The Computational Power of Oblivious Mobile Robots Forming a series of geometric patterns

Shantanu Das

LIF, Aix-Marseille University

Joint work with **Paola Flocchini**, **Nicola Santoro**, and **Masafumi Yamashita**

Team of Stupid Robots

- Autonomous Robots
- Moving on a plane
- Can not communicate
- Have Vision (unlimited)
- Have no memory
- Semi-synchronous

Which tasks are possible for a team of stupid robots?

15 Aug 2010

Pattern Formation

Can the robots arrange themselves on a *circle* ? on a *line* ? or other geometric patterns?

15 Aug 2010

MAC meeting, Ottawa

Robot Model

- Points on the Plane [Dimensionless]
- Repeat
 - LOOK : Positions of robots
 - COMPUTE : new location
 - MOVE : to the computed location
- No agreement on Orientation
- No agreement on unit distance
- Identical algorithms
- Robots may be active or passive in ant time step

MAC meeting, Ottawa

3

Models of Synchrony

Synchronous Model

Robots act in synchronized time steps; Start at same time;

Semi-Synchronous Model [SYm]

In each time step, a subset of robots are active;

Active robots complete exactly one LOOK-COMPUTE-MOVE step

Asynchronous Model [CORDA]

Robots complete each step in an arbitrary amount of time.

15 Aug 2010

MAC meeting, Ottawa

5

6

Motivation

Why Oblivious ?

- Robots can crash (and recover at a later time).
- Robots may join at any time, in any state.
- Simple to design and analyze algorithms!

Arbitrary Pattern Formation (APF)

- **Pattern** : A set of points $\in \mathbb{R}^2$
- Isomorphic Patterns : P1 ~ P2

P1

(translation, rotation, scaling)

 A team of robots *forms a pattern* P if, There is some coordinate system Z, such that : Locations of robots = points in P (according to Z)

[Multiple robots may occupy the same point.]

15 Aug 2010

MAC meeting, Ottawa

7

Known Results

• Circle Formation: [Sugihara & Suzuki 1990]

a := farthest neighbor b := closest neighbor c := midpoint of the line segment (a,b) If (distance to c) > |bc| move one step towards c If (distance to c) < |bc| move one step away from c Else, move one step away from b

15 Aug 2010

Known Results

• **Circle Formation:** [Sugihara & Suzuki 1990]

15 Aug 2010

MAC meeting, Ottawa

9

Circle Formation

- [Sugihara & Suzuki 1990] : Approximate Circle
- [Katreniak 2005] : Non-uniform Circle
- [Dieudonné & Petit 2007] : Uniform Circle ($k \neq 4$)
- [Défago & Souissi 2008] : Convergence to Uniform Circle
- [Suzuki & Yamashita 1999, 2010] : Uniform Circle

POINT formation (gathering)

Theorem [SY 1999] For **k = 2** oblivious robots, it is **impossible** to form POINT.

However, the two robots can converge to a point!

Theorem [SY 1999] For k >= 2 non-oblivious robots, POINT formation is always possible.

POINT formation (gathering)

Theorem [SY 1999]

For **k = 2** oblivious robots, it is **impossible** to form POINT.

However, the two robots can converge to a point!

Oblivious vs. Non-Oblivious

Arbitrary Pattern Formation

Theorem [SY 2010] For k >=3 and any arbitrary pattern P,

> k *non-oblivious* robots can form P

k *oblivious* robots can form P

Oblivious robots are almost as powerful as non-oblivious robots!

<=>

Series of Patterns

Can oblivious robots form a series of Patterns

 $P_1, P_2, P_3, P_4, \dots$

How to remember if we do not have memory?

A robot system forms the series $\langle P_1, P_2, P_3, ..., P_m \rangle$ if it goes transforms through the series of configurations $C_0 C_1 C_{2,} \dots C_i \dots C_j \dots C_x \dots C_y \dots$ P_1, P_2, P_3, P_m

15 Aug 2010

Which series are formable?

<u>Theorem</u>: No terminating algorithm can form a **finite** series of patterns **< P**₁, **P**₂, **P**₃, ..., **P**_m**>**, where m>1

Want to form the infinite series: $(P_1, P_2, P_3, ..., P_m)^{\infty}$

A series $\langle \mathbf{P}_1, \mathbf{P}_2, \mathbf{P}_3, ..., \mathbf{P}_m \rangle$ is *formable* $\langle = \rangle$ There exists an algorithm for forming the infinite series $(\mathbf{P}_1, \mathbf{P}_2, \mathbf{P}_3, ..., \mathbf{P}_m)^{\infty}$

15 Aug 2010

MAC meeting, Ottawa

15

Our Model (Adversary)

Semi-Synchronous:

At each time step, the *adversary* decides which robots are active;

[Fairness: Each agent is activated infinitely often]

Lack of Orientation

Adversary decides the local coordinate system of each robot at each step;

Arbitrary Initial Configuration

Adversary decides the initial location of the robots.

15 Aug 2010

Three Scenarios

- Visibly Distinct Robots
 - Each robot is distinct (has visible ID)!

Indistinguishable Robots with ID's

- Robots look identical but are given invisible ID's!

Anonymous Robots

- All robots look identical and execute the same algorithm!

