorem implies q ∼ ln n.

This implies the existence of a constant c such that, for
infinitely many n, ρ(n) ≥ c log n.

P. Flocchini, D. Ilcinkas, A. Pelc and N. Santoro Network Exploration by Asynchronous Oblivious Robots



11

Introduction Rings Trees Conclusion Our results Lower bound Upper bound

Lower bound (2/2)

Theorem

There exists a constant c such that, for infinitely many n, we
have ρ(n) ≥ c log n.

Proof

Let n be the least common multiple of integers 1, 2, . . . , q.

From the previous slide, we have ρ(n) ≥ q + 1.

The Prime Number Theorem implies q ∼ ln n.

This implies the existence of a constant c such that, for
infinitely many n, ρ(n) ≥ c log n.

P. Flocchini, D. Ilcinkas, A. Pelc and N. Santoro Network Exploration by Asynchronous Oblivious Robots



12

Introduction Rings Trees Conclusion Our results Lower bound Upper bound

Upper bound

Lemma

Exploration is possible if gcd(n, k) = 1, for k ≥ 17.

Theorem

The size ρ(n) of the smallest exploring team is in O(log n).

Proof

Let pj be the j-th prime, and pj# =
∏j

i=1 pi the pj -primorial.

Take j such that
pj#

13#
≤ n <

pj+1#

13#
. We have ρ(n) ≤ pj+1.

(all primes in {17, . . . , pj+1} divide n =⇒ n ≥ pj+1#

13#
)

From [Ruiz, Math. Gaz. ’97], we have pj ∼ ln(pj#).

Hence ρ(n) ≤ pj+1 ∈ O(log n).
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Some definitions

Interdistance

Minimum distance
taken over all pairs of
distinct robots.

Here interdistance=2.

Block

Maximal set of robots,
of size at least 2,
forming a line with a
robot every d nodes.
(d=interdistance)
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Our algorithm

Set-Up Phase

Goal: to transform the (arbitrary) initial configuration into a
configuration of interdistance 1 where there is a single block or
two blocks of the same size.
Method: decrease the number of blocks whenever possible.
Otherwise, decrease the interdistance.

Tower-Creation Phase

Goal: to create one or two multiplicities inside each block;
furthermore a number of robots become uniquely identified as
explorers.

Exploration Phase

Goal: to perform exploration thanks to the explorers until
reaching an identified final configuration.
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An example
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Other results on the ring (1)

[Devismes, Petit, Tixeuil. SIROCCO 2009]

Main result

Four probabilistic robots are always necessary and sufficient
(ATOM model)

Ideas of the algorithm

Use randomization to break symmetries

Create one block of interdistance 1
(deterministic/randomized)

Create a multiplicity (randomized)

Explore the ring (deterministic)

P. Flocchini, D. Ilcinkas, A. Pelc and N. Santoro Network Exploration by Asynchronous Oblivious Robots



16

Introduction Rings Trees Conclusion Our results Lower bound Upper bound

Other results on the ring (1)

[Devismes, Petit, Tixeuil. SIROCCO 2009]

Main result

Four probabilistic robots are always necessary and sufficient
(ATOM model)

Ideas of the algorithm

Use randomization to break symmetries

Create one block of interdistance 1
(deterministic/randomized)

Create a multiplicity (randomized)

Explore the ring (deterministic)

P. Flocchini, D. Ilcinkas, A. Pelc and N. Santoro Network Exploration by Asynchronous Oblivious Robots



17

Introduction Rings Trees Conclusion Our results Lower bound Upper bound

Other results on the ring (2)

[Lamani, Gradinariu Potop-Butucaru, Tixeuil. SIROCCO 2010]

Focus

Size of the smallest exploring team for “good” values of n

Main results

Lower bound on deterministic algorithm:

Five robots (when n is even)
Four robots (when n is odd)

Deterministic algorithm for 5 robots when n and 5 are
co-prime
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Results (trees)

[Flocchini, I., Pelc, Santoro. SIROCCO 2008 & TCS 2010]

Main result

Trees of maximum degree 3:

Θ(log n/ log log n) robots

Justification of the restrictions

Θ(n) robots in some trees of maximum degree 4
(complete ternary trees)
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Lower bound: Ω(log n/ log log n) robots

Observation

Many configurations are equivalent for the robots

Sketch of the proof

Complete binary tree, synchronous case

few robots ⇒ few different snapshots, say x

at most x different snapshots ⇒ at most x · k explored
nodes before stopping
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Upper bound: O(log n/ log log n) robots

Theorem

For any n, there exists a team of k ∈ Θ(log n/ log log n)
robots, with k ≡ 5 (mod 6) that can explore all n-node trees
of maximum degree 3, starting from any initial configuration.

