How simple robots benefit from looking back

J. Chalopin, S. Das, Y. Disser, M. Mihalák, P. Widmayer

motivation

 Robot inside an unknown polygon

- Robot inside an unknown polygon
- Tasks:

- Robot inside an unknown polygon
- Tasks:
 - meet identical robots

- Robot inside an unknown polygon
- Tasks:
 - meet identical robots
 - draw a map

- Robot inside an unknown polygon
- Tasks:
 - meet identical robots
 - draw a map
- Q: How simple can we make the robot?

- Robot inside an unknown polygon
- Tasks:
 - meet identical robots
 - draw a map
- Q: How simple can we make the robot?
 - \Rightarrow find simplistic design

visibilities

• Vertices are mut. visible: segment is inside polygon

visibilities

• Vertices are mut. visible: segment is inside polygon

- Vertices are mut. visible: segment is inside polygon
- Visibility graph: edge for every pair of visible verts

- Vertices are mut. visible: segment is inside polygon
- Visibility graph: edge for every pair of visible verts
 ⇒topological map

- Vertices are mut. visible: segment is inside polygon
- Visibility graph: edge for every pair of visible verts
 ⇒topological map
- Meeting problem:

- Vertices are mut. visible: segment is inside polygon
- Visibility graph: edge for every pair of visible verts
 ⇒topological map
- Meeting problem:
 ⇒robots form a clique

- Vertices are mut. visible: segment is inside polygon
- Visibility graph: edge for every pair of visible verts
 ⇒topological map
- Meeting problem:
 ⇒robots form a clique
- Mapping problem:

- Vertices are mut. visible: segment is inside polygon
- Visibility graph: edge for every pair of visible verts
 ⇒topological map
- Meeting problem:
 ⇒robots form a clique
- Mapping problem:
 ⇒reconstruct vis. graph

robot model

• We assume n is given

- We assume n is given
- We allow the robot to

- We assume n is given
- We allow the robot to
 - while at a vertex:

- We assume n is given
- We allow the robot to
 - while at a vertex:
 - see visible vertices

- We assume n is given
- We allow the robot to
 - while at a vertex:
 - see visible vertices

- We assume n is given
- We allow the robot to
 - while at a vertex:
 - see visible vertices
 - order vertices (ccw)

- We assume n is given
- We allow the robot to
 - while at a vertex:
 - see visible vertices
 - order vertices (ccw)

- We assume n is given
- We allow the robot to
 - while at a vertex:
 - see visible vertices
 - order vertices (ccw)
 - \Rightarrow no global ID!

- We assume n is given
- We allow the robot to
 - while at a vertex:
 - see visible vertices
 - order vertices (ccw)
 - \Rightarrow no global ID!

- We assume n is given
- We allow the robot to
 - while at a vertex:
 - see visible vertices
 - order vertices (ccw)
 - \Rightarrow no global ID!
 - have (enough) memory

- We assume n is given
- We allow the robot to
 - while at a vertex:
 - see visible vertices
 - order vertices (ccw)
 - \Rightarrow no global ID!
 - have (enough) memory
 - move to visible verts

- We assume n is given
- We allow the robot to
 - while at a vertex:
 - see visible vertices
 - order vertices (ccw)
 - \Rightarrow no global ID!
 - have (enough) memory
 - move to visible verts

- We assume n is given
- We allow the robot to
 - while at a vertex:
 - see visible vertices
 - order vertices (ccw)
 - \Rightarrow no global ID!
 - have (enough) memory
 - move to visible verts
 - look-back

- We assume n is given
- We allow the robot to
 - while at a vertex:
 - see visible vertices
 - order vertices (ccw)
 - \Rightarrow no global ID!
 - have (enough) memory
 - move to visible verts
 - look-back
 ⇒ origin of last move

Vertices as Viewpoints

Vertices as Viewpoints

view

Vertices as Viewpoints

view

Capture information a robot can collect about v
view

 Capture information a robot can collect about v
 ⇒view from v

- Capture information a robot can collect about v
 - ⇒view from v
 - \Rightarrow collection of all paths

- Capture information a robot can collect about v
 - ⇒view from v
 - \Rightarrow collection of all paths
- level-1-view:

- Capture information a robot can collect about v
 - \Rightarrow view from v
 - \Rightarrow collection of all paths
- level-1-view:

- Capture information a robot can collect about v
 - \Rightarrow view from v
 - \Rightarrow collection of all paths
- level-1-view:

- Capture information a robot can collect about v
 - ⇒view from v
 - \Rightarrow collection of all paths

view

- Capture information a robot can collect about v
 - ⇒view from v
 - \Rightarrow collection of all paths

• level-k-view:

- Capture information a robot can collect about v
 ⇒view from v
 - \Rightarrow collection of all paths
- level-1-view: $v^{1} = (L_{1}, L_{2}, ..., L_{d})$
- level-k-view:

view

 Capture information a robot can collect about v
 ⇒view from v

 \Rightarrow collection of all paths

- level-1-view: $v^{1} = (L_{1}, L_{2}, ..., L_{d})$
- level-k-view: $v^{k} = (N_{1}^{k-1}, N_{2}^{k-1}, ..., N_{d}^{k-1})$

Vertices as Viewpoints classes

classes

 group all vertices with same v[∞] into classes C_i

classes

- group all vertices with same v[∞] into classes C_i
 - \Rightarrow periodic on boundary

classes

- group all vertices with same v[∞] into classes C_i
 - \Rightarrow periodic on boundary

 $\Rightarrow |C_i| = |C_j| \forall i,j$

classes

- group all vertices with same v[∞] into classes C_i
 - \Rightarrow periodic on boundary
 - $\Rightarrow |C_i| = |C_j| \forall i,j$

•
$$|C_i| = I$$
: distinguishable \checkmark

classes

- group all vertices with same v[∞] into classes C_i
 - ⇒periodic on boundary ⇒ $|C_i| = |C_j| \forall i,j$
- $|C_i| = I$: distinguishable \checkmark
- Norris95: vⁿ⁻¹ is enough!
 (same resulting classes)

The Class C* definition

definition

 C* is the lexicographically smallest class that forms a clique

definition

- C* is the lexicographically smallest class that forms a clique
- Will show:
 Every polygon has a class that forms a clique (!)

definition

- C* is the lexicographically smallest class that forms a clique
- Will show: Every polygon has a class that forms a clique (!)

 \Rightarrow C^{*} is well defined, unique

ears

• Let a,b,c be a sequence of vertices on the boundary

- Let a,b,c be a sequence of vertices on the boundary
 - \Rightarrow b is an ear, iff a sees c

- Let a,b,c be a sequence of vertices on the boundary
 - \Rightarrow b is an ear, iff a sees c

- Let a,b,c be a sequence of vertices on the boundary
 ⇒b is an ear, iff a sees c
- b is an ear, iff the move
 -1, 2, look back yields "-2"

- Let a,b,c be a sequence of vertices on the boundary
 ⇒b is an *ear*, iff a sees c
- b is an ear, iff the move
 -1, 2, look back yields "-2"
 - ⇒vertices in the same class as an ear are ears

- Let a,b,c be a sequence of vertices on the boundary
 ⇒b is an *ear*, iff a sees c
- b is an ear, iff the move
 -1, 2, look back yields "-2"
 - ⇒vertices in the same class as an ear are ears
- Every polygon has an ear

existence of a clique

• Cut ears repeatedly...

existence of a clique

Cut ears repeatedly...
 ⇒cut the entire class

existence of a clique

- Cut ears repeatedly...
 ⇒cut the entire class
 ⇒no class will split!
- ... until only one remains

- Cut ears repeatedly...
 ⇒cut the entire class
 ⇒no class will split!
- … until only one remains
 ⇒must be a clique!

- Cut ears repeatedly...
 ⇒cut the entire class
 ⇒no class will split!
- … until only one remains
 ⇒must be a clique!
 - ⇒contains all vertices of some original class

- Cut ears repeatedly...
 ⇒cut the entire class
 ⇒no class will split!
- … until only one remains
 ⇒must be a clique!
 - ⇒contains all vertices of some original class

existence of a clique

- Cut ears repeatedly...
 ⇒cut the entire class
 ⇒no class will split!
- … until only one remains
 ⇒must be a clique!
 - ⇒contains all vertices of some original class

⇒Every polygon has a class that is a clique!

