
Memory Efficient Exploration
in Anonymous Networks

1

Leszek A. Gąsieniec
U of Liverpool

Special thanks go to: Evangelos Bampas, Petra Berenbrink, Andrew Collins, Jurek Czyzowicz, Stefan Dobrev,
Robert Elsässer, Pierre Fraigniaud, Nicholas Hanusse, David Ilcinkas, Jesper Jansson, Ralf Klasing, Adrian
Kosowski, Darek Kowalski, Arnaud Labourel, Gadi Landau, Yannis Lignos, Russell Martin, Alfredo Navarra,
Andrzej Pelc, David Peleg, Tomasz Radzik, Kunihiko Sadakane, Wing-Kin Sung, and Xiaohui Zhang (among
the others).

Anonymous Networks –
labelled vs. implicit ports

� Equivalent definitions of anonymous graphs
� with explicit and
� implicit port ordering

2

1

1

1

1

1

1

3

3

2

2

2

3

1

2

2

2

1

4

2

2

1

3

2

3

Network/graph traversal problem

The goal in network
exploration is to visit all
nodes in the network either
periodically or with return to

3

periodically or with return to
the original position.

As efficiently as possible, typical complexity measures:

- memory utilization,

- exploration time,

- use of other resources (markers, pebbles, colors, etc).

The random walk procedure

� The random walk, is a mathematical formalization of a trajectory
that consists of taking successive steps in random directions.

� A fundamental model for a random process in time. E.g., the
following processes can be modeled as random walk

4

following processes can be modeled as random walk

� path traced by a molecule in a liquid or a gas (Brownian motion),

� search path of a foraging animal,

� price of a fluctuating stock and

� financial status of a gambler, …

� A random walk on a graph is also a special case of a Markov chain

Basic results on the random walk

� Robot performing a random walk in an arbitrary graph of size n
visits all nodes in the graph in (expected) time O(n3)

� R. Aleliunas, R.M. Karp, R.J. Lipton, L. Lovasz, and C.
Rackoff, FOCS’79

� Robot performing a random walk in expected time:

� complete graphs O(n log n)� complete graphs O(n log n)

� lines, trees O(n2)

� torus, 2D-grids O(n log2 n)

� (this can be improved to O(n log n) if n is known)

� Robot performing a random walk in an arbitrary graph of size n
visits all nodes in the graph in (expected) time O(n2log n) if we give
preference to neighbours with lower degrees

� S. Ikeda, I. Kubo, N. Okumoto, and M. Yamashita, ICALP’03
5

� Traversal based on the random walk is virtually memory-less,
however it requires a large volume of (pseudo) random bits

� There has been already a substantial attempt to study
deterministic alternatives to the random walk

Deterministic counterparts for RW

� Several models have been proposed and studied including:

� the rotor-router mechanism and

� the basic walk procedure

� However, only a few results are known and further studies
in the field would be highly appreciated

6

Rotor-router mechanism

7

Traversal in rotor-router mechanism

� Robot locks in an Eulerian cycle in O(V·E) steps
� S. Bhatt, S. Even, D. Greenberg, and R. Tayar,

J. of Graph Algorithms and Applications’02

� Robot locks in an Eulerian cycle in 2·E·D steps � Robot locks in an Eulerian cycle in 2·E·D steps
� V. Yanovski, I.A. Wagner, and A.M. Bruckstein,

Algorithmica’03

� There is more and more work on comparison of
performance of random walk and rotor-routers, e.g.,
in load balancing mechanism, infinite graphs, etc

8

Rotor-router model – Euler cycle

ab

1

1

2 2

3

3

b

c

d a

2

2

1

1

1

3

3

9

dc

1 1
22

3 3

11121223231133121223231...

abcbdacadbabcdcbdacadba...

a

c

d a

d

2

2

31

3

Traversal in rotor-router mechanism

� Dependence of the lock-in time on the initial configuration of the
rotor-router mechanism

� Bampas, Gąsieniec, Hanusse, Ilcinkas, Klasing, and Kosowski, DISC’09

� Min and max values of the lock-in time in considered cases

Scenario Worst case Best case

↻↻↻↻

Scenario Worst case Best case

P-all Θ(m) Θ(m)

A(↻↻↻↻)P(℗) Θ(m) Θ(m)

P(℗)A(↻↻↻↻) Θ(m·min{log m,D}) Θ(m)

A(℗)P(↻↻↻↻) Θ(m·D) Θ(m)

P(↻↻↻↻)A(℗) Θ(m·D) Θ(m) for all D ≤ n1/2

A-all Θ(m·D) Θ(m·D)

10

Traversal in rotor-router mechanism

� We show that after establishing an Eulerian cycle

Bampas, Gąsieniec, Klasing, Kosowski, and Radzik, OPODIS’09.

� (i) if at some step the values of k pointers v are arbitrarily changed,
then a new Eulerian cycle is obtained within O(k· m) steps;

� (ii) if at some step k edges are added to the graph, then a new � (ii) if at some step k edges are added to the graph, then a new
Eulerian cycle is established within O(k· m) steps;

� (iii) if at some step an edge is deleted from the graph, then a new
Eulerian cycle is established within O(γ· m) steps, where γ is the
number of edges in a shortest cycle in graph G containing the
deleted edge.

