

Tutorial

Practical Theory

on Theoretical Practice?

### A Discussion on Models of Synchrony, Faults, and Sensors...

#### **Xavier DÉFAGO**

School of Information Science Japan Advanced Institute of Science and Technology

Tuesday, 17 August 2010



### Structure / Outline

#### Tutorial part

- $\bigcirc$  Models of Synchrony
- Fault Models
- Sensors / Agreement

#### Discussion part

○ Theme: Theory vs. practice

# Models of Synchrony

Tuesday, 17 August 2010



# Models of Synchrony

#### □ Asynchronous (CORDA)



#### □ Semi-synchronous (SYm)







#### 🗆 Fair vs. Unfair

- $\bigcirc$  Fair: Every robot active  $\infty$ -often.
- O **Unfair**: Some robot active ∞-often.

#### Centralized vs. Distributed

- O Centralized: At most one robot activated
- **Distributed**: Any subset of robots activated

[Défago, Gradinariu, Messika, Raipin-P. 2006] + exten.

...





#### Bounded vs. Unbounded

- **k-Bounded**:  $\forall r_a \forall r_b r_a$  active at most k times between any two consecutive activations of  $r_b$
- **Bounded**: ∃k s.t., system is k-bounded (k is unknown)
- O **Unbounded**: No bounds
- O **Bounded Regular**: Special case; means 1-Bounded.



### Scheduler



# Viewpoint: Implicit Comm.

#### 🖵 Context

- O Synchronization by communication
- No faults, reliable communication

#### 🖵 Idea

• Analogy to "round synchronous model"





#### Centralized regular scheduler



# Fault Models

Tuesday, 17 August 2010





#### Crash Faults

○ A faulty robot stops executing any action.

#### Omission Faults

• A faulty robot "omits" executing some actions

#### **Byzantine Faults**

• A faulty robot behaves arbitrarily (potentially maliciously).





#### □ "Is a crashed robot recognized as a robot?"

#### □ Case 1: No

O Illustrations:

- crashed robot blown into pieces!
- crashed robot stops sending positioning beacons
- O Countermeasure:
  - oblivious algorithms (trivial)





#### □ "Is a crashed robot recognized as a robot?"

#### 🖵 Case 2: Yes

- O Illustrations:
  - out-of-battery
- O Countermeasure:
  - failure detection
  - randomization
  - ...





#### □ "Adversary stronger than model?"

#### □ Case 1: No

- Byzantine robot must abide by scheduler rules
- Adversary can chose schedule

#### 🗆 Case 2: Yes

- Byzantine robot can override schedule limits
- Scheduler rules must apply to correct robots

#### NB: Also raised by Andrzej Pelc yesterday





#### □ Compass

• Agreement on one common direction (North)

#### Unreliable compasses

O Many classes

#### Eventual compasses

- Vary in time (fluctuate)
- Eventually: all compasses agree permanently

[Souissi, Défago, Yamashita 2006/2009]











#### **Bounded errors**

- Fixed direction / fluctuate
- $\bigcirc$  Bounded errors

[Katayama, Inuzuka, Wada 2006]

[Souissi, Défago, Yamashita 2006]

[Katayama, Tomida, Imazu, Inuzuka, Wada 2007]

[Yamashita, Souissi, Défago 2007]

[Izumi, Katayama, Inuzuka, Wada 2007]

[Inuzuka, Tomida, Izumi, Katayama, Wada 2008





Tuesday, 17 August 2010



#### □ Formation

• Pattern obtained after finite number of steps by a deterministic algorithm.

#### **Convergence**

- Monotonic progress toward pattern
- Pattern obtained asymptotically



## Sensing & Actuation

#### Proximity sensors

- Finite precision; Limited accuracy
- Types: IR, sonar, visual, laser

#### **I** Motors

- Finite precision; Limited accuracy
- Types (e.g, wheeled): DC motor, stepper motor

#### **Outcome**

- Movement nearly discrete
- O Convergence **implies** formation



# Models of Synchrony

#### □ Asynchronous (CORDA)



#### □ Semi-synchronous (SYm)







- □ Practically speaking:
  - "Which model is most <u>relevant</u>?"
- □ Answer: "It depends!"



### **Assumption Coverage**

#### □ System Assumptions (A)

○ Algorithm proved correct

#### Environment Behavior (B)

O Actual behavior of the system

**Coverage** 

 $\bigcirc$  (A  $\cap$  B) / B

#### **Comment**

• Choice of system model is essential



**Environment Behavior** 



### CORDA vs. SYm

#### □ Fundamentally

 $\bigcirc$  SYm  $\subset$  CORDA ([Pre05] "The effect of synchronicity..." TCS)

#### 🗅 So

 $\bigcirc$  coverage(SYm)  $\leq$  coverage(CORDA)

#### □ Why not strict inequality?





### Determ. vs. Probabilistic

#### 🖵 Case 1

- O deterministic algorithm
- $\bigcirc$  assumption coverage = 90%

#### 🗆 Case 2

- probabilistic algorithm: P[correct ^ terminate] = 95%
- $\bigcirc$  assumption coverage = 95%

#### □ Which one is most dependable?

- Case 1 -> 10% undefined behavior
- Case 2 -> 9.75% undefined behavior



## Dumb, cheap robots...

#### **Assumptions**

• measure other robots positions with **infinite accuracy**?

#### Actual proximity sensors

- IR proximity sensors / sonar
- O Signal strength (RFID, WiFi)
- O Machine vision
- O Laser

#### □ Reality

○ GPS / landmarks + communication is way cheaper!



# **Concluding Comments**

#### Axiomatic approach

- Separates applicability from correctness issues
- $\bigcirc$  Models important to focus on fundamental problems / limits
- O Relation between problems

#### Dangers

- Ignoring practical considerations in model choices
- Proving impossibility in weak models
- Failing to quantify results

[Paola's remark]

○ Considering problems only in isolation