Memory Efficient Exploration in Anonymous Networks

Leszek A. Gąsieniec
 U of Liverpool

Special thanks go to: Evangelos Bampas, Petra Berenbrink, Andrew Collins, Jurek Czyzowicz, Stefan Dobrev, Robert Elsässer, Pierre Fraigniaud, Nicholas Hanusse, David Ilcinkas, Jesper Jansson, Ralf Klasing, Adrian Kosowski, Darek Kowalski, Arnaud Labourel, Gadi Landau, Yannis Lignos, Russell Martin, Alfredo Navarra, Andrzej Pelc, David Peleg, Tomasz Radzik, Kunihiko Sadakane, Wing-Kin Sung, and Xiaohui Zhang (among 1 the others).

Anonymous Networks labelled vs. implicit ports

- Equivalent definitions of anonymous graphs
- with explicit and
- implicit port ordering

Network/graph traversal problem

-The exit? Sure...take a right, then left, teft
again no, wait a right then...no, wait
As efficiently as possible, typical complexity measures:

- memory utilization,
- exploration time,
- use of other resources (markers, pebbles, colors, etc).

The random walk procedure

- The random walk, is a mathematical formalization of a trajectory that consists of taking successive steps in random directions.
- A fundamental model for a random process in time. E.g., the following processes can be modeled as random walk
- path traced by a molecule in a liquid or a gas (Brownian motion),
- search path of a foraging animal,
- price of a fluctuating stock and
- financial status of a gambler, ...
- A random walk on a graph is also a special case of a Markov chain

Basic results on the random walk

- Robot performing a random walk in an arbitrary graph of size n visits all nodes in the graph in (expected) time $O\left(n^{3}\right)$
- R. Aleliunas, R.M. Karp, R.J. Lipton, L. Lovasz, and C. Rackoff, FOCS'79
- Robot performing a random walk in expected time:
- complete graphs O(n log n)
- lines, trees $O\left(n^{2}\right)$
- torus, 2D-grids O(n $\log ^{2} n$)
- (this can be improved to $\underline{O}(\mathrm{n} \log \mathrm{n})$ if n is known)
- Robot performing a random walk in an arbitrary graph of size n visits all nodes in the graph in (expected) time $O\left(n^{2} \log n\right)$ if we give preference to neighbours with lower degrees
- S. Ikeda, I. Kubo, N. Okumoto, and M. Yamashita, ICALP’03

Deterministic counterparts for RW

- Traversal based on the random walk is virtually memory-less, however it requires a large volume of (pseudo) random bits
- There has been already a substantial attempt to study deterministic alternatives to the random walk
- Several models have been proposed and studied including:
- the rotor-router mechanism and
- the basic walk procedure
- However, only a few results are known and further studies in the field would be highly appreciated

Rotor-router mechanism

Traversal in rotor-router mechanism

- Robot locks in an Eulerian cycle in $O(V \cdot E)$ steps
- S. Bhatt, S. Even, D. Greenberg, and R. Tayar,
J. of Graph Algorithms and Applications'02
- Robot locks in an Eulerian cycle in 2•E•D steps
- V. Yanovski, I.A. Wagner, and A.M. Bruckstein,

Algorithmica'03

- There is more and more work on comparison of performance of random walk and rotor-routers, e.g., in load balancing mechanism, infinite graphs, etc

Rotor-router model - Euler cycle

Traversal in rotor-router mechanism

- Dependence of the lock-in time on the initial configuration of the rotor-router mechanism
- Bampas, Gąsieniec, Hanusse, Ilcinkas, Klasing, and Kosowski, DISC'09
- Min and max values of the lock-in time in considered cases

Scenario	Worst case	Best case
P-all	$\Theta(m)$	$\Theta(m)$
$A(\circlearrowright) P(®)$	$\Theta(m)$	$\Theta(m)$
$P(®) A(\circlearrowright)$	$\Theta(m \cdot \min \{\log m, D\})$	$\Theta(m)$
$A(®) P(\circlearrowright)$	$\Theta(m \cdot D)$	$\Theta(m)$
$P(\circlearrowright) A(®)$	$\Theta(m \cdot D)$	$\Theta(m)$ for all $D \leq n^{1 / 2}$
A-all	$\Theta(m \cdot D)$	$\Theta(m \cdot D)$

Traversal in rotor-router mechanism

- We show that after establishing an Eulerian cycle

Bampas, Gąsieniec, Klasing, Kosowski, and Radzik, OPODIS'o9.