problem re-definition

problem re-definition

 Views of level n-1 are sufficient to infer classes

problem re-definition

• Views of level n-l are sufficient to infer classes \Rightarrow task in terms of classes

problem re-definition

 Views of level n-1 are sufficient to infer classes
 ⇒task in terms of classes

• Given:

Meeting and Mapping problem re-definition

- Views of level n-1 are sufficient to infer classes
 ⇒task in terms of classes
- Given:
 - classes along boundary

problem re-definition

 Views of level n-1 are sufficient to infer classes \Rightarrow task in terms of classes

Given:

- classes along boundary
- classes of neighbors

problem re-definition

 Views of level n-1 are sufficient to infer classes \Rightarrow task in terms of classes

Given:

- classes along boundary
- classes of neighbors

Tasks:

problem re-definition

 Views of level n-1 are sufficient to infer classes \Rightarrow task in terms of classes

Given:

- classes along boundary
- classes of neighbors

Tasks:

meet other robots

problem re-definition

 Views of level n-1 are sufficient to infer classes \Rightarrow task in terms of classes

Given:

- classes along boundary
- classes of neighbors

Tasks:

- meet other robots
- infer visibility graph

Meeting and Mapping meeting

Meeting and Mapping meeting 5 • C^{*} is unique 12 • C* can be inferred 10 9 neighbors class vert $C_2, C_4, C_1, C_2, C_4, C_1, C_2, C_3, C_4$ C **C**₂ $C_3, C_4, C_1, C_2, C_4, C_1, C_2, C_4, C_1$ 3 C_{4}, C_{1}, C_{2} 4 $C_4, C_1, C_2, C_4, C_1, C_2, C_3$ 5 $C_{1}, C_{2}, C_{4}, C_{1}, C_{2}, C_{3}, C_{4}$ $C_{2,C}$ 6 C $C_{3}, C_{4}, C_{1}, C_{2}, C_{4}, C_{1}, C_{2}, C_{4}, C_{1}$ 7 Ca C_4, C_1, C_2 C₄ 8 $C_1, C_2, C_4, C_1, C_2, C_4, C_1, C_2, C_3$ 9 C₂,C₄,C₁,C₂,C₄,C₁,C₂,C₃,C₄ Ci 10 C_2 C₃,C₄,C₁,C₂,C₄,C₁,C₂,C₄,C₁ C_3 C_{4}, C_{1}, C_{2} C_4 $C_1, C_2, C_4, C_1, C_2, C_4, C_1, C_2, C_3$ 12

Meeting and Mapping meeting 5 • C^{*} is unique 12 C^{*} can be inferred 10 9 class neighbors vert C₂,C₄,C₁,C₂,C₄,C₁,C₂,C₃,C₄ C \Rightarrow Meeting is trivial: move C₃,C₄,C₁,C₂,C₄,C₁,C₂,C₄,C **C**₂ 3 C_{4}, C_{1}, C_{2} along boundary until a C4,C1,C2,C4,C1,C2,C3 5 $C_2, C_4, C_1, C_2, C_4, C_1, C_2, C_3, C_4$ vertex in C^* 6 C $C_{3}, C_{4}, C_{1}, C_{2}, C_{4}, C_{1}, C_{2}, C_{4}, C_{1}$ 7 Ca C_4, C_1, C_2 8 C₄ $C_1, C_2, C_4, C_1, C_2, C_4, C_1, C_2, C_3$ $C_2, C_4, C_1, C_2, C_4, C_1, C_2, C_3, C_4$ 9 10 C_2 C₃,C₄,C₁,C₂,C₄,C₁,C₂,C₄,C₁ C_3 C_{4}, C_{1}, C_{2} C_4 $C_1, C_2, C_4, C_1, C_2, C_4, C_1, C_2, C_3$ 12

 need to identify vertices in the list of neighbors

- need to identify vertices in the list of neighbors
- If own class is a clique:

- need to identify vertices in the list of neighbors
- If own class is a clique:
 - classmates are easy

- need to identify vertices in the list of neighbors
- If own class is a clique:
 - classmates are easy

- need to identify vertices in the list of neighbors
- If own class is a clique:
 - classmates are easy
 - classmates can be used to segment neighbors

- need to identify vertices in the list of neighbors
- If own class is a clique:
 - classmates are easy
 - classmates can be used to segment neighbors