Visibly Distinct Robots

k distinct robots

 $r_1, r_2, r_3, ..., r_k$

To form pattern P_i
 Encode information as ratio of distances:

$$\frac{\text{Dis}(r_1, r_k)}{\text{Dis}(r_1, r_2)} = F(\mathbf{P}_i)$$

15 Aug 2010

MAC meeting, Ottawa

19

Visibly Distinct Robots

• To form pattern **P**_i

encode information as ratio of distances:

$$\frac{\text{Dis}(\mathbf{r}_1, \mathbf{r}_k)}{\text{Dis}(\mathbf{r}_1, \mathbf{r}_2)} = F(\mathbf{P}_i)$$

Robots can agree on a coordinate system!

15 Aug 2010

Visibly Distinct Robots

• What about forming the **POINT** pattern?

Visibly Distinct Robots

Theorem: The series **<P**₁, **P**₂, **P**₃, ..., **P**_m**>** is formable iff

- size(P_i) <= k, for all i,
- P_i is non-isomorphic to P_i , $i \neq j$

15 Aug 2010

Second Scenario

• Visibly Distinct Robots

- Each robot is distinct (has visible ID)!

Indistinguishable Robots with ID's

- Robots look identical but are given invisible ID's!

Anonymous Robots

– All robots look identical and execute the same algorithm!

15 Aug 2010

MAC meeting, Ottawa

23

Indistinguishable Robots with ID's

k distinct (but indistinguishable) robots

 $r_1, r_2, r_3, ..., r_k$

Theorem: (impossibility) With $\mathbf{k} = \mathbf{3}$ robots, the following series is not formable (P_1, P_2, \dots, P_1) [POINT] (P_{1+1}, \dots, P_m) [TWO-POINTS] where size $(P_i) = 3$, for all i. (1 < m)

No robot can distinguish between

15 Aug 2010

MAC meeting, Ottawa

24

Indistinguishable Robots with ID's

Possibility:

15 Aug 2010

MAC meeting, Ottawa

25

Indistinguishable Robots with ID's

Theorem: With k > 3 robots,

- <**P**₁, **P**₂, **P**₃, ..., **P**_m> is formable iff
- size(P_i) <= k, for all i,
- P_i is non-isomorphic to P_j , i j

Algorithm for k > 3 robots

Smallest Enclosing Circle (SEC): [UNIQUE]

15 Aug 2010

MAC meeting, Ottawa

27

Algorithm for k > 3 robots

Bi-Circular Configuration (BCC): Encodes info about a pattern using ratio of two radii

15 Aug 2010

Third Scenario

• Visibly Distinct Robots

- Each robot is distinct (has visible ID)!

Indistinguishable Robots with ID's

- Robots look identical but are given invisible ID's!

15 Aug 2010

MAC meeting, Ottawa

29

Anonymous Robots

Anonymous Robots

Two robots in the same location may never be separated!

Necessary Condition:

In a series of patterns ($P_1, P_2, P_3, ..., P_m$)[∞], Sizes must be preserved, i.e. size(P_i) = size(P_j), for all i,j

15 Aug 2010

MAC meeting, Ottawa

31

Anonymous Robots

15 Aug 2010

Anonymous Robots

Sufficient Condition:

Theorem: The series $\langle \mathbf{P}_1, \mathbf{P}_2, \mathbf{P}_3, \dots, \mathbf{P}_m \rangle$ is formable, if (1) Size(P_i) = Size(P_j) = k, for all i,j (2) $\rho(\mathbf{P}_a) = \rho(\mathbf{P}_b) = q^* \rho(\mathbf{C}_0)$, for all a,b, (q >= 1)

15 Aug 2010

MAC meeting, Ottawa

33

Algorithm for Anonymous Robots

Q-Symmetric Circular Configuration SCC(q): Encodes info about a pattern using ratio of two radii

15 Aug 2010

Algorithm for Anonymous Robots

- The symmetry in a configuration is maintained only if the adversary activates all robots with same view, at the same time.
- In a symmetric configuration, form SCC(F(P_i)) to signal the formation of pattern P_i
- In an asymmetric configuration, form BCC(F(P_i)) to signal the formation of the next pattern P_i
- Ensure that every possible intermediate configuration contains information about the pattern to be formed.

15 Aug 2010

MAC meeting, Ottawa

35

To Summarize...

Characterization of formable series:

The series $\langle \mathbf{P}_1, \mathbf{P}_2, \mathbf{P}_3, ..., \mathbf{P}_m \rangle$ is formable, • With k visibly distinct robots if Size(P_i) $\langle = k$, for all i, • With k indistinguishable ranked robots if k > 3 and Size(P_i) $\langle = k$ • With k anonymous robots if (1) Size(P_i) = Size(P_i) = k and (2) $\rho(P_a) = \rho(P_b) = q^*\rho(C_0)$, for all a,b, (q >= 1)

15 Aug 2010

Conclusions

• We can overcome obliviousness of mobile robots not just for a single pattern but for a series of patterns.

Implement Global Memory without Local Memory!

- The technique of encoding information using ratio of distances can be used in other scenarios.
- These techniques can tolerate *measurement errors* up to certain extent.

15 Aug 2010

MAC meeting, Ottawa

37

Open Questions

- What happens when some robots are stalled permanently?
 Should the pattern include the failed robots?
 - How many failures can be tolerated?
- What happens with robots have limited mobility?
 is e.g. each robot moves unit distance in each step.
- What happens in the case of limited visibility?

Thank you!

15 Aug 2010

MAC meeting, Ottawa

39