The Computational Power of Oblivious Mobile Robots

Forming a series of geometric patterns

Shantanu Das
LIF, Aix-Marseille University
Joint work with Paola Flocchini, Nicola Santoro, and Masafumi Yamashita

Team of Stupid Robots

- Autonomous Robots
- Moving on a plane
- Can not communicate
- Have Vision (unlimited)
- Have no memory
- Semi-synchronous

Which tasks are possible for a team of stupid robots?

Pattern Formation

Can the robots arrange themselves on a circle ? on a line ? or other geometric patterns?

Robot Model

- Points on the Plane [Dimensionless]
- Repeat
- LOOK : Positions of robots
- COMPUTE : new location
- MOVE : to the computed location
- No agreement on Orientation
- No agreement on unit distance

- Identical algorithms
- Robots may be active or passive in ant time step

Models of Synchrony

- Synchronous Model

Robots act in synchronized time steps; Start at same time;

- Semi-Synchronous Model [SYm]

In each time step, a subset of robots are active;
Active robots complete exactly one LOOK-COMPUTE-MOVE step

- Asynchronous Model [CORDA]

Robots complete each step in an arbitrary amount of time.

Motivation

Why Oblivious ?

- Robots can crash (and recover at a later time).
- Robots may join at any time, in any state.
- Simple to design and analyze algorithms!

Arbitrary Pattern Formation (APF)

- Pattern : A set of points $\in \mathbb{I R}^{2}$
- Isomorphic Patterns : P1 ~ P2

- A team of robots forms a pattern P if, There is some coordinate system Z, such that : Locations of robots $=$ points in $P($ according to $Z)$
[Multiple robots may occupy the same point.]

Known Results

- Circle Formation: [Sugihara \& Suzuki 1990]

Known Results

- Circle Formation: [Sugihara \& Suzuki 1990]

Circle Formation

- [Sugihara \& Suzuki 1990] : Approximate Circle
- [Katreniak 2005] : Non-uniform Circle
- [Dieudonné \& Petit 2007] : Uniform Circle ($\mathrm{k} \neq 4$)
- [Défago \& Souissi 2008] : Convergence to Uniform Circle
- [Suzuki \& Yamashita 1999, 2010] : Uniform Circle

POINT formation (gathering)

Theorem [SY 1999]

For $\mathbf{k}=\mathbf{2}$ oblivious robots, it is impossible to form POINT.

However, the two robots can converge to a point!

Theorem [SY 1999]

For $\mathbf{k}>=\mathbf{2}$ non-oblivious robots, POINT formation is always possible.

POINT formation (gathering)

Theorem [SY 1999]
For $\mathbf{k}=\mathbf{2}$ oblivious robots, it is impossible to form POINT.

However, the two robots can converge to a point!

Theorem [SY 1999]
For $\mathbf{k}>=\mathbf{2}$ non-oblivious robots, POINT formation is always possible.

Oblivious vs. Non-Oblivious

Arbitrary Pattern Formation

Theorem [SY 2010]

For $\mathrm{k}>=3$ and any arbitrary pattern P ,
k non-oblivious robots $<=>$ can form P
k oblivious robots can form P

Oblivious robots are almost as powerful as non-oblivious robots!

Series of Patterns

- Can oblivious robots form a series of Patterns

$$
P_{1}, P_{2}, P_{3}, P_{4}, \ldots
$$

How to remember if we do not have memory?

A robot system forms the series $<\mathbf{P}_{1}, \mathbf{P}_{\mathbf{2}}, \mathbf{P}_{3}, \ldots, \mathbf{P}_{\mathrm{m}}>$ if it goes transforms through the series of configurations
$\mathrm{C}_{0} \mathrm{C}_{1} \mathrm{C}_{2}, \ldots \mathrm{C}_{\mathrm{i}} \ldots \mathrm{C}_{\mathrm{j}}, \ldots \mathrm{C}_{\mathrm{x}}, \ldots \mathrm{C}_{\mathrm{y}}, \ldots$
$P_{1}, \quad P_{2}, \quad P_{3}, \quad P_{m}$

Which series are formable?

Theorem: No terminating algorithm can form a finite series of patterns $<\mathbf{P}_{1}, \mathbf{P}_{2}, \mathbf{P}_{3}, \ldots, \mathbf{P}_{\mathrm{m}}>$, where $\mathrm{m}>1$

Want to form the infinite series: $\left(\mathbf{P}_{\mathbf{1}}, \mathbf{P}_{\mathbf{2}}, \mathbf{P}_{\mathbf{3}}, \ldots, \mathbf{P}_{\mathrm{m}}\right)^{\infty}$

$$
\text { A series }<\mathbf{P}_{1}, \mathbf{P}_{2}, \mathbf{P}_{3}, \ldots, \mathbf{P}_{\mathrm{m}}>\text { is } \text { formable }<=>
$$

There exists an algorithm for forming the infinite series

$$
\left(\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}, \ldots, \mathrm{P}_{\mathrm{m}}\right)^{\infty}
$$

Our Model (Adversary)

- Semi-Synchronous:

At each time step, the adversary decides which robots are active;
[Fairness: Each agent is activated infinitely often]

- Lack of Orientation

Adversary decides the local coordinate system of each robot at each step;

- Arbitrary Initial Configuration

Adversary decides the initial location of the robots.