Main ideas

A team of three robots aims at exploring the tree

All other robots are used to keep track of progress

A visual pattern, called the “brain”, formed by the robots
counts the number of explored leaves

The tree is divided into few pieces and is explored piece
by piece.
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Pieces

The centroid defines pieces in the tree.

or or

bicentroid

centroid

Property

The two largest pieces have size at least n/4.
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Phase 1 (1)

Goal: Make room in the pieces and create one multiplicity

Steps

Any robot goes down if it does not create a multiplicity

A leader is elected in the heaviest piece P (i.e. the one
with the largest number of robots)

The leader helps in creating a single multiplicity in P

Property

The core zone is connected
and is formed by at least
n

log n
nodes.

core
zone

robots

piece
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Phase 1 (2)

Observation

In a piece, the number of robots having the same view is
always a power of two and thus either even or one (solitaire).

Corollary

A piece of odd weight has a (local) leader

Since k ≡ 5 (mod 6), there always exists a global leader

It is possible to have a single heaviest piece P , having a
leader
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Phase 2

The brain

It synchronizes the actions of the robots and counts the
number of explored leaves.

Goal of Phase 2

Construct and initialize the brain in the core zone of the
largest piece Q (different from P) by moving robots from
the heavy piece P , using the leader to break symmetries.

Form the exploring team of three robots in P .

Remove (move in Q) all other robots in Q.
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A counter

descending

path

length

~ log n

Lemma

In a core zone of size m, one can
construct log2 m disjoint descending
paths of length 1

4
logm.

Counter

One can construct a counter with
range n by using Θ(log n/ log log n)
descending paths and thus
Θ(log n/ log log n) robots.

P. Flocchini, D. Ilcinkas, A. Pelc and N. Santoro Network Exploration by Asynchronous Oblivious Robots



26

Introduction Rings Trees Conclusion Our results Lower bound Upper bound

A counter

descending

path

length

~ log n

Lemma

In a core zone of size m, one can
construct log2 m disjoint descending
paths of length 1

4
logm.

Counter

One can construct a counter with
range n by using Θ(log n/ log log n)
descending paths and thus
Θ(log n/ log log n) robots.

P. Flocchini, D. Ilcinkas, A. Pelc and N. Santoro Network Exploration by Asynchronous Oblivious Robots



26

Introduction Rings Trees Conclusion Our results Lower bound Upper bound

A counter

descending

path

length

~ log n

Lemma

In a core zone of size m, one can
construct log2 m disjoint descending
paths of length 1

4
logm.

Counter

One can construct a counter with
range n by using Θ(log n/ log log n)
descending paths and thus
Θ(log n/ log log n) robots.

P. Flocchini, D. Ilcinkas, A. Pelc and N. Santoro Network Exploration by Asynchronous Oblivious Robots



27

Introduction Rings Trees Conclusion Our results Lower bound Upper bound

Phase 3

Goal: Explore P ′′, the largest of the pieces other than Q.

Exploration of a pair of leaves

Use the counter value to determine the next leaf/pair of leaves
to be explored

P. Flocchini, D. Ilcinkas, A. Pelc and N. Santoro Network Exploration by Asynchronous Oblivious Robots



27

Introduction Rings Trees Conclusion Our results Lower bound Upper bound

Phase 3

Goal: Explore P ′′, the largest of the pieces other than Q.

Exploration of a pair of leaves

Use the counter value to determine the next leaf/pair of leaves
to be explored

P. Flocchini, D. Ilcinkas, A. Pelc and N. Santoro Network Exploration by Asynchronous Oblivious Robots



27

Introduction Rings Trees Conclusion Our results Lower bound Upper bound

Phase 3

Goal: Explore P ′′, the largest of the pieces other than Q.

Exploration of a pair of leaves

Use the counter value to determine the next leaf/pair of leaves
to be explored

P. Flocchini, D. Ilcinkas, A. Pelc and N. Santoro Network Exploration by Asynchronous Oblivious Robots



27

Introduction Rings Trees Conclusion Our results Lower bound Upper bound

Phase 3

Goal: Explore P ′′, the largest of the pieces other than Q.

Exploration of a pair of leaves

Use the counter value to determine the next leaf/pair of leaves
to be explored

P. Flocchini, D. Ilcinkas, A. Pelc and N. Santoro Network Exploration by Asynchronous Oblivious Robots



27

Introduction Rings Trees Conclusion Our results Lower bound Upper bound

Phase 3

Goal: Explore P ′′, the largest of the pieces other than Q.

Exploration of a pair of leaves

Use the counter value to determine the next leaf/pair of leaves
to be explored

P. Flocchini, D. Ilcinkas, A. Pelc and N. Santoro Network Exploration by Asynchronous Oblivious Robots



27

Introduction Rings Trees Conclusion Our results Lower bound Upper bound

Phase 3

Goal: Explore P ′′, the largest of the pieces other than Q.

Exploration of a pair of leaves

Use the counter value to determine the next leaf/pair of leaves
to be explored

P. Flocchini, D. Ilcinkas, A. Pelc and N. Santoro Network Exploration by Asynchronous Oblivious Robots



27

Introduction Rings Trees Conclusion Our results Lower bound Upper bound

Phase 3

Goal: Explore P ′′, the largest of the pieces other than Q.