� The results are based on the relationship between Eulerian
cycles and spanning trees known as the “BEST” Theorem (due
to de Bruijn, van Aardenne-Ehrenfest, Smith and Tutte)

Basic walk

� This type of an algorithm can be used in case when the robot is
barely equipped in the internal memory, i.e., the use of none or
a constant number of memory bits is allowed.

� Simple actions of the robot are pre-programmed and could be

12

� Simple actions of the robot are pre-programmed and could be
seen as actions of a finite state machine, also the ports in the
graph are pre-processed.

� The task is to design a route based on port numbers and
navigation abilities of the finite state machine that allows the
robot to visit all graph nodes periodically.

Basic walk – cover by directed cycles

1

1

1

1

3

2 2

2

2

3 � The basic walk idea
and an arbitrary
arrangements of port
numbers partitions all

1

1

1

3

3

2

3

12

2

1

4

2

2

1

3

2

numbers partitions all
unidirectional edges
(obtained from
replacing each
undirected edge by a
pair of arcs with the
opposite directions)
into a number of
directed cycles

13

Basic walk - a tour

4

1

1

1

3

2 3

2

1

2 � In this model periodic
graph exploration
refers to arrangement
of ports, s.t., at least
one tour containing all

4

2

1

3

3

2

3

22

1

1

1

2

1

1

3
2

of ports, s.t., at least
one tour containing all
nodes in the graph is
formed.

Comment: what about
random ordering of
ports? It seems that
the expected length of
a cycle is ≈ 79.

14

Oblivious robots, tour < 2n

a) b) c)

Find a spanning treeAn input graph G Pick single edges

In graphs having a spanning
tree with non-saturated
nodes

d) e) f)

1
2

3

4

4

1 23

Double tree edges
Restore parity at nodes
and remove double edges

One cycle of length < 2n15

Oblivious robots, summary

� Searching for spanning trees with external graph edges at each
node of the tree is NP-hard. This problem is equivalent to finding
a Hamiltonian cycle in cubic graphs (known to be NP-hard).

� Not every graph have a spanning tree with the desired property,
thus in general a different approach is needed.

The best currently known bounds on the length of the periodic � The best currently known bounds on the length of the periodic
route used by oblivious robots are:

� Upper 4n

� Lower 2.8n

In this graph all edges must be traversed in two directions
16

Does extra memory help?

fixed marker

� In the model with implicit port numbers one needs to insert a
fixed marker at one port of each node of the network.

� This breaks symmetry at the node and allows to use efficiently
the memory provided to a robot

17

1

1

1

1

1
1

3

3
2

2

2

3

1

2

2
2

1

4

2

2
1

3
2

3

fixed marker

Memory utilisation

� The exploration is performed along edges of a spanning tree
encoded by port numbers.

1

11

1

1

1

1
1

root
edge 3

2 2
3

3
3

3
penalty
edge

port #1 leads
to the root

2

We go back
to DFS idea

18

1

11

1

1

1

1

1

2

2

2

2

3

3

3

~1

Every node potentially carries a penalty edge, thus the length of
the tour is ≤ 4n-2, where 2n-2 comes the spanning tree and 2n
from penalty edges. We know how to avoid at least n/4 penalty
edges. This gives a tour of length at most 3½n.

port #1 corresponds
to the location of
the fixed marker

Results in the basic walk model

� state-less graph exploration with the tour of length 10n
� S. Dobrev, J. Jansson, K. Sadakane, W.-K. Sung, SIROCCO’05

� 2 bit-state exploration with the tour of length 4n-2; also
conjectured lower bound of 4n-O(1).
� D. Ilcinkas, SIROCCO’06

� constant bit-state exploration with the tour of length 3.75n-2.

19

� constant bit-state exploration with the tour of length 3.75n-2.
� L. Gąsieniec, R. Klasing, R. Martin, A. Navarra, X. Zhang, SIROCCO’07

� state-less exploration with the tour of length 4.3(3)n and

constant bit-state exploration with the tour of length 3.50n-2.
� J. Czyzowicz, S. Dobrev, L. Gąsieniec, D. Ilcinkas, J. Jansson, R. Klasing, Y. Lignos,

R. Martin, K. Sadakane, W.-K. Sung, SIROCCO’09

� state-less exploration with the tour of length 4n and
� A. Kosowski and A. Navarra, MFCS’09.

Other related problems

� Rendezvous problems

� Asynchronous computation/communication

20

Summary and further work

� Model with preprocessed port numbers
� (basic walk) oblivious robots 2.8n … 4n

� (basic walk) robots with constant memory 2n … 3.5n

� (Model with the worst case port numbers
� (rotor router) exact bounds on stabilization in various graph classes

� (random walk vs. rotor router) exploration similarities/differences � (random walk vs. rotor router) exploration similarities/differences

� Model with random port numbers
� (rotor router) performance in different classes of graphs

� (random walk) performance in different classes of graphs

� (basic walk) distribution of cycles, how many possible tours?

� study of hybrid models, e.g., random rotor-router

� Multi-robot problems
� Graph exploration, rendezvous and gathering, asynchronous agents, etc

21