Our Model (assumptions)

- Agreement on Clockwise Direction

Robots agree on clockwise / counter-clockwise

- Multiplicity Detection

Robots can count the number of robots at each location.

Three Scenarios

- Visibly Distinct Robots

- Each robot is distinct (has visible ID)!
- Indistinguishable Robots with ID's
- Robots look identical but are given invisible ID's!
- Anonymous Robots
- All robots look identical and execute the same algorithm!

Visibly Distinct Robots

- k distinct robots

$$
r_{1}, r_{2}, r_{3}, \ldots, r_{k}
$$

- To form pattern $\mathbf{P}_{\mathbf{i}}$

Encode information as ratio of distances:

$$
\frac{\operatorname{Dis}\left(r_{1}, r_{k}\right)}{\operatorname{Dis}\left(r_{1}, r_{2}\right)}=F\left(\mathbf{P}_{i}\right)
$$

Visibly Distinct Robots

- To form pattern $\mathbf{P}_{\mathbf{i}}$
encode information as ratio of distances:

$$
\frac{\operatorname{Dis}\left(r_{1}, r_{k}\right)}{\operatorname{Dis}\left(r_{1}, r_{2}\right)}=F\left(\mathbf{P}_{i}\right)
$$

Robots can agree on a coordinate system!

Visibly Distinct Robots

- What about forming the POINT pattern?

Before POINT

POINT

After POINT

Visibly Distinct Robots

Theorem: The series $<\mathbf{P}_{1}, \mathbf{P}_{2}, \mathbf{P}_{3}, \ldots, \mathbf{P}_{\mathrm{m}}>$ is formable iff

- $\operatorname{size}\left(\mathrm{P}_{\mathrm{i}}\right)<=k$, for all i ,
- P_{i} is non-isomorphic to $P_{j}, i \neq j$

Second Scenario

- Visibly Distinct Robots

- Each robot is distinct (has visible ID)!

- Indistinguishable Robots with ID's

- Robots look identical but are given invisible ID's!
- Anonymous Robots
- All robots look identical and execute the same algorithm!

Indistinguishable Robots with ID's

- k distinct (but indistinguishable) robots

$$
r_{1}, r_{2}, r_{3}, \ldots, r_{k}
$$

Theorem: (impossibility)
With $k=3$ robots, the following series is not formable

$$
\left.\left(\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots \mathrm{P}_{1}\right)[\mathrm{POINT}]\left(\mathrm{P}_{1+1}, \ldots \mathrm{P}_{\mathrm{m}}\right) \text { [TWO-POINTS }\right]
$$

where $\operatorname{size}\left(\mathrm{P}_{\mathrm{i}}\right)=3$, for all i. $(1<\mathrm{m})$
No robot can distinguish between

MAC meeting, Ottawa

Indistinguishable Robots with ID's

Possibility:
Theorem: With $k=3$ robots, the series S^{∞} is formable if S is a cyclic rotation of the following:

- $\left(\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}, \ldots, \mathrm{P}_{\mathrm{m}}\right)$ [POINT] [TWO-POINTS]
- $\left(\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}, \ldots, \mathrm{P}_{\mathrm{m}}\right)$ [TWO-POINTS][POINT]
- $\left(\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}, \ldots, \mathrm{P}_{\mathrm{m}}\right)$ [POINT]
- $\left(\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}, \ldots, \mathrm{P}_{\mathrm{m}}\right)$ [TWO-POINTS]
- $\left(\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}, \ldots, \mathrm{P}_{\mathrm{m}}\right)$
where $\operatorname{size}\left(\mathrm{P}_{\mathrm{i}}\right)=3$, for all i .

Indistinguishable Robots with ID's

Theorem: With $\mathbf{k}>3$ robots,
$\left.<\mathbf{P}_{1}, \mathbf{P}_{2}, \mathbf{P}_{3}, \ldots, \mathbf{P}_{\mathrm{m}}\right\rangle$ is formable iff

- $\operatorname{size}\left(\mathrm{P}_{\mathrm{i}}\right)<=\mathrm{k}$, for all i ,
- P_{i} is non-isomorphic to $P_{j}, i j$

Algorithm for $k>3$ robots

Smallest Enclosing Circle (SEC): [UNIQUE]

Algorithm for $k>3$ robots

Bi-Circular Configuration (BCC):
Encodes info about a pattern using ratio of two radii

Third Scenario

- Visibly Distinct Robots

- Each robot is distinct (has visible ID)!
- Indistinguishable Robots with ID's
- Robots look identical but are given invisible ID's!