- (i) if at some step the values of k pointers v are arbitrarily changed, then a new Eulerian cycle is obtained within $O(k \cdot m)$ steps;
- (ii) if at some step k edges are added to the graph, then a new Eulerian cycle is established within $O(k \cdot m)$ steps;
- (iii) if at some step an edge is deleted from the graph, then a new Eulerian cycle is established within $O(\gamma \cdot m)$ steps, where γ is the number of edges in a shortest cycle in graph G containing the deleted edge.
- The results are based on the relationship between Eulerian cycles and spanning trees known as the "BEST" Theorem (due to de Bruijn, van Aardenne-Ehrenfest, Smith and Tutte)

Basic walk

- This type of an algorithm can be used in case when the robot is barely equipped in the internal memory, i.e., the use of none or a constant number of memory bits is allowed.
- Simple actions of the robot are pre-programmed and could be seen as actions of a finite state machine, also the ports in the graph are pre-processed.
- The task is to design a route based on port numbers and navigation abilities of the finite state machine that allows the robot to visit all graph nodes periodically.

Basic walk - cover by directed cycles

- The basic walk idea and an arbitrary arrangements of port numbers partitions all unidirectional edges (obtained from replacing each undirected edge by a pair of arcs with the opposite directions) into a number of directed cycles

Basic walk - a tour

- In this model periodic graph exploration refers to arrangement of ports, s.t., at least one tour containing all nodes in the graph is formed.
Comment: what about random ordering of ports? It seems that the expected length of a cycle is ≈ 79.

Oblivious robots, tour < 2n

 In graphs having a spanning tree with non-saturatedAn input graph G

15 Double tree edges

Find a spanning tree nodes

Restore parity at nodes and remove double edges

Pick single edges

One cycle of length < 2n

Oblivious robots, summary

- Searching for spanning trees with external graph edges at each node of the tree is NP-hard. This problem is equivalent to finding a Hamiltonian cycle in cubic graphs (known to be NP-hard).
- Not every graph have a spanning tree with the desired property, thus in general a different approach is needed.
- The best currently known bounds on the length of the periodic route used by oblivious robots are:
- Upper 4n
- Lower 2.8n

In this graph all edges must be traversed in two directions

Does extra memory help?

- In the model with implicit port numbers one needs to insert a fixed marker at one port of each node of the network.
- This breaks symmetry at the node and allows to use efficiently the memory provided to a robot
- fixed marker

Memory utilisation

- The exploration is performed along edges of a spanning tree encoded by port numbers.

We go back to DFS idea

Every node potentially carries a penalty edge, thus the length of the tour is $\leq 4 n-2$, where $2 n-2$ comes the spanning tree and $2 n$ from penalty edges. We know how to avoid at least n/4 penalty edges. This gives a tour of length at most $3^{1 / 2 n}$.

Results in the basic walk model

- state-less graph exploration with the tour of length 10 n
- S. Dobrev, J. Jansson, K. Sadakane, W.-K. Sung, SIROCCO'05
- 2 bit-state exploration with the tour of length $4 \mathrm{n}-2$; also conjectured lower bound of $4 \mathrm{n}-\mathrm{O}(1)$.
- D. Ilcinkas, SIROCCO'06
- constant bit-state exploration with the tour of length 3.75n-2.
- L. Gąsieniec, R. Klasing, R. Martin, A. Navarra, X. Zhang, SIROCCO'07
- state-less exploration with the tour of length $4.3(3) \mathrm{n}$ and constant bit-state exploration with the tour of length 3.50n-2.
- J. Czyzowicz, S. Dobrev, L. Gąsieniec, D. Ilcinkas, J. Jansson, R. Klasing, Y. Lignos, R. Martin, K. Sadakane, W.-K. Sung, SIROCCO'09
- state-less exploration with the tour of length $4 n$ and
- A. Kosowski and A. Navarra, MFCS'09.

Other related problems

- Rendezvous problems
- Asynchronous computation/communication

Summary and further work

- Model with preprocessed port numbers
- (basic walk) oblivious robots 2.8n ... 4n
- (basic walk) robots with constant memory 2n ... 3.5n
- (Model with the worst case port numbers
- (rotor router) exact bounds on stabilization in various graph classes
- (random walk vs. rotor router) exploration similarities/differences
- Model with random port numbers
- (rotor router) performance in different classes of graphs
- (random walk) performance in different classes of graphs
- (basic walk) distribution of cycles, how many possible tours?
- study of hybrid models, e.g., random rotor-router
- Multi-robot problems
- Graph exploration, rendezvous and gathering, asynchronous agents, etc