Exploration of a pair of leaves

Use the counter value to determine the next leaf/pair of leaves
to be explored

P. Flocchini, D. Ilcinkas, A. Pelc and N. Santoro Network Exploration by Asynchronous Oblivious Robots



27

Introduction Rings Trees Conclusion Our results Lower bound Upper bound

Phase 3

Goal: Explore P ′′, the largest of the pieces other than Q.

Exploration of a pair of leaves

Use the counter value to determine the next leaf/pair of leaves
to be explored

P. Flocchini, D. Ilcinkas, A. Pelc and N. Santoro Network Exploration by Asynchronous Oblivious Robots



27

Introduction Rings Trees Conclusion Our results Lower bound Upper bound

Phase 3

Goal: Explore P ′′, the largest of the pieces other than Q.

Exploration of a pair of leaves

Use the counter value to determine the next leaf/pair of leaves
to be explored

P. Flocchini, D. Ilcinkas, A. Pelc and N. Santoro Network Exploration by Asynchronous Oblivious Robots



27

Introduction Rings Trees Conclusion Our results Lower bound Upper bound

Phase 3

Goal: Explore P ′′, the largest of the pieces other than Q.

Exploration of a pair of leaves

Use the counter value to determine the next leaf/pair of leaves
to be explored

P. Flocchini, D. Ilcinkas, A. Pelc and N. Santoro Network Exploration by Asynchronous Oblivious Robots



27

Introduction Rings Trees Conclusion Our results Lower bound Upper bound

Phase 3

Goal: Explore P ′′, the largest of the pieces other than Q.

Exploration of a pair of leaves

Use the counter value to determine the next leaf/pair of leaves
to be explored

P. Flocchini, D. Ilcinkas, A. Pelc and N. Santoro Network Exploration by Asynchronous Oblivious Robots



27

Introduction Rings Trees Conclusion Our results Lower bound Upper bound

Phase 3

Goal: Explore P ′′, the largest of the pieces other than Q.

Exploration of a pair of leaves

Use the counter value to determine the next leaf/pair of leaves
to be explored

P. Flocchini, D. Ilcinkas, A. Pelc and N. Santoro Network Exploration by Asynchronous Oblivious Robots



27

Introduction Rings Trees Conclusion Our results Lower bound Upper bound

Phase 3

Goal: Explore P ′′, the largest of the pieces other than Q.

Exploration of a pair of leaves

Use the counter value to determine the next leaf/pair of leaves
to be explored

P. Flocchini, D. Ilcinkas, A. Pelc and N. Santoro Network Exploration by Asynchronous Oblivious Robots



27

Introduction Rings Trees Conclusion Our results Lower bound Upper bound

Phase 3

Goal: Explore P ′′, the largest of the pieces other than Q.

Exploration of a pair of leaves

Use the counter value to determine the next leaf/pair of leaves
to be explored

P. Flocchini, D. Ilcinkas, A. Pelc and N. Santoro Network Exploration by Asynchronous Oblivious Robots



27

Introduction Rings Trees Conclusion Our results Lower bound Upper bound

Phase 3

Goal: Explore P ′′, the largest of the pieces other than Q.

Exploration of a pair of leaves

Use the counter value to determine the next leaf/pair of leaves
to be explored

P. Flocchini, D. Ilcinkas, A. Pelc and N. Santoro Network Exploration by Asynchronous Oblivious Robots



28

Introduction Rings Trees Conclusion Our results Lower bound Upper bound

Remaining phases

Phase 4

Relocate the brain from Q to P ′′

Phase 5

Explore piece Q and stop if there are only two pieces

Phase 6

Reinitialize the brain and relocate the exploring team in the
unexplored piece

Phase 7

Explore the last piece and stop
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A small sample of the problems to solve

How to create a single multiplicity in Phase 1 without
blocking the other robots?

How to break symmetries using the leader? (problem of
trapped solitaires)

How to move multiplicities? How to move robots to their
precise targets?

How do the leader and the other robots cross each other
in path-like trees?

Is the counter up-to-date or currently updating?

How to remember the phase number?

. . .
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Outline

1 Introduction

2 Rings

3 Trees

4 Conclusion
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Conclusion (1)

My experience

Very complicated algorithms

Unreasonable complexity coming from the model

Potential “solutions”

degree 3 vs > 3 → strong multiplicity detection

complicated algorithm → ATOM?

Another (ideal?) solution: sense of direction (port numbers)

[Chalopin, Flocchini, Mans, Santoro. WG 2010]
Study in more general classes of graphs (CORDA model)
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Conclusion and perspectives

Perspectives

Limited visibility

Fault tolerant protocols

Perpetual exploration without collision

[Baldoni, Bonnet, Milani, Raynal. IPL 2008]
Partial study (FSYNCH, unlimited vision)

[Baldoni, Bonnet, Milani, Raynal. OPODIS 2008]
Characterization in partial grids (FSYNCH, limited vision)
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