- Anonymous Robots

- All robots look identical and execute the same algorithm!

Anonymous Robots

Assumption: The robots start from distinct locations.
Robots in symmetric locations have similar view!

Anonymous Robots

Two robots in the same location may never be separated!

Necessary Condition:
In a series of patterns $\left(\mathbf{P}_{1}, \mathbf{P}_{2}, \mathbf{P}_{3}, \ldots, \mathbf{P}_{\mathrm{m}}\right)^{\infty}$,
Sizes must be preserved, i.e.

$$
\operatorname{size}\left(P_{i}\right)=\operatorname{size}\left(P_{j}\right), \text { for all } i, j
$$

Anonymous Robots

Necessary Condition (2):

$$
\text { In a series of patterns }\left(\mathbf{P}_{1}, \mathbf{P}_{2}, \mathbf{P}_{3}, \ldots, \mathbf{P}_{m}\right)^{\infty}
$$

The symmetricity must be preserved, i.e.

$$
\rho\left(P_{i}\right)=\rho\left(P_{j}\right), \text { for all } i, j
$$

$\rho=4$

$$
\rho=8
$$

Anonymous Robots

Sufficient Condition:

Theorem: The series $<\mathbf{P}_{1}, \mathbf{P}_{\mathbf{2}}, \mathbf{P}_{\mathbf{3}}, \ldots, \mathbf{P}_{\mathrm{m}}>$ is formable, if
(1) $\operatorname{Size}\left(P_{i}\right)=\operatorname{Size}\left(P_{j}\right)=k$, for all i, j
(2) $\rho\left(\mathrm{P}_{\mathrm{a}}\right)=\rho\left(\mathrm{P}_{\mathrm{b}}\right)=\mathrm{q}^{*} \rho\left(\mathrm{C}_{0}\right)$, for all $\mathrm{a}, \mathrm{b},(\mathrm{q}>=1)$

Algorithm for Anonymous Robots

Q-Symmetric Circular Configuration SCC(q):
Encodes info about a pattern using ratio of two radii

Algorithm for Anonymous Robots

- The symmetry in a configuration is maintained only if the adversary activates all robots with same view, at the same time.
- In a symmetric configuration, form $\operatorname{SCC}\left(F\left(P_{i}\right)\right)$ to signal the formation of pattern P_{i}
- In an asymmetric configuration, form $\operatorname{BCC}\left(F\left(\mathrm{P}_{\mathrm{i}}\right)\right)$ to signal the formation of the next pattern P_{i}
- Ensure that every possible intermediate configuration contains information about the pattern to be formed.

To Summarize...

Characterization of formable series:

The series $<\mathbf{P}_{1}, \mathbf{P}_{2}, \mathbf{P}_{3}, \ldots, \mathbf{P}_{\mathrm{m}}>$ is formable,

- With k visibly distinct robots if

$$
\operatorname{Size}\left(\mathrm{P}_{\mathrm{i}}\right)<=\mathrm{k}, \text { for all } \mathrm{i},
$$

- With k indistinguishable ranked robots if

$$
\mathrm{k}>3 \text { and } \operatorname{Size}\left(\mathrm{P}_{\mathrm{i}}\right)<=\mathrm{k}
$$

- With k anonymous robots if
(1) $\operatorname{Size}\left(\mathrm{P}_{\mathrm{i}}\right)=\operatorname{Size}\left(\mathrm{P}_{\mathrm{i}}\right)=k$ and
(2) $\rho\left(\mathrm{P}_{\mathrm{a}}\right)=\rho\left(\mathrm{P}_{\mathrm{b}}\right)=\mathrm{q}^{*} \rho\left(\mathrm{C}_{0}\right)$, for all $\mathrm{a}, \mathrm{b},(\mathrm{q}>=1)$

Conclusions

－We can overcome obliviousness of mobile robots not just for a single pattern but for a series of patterns．

Implement Global Memory without Local Memory！
－The technique of encoding information using ratio of distances can be used in other scenarios．
－These techniques can tolerate measurement errors up to certain extent．

Open Questions

－What happens when some robots are stalled permanently？
圈 Should the pattern include the failed robots？
図 How many failures can be tolerated？
－What happens with robots have limited mobility？
図 e．g．each robot moves unit distance in each step．
－What happens in the case of limited visibility？

Thank you!