- need to identify vertices in the list of neighbors
- If own class is a clique:
 - classmates are easy
 - classmates can be used to segment neighbors
- Classes are periodic

- need to identify vertices in the list of neighbors
- If own class is a clique:
 - classmates are easy
 - classmates can be used to segment neighbors
- Classes are periodic
 ⇒segment + class → ID

- need to identify vertices in the list of neighbors
- If own class is a clique:
 - classmates are easy
 - classmates can be used to segment neighbors
- Classes are periodic
 ⇒segment + class → ID
- \Rightarrow C^{*} vertices can be done

•	Identify edges (v_i, v_{i+k}) of
	increasing distances k

vert	class	neighbors
i	С	$C_{A}, C_{B}, C_{C},, C_{L},, C_{M},, C_{X}, C_{Y}, C_{Z}$

vert	class		neighbors	
i	С	$C_A, C_B, C_C,$,C _L ,,C _M ,	,C _X ,C _Y ,C _Z
		\checkmark	?	\checkmark

- Identify edges (v_i,v_{i+k}) of increasing distances k
- Is the next unidentified vertex v_j = v_{i+k} or not?

- Identify edges (v_i,v_{i+k}) of increasing distances k
- Is the next unidentified vertex v_j = v_{i+k} or not?
 ⇒easy, if of different class

- Identify edges (v_i,v_{i+k}) of increasing distances k
- Is the next unidentified vertex v_j = v_{i+k} or not?
 ⇒easy, if of different class
- y is number of dist. k-l
 backward-edges of v_{i+k}

vert	class		neighbors	S
i	С	$C_A, C_B, C_C, .$,C _L ,,C _M	,,C _X ,C _Y ,C _Z
		·		
		5	2	\checkmark
		•	•	•

- Identify edges (v_i,v_{i+k}) of increasing distances k
- Is the next unidentified vertex v_j = v_{i+k} or not?
 ⇒easy, if of different class
- y is number of dist. k-l
 backward-edges of v_{i+k}
- \bullet Move to v_j and look back

vert	class		neighbor	S
i	С	$C_A, C_B, C_C,$,C _L ,,C _M	1,,C _X ,C _Y ,C _Z
		\checkmark	?	\checkmark

- Identify edges (v_i,v_{i+k}) of increasing distances k
- Is the next unidentified vertex v_j = v_{i+k} or not?
 ⇒easy, if of different class
- y is number of dist. k-l
 backward-edges of v_{i+k}
- Move to v_j and look back • $v_j = v_{i+k} \Rightarrow LB = -(y+1)$

vert	class	neighbors
i	С	$C_{A}, C_{B}, C_{C},, C_{L},, C_{M},, C_{X}, C_{Y}, C_{Z}$

•	We show:
	$LB = -(y+1) \Rightarrow v_j = v_{i+k}$

vert	class	neighbors
i	С	$C_{A}, C_{B}, C_{C},, C_{L},, C_{M},, C_{X}, C_{Y}, C_{Z}$

vert	class	neighbors
i	С	$C_{A}, C_{B}, C_{C},, C_{L},, C_{M},, C_{X}, C_{Y}, C_{Z}$

- We show: $LB = -(y+1) \Rightarrow v_j = v_{i+k}$
- Assume $v_j \neq v_{i+k}$ but LB = -(y+1)

lacksquare	We show:
	$LB = -(y+I) \Rightarrow v_j = v_{i+k}$

- Assume $v_j \neq v_{i+k}$ but LB = -(y+1)
- v_{i+k} and v_j are same class

vert	class	neighbors
i	С	$C_{A}, C_{B}, C_{C},, C_{L},, C_{M},, C_{X}, C_{Y}, C_{Z}$

vert	class	neighbors
i	С	$C_{A}, C_{B}, C_{C},, C_{L},, C_{M},, C_{X}, C_{Y}, C_{Z}$

- We show: $LB = -(y+1) \Rightarrow v_j = v_{i+k}$
- Assume $v_j \neq v_{i+k}$ but LB = -(y+1)
- v_{i+k} and v_j are same class
 ⇒v_j has y back-edges

vert	class	neighbors
i	C	$C_{A}, C_{B}, C_{C},, C_{L},, C_{M},, C_{X}, C_{Y}, C_{Z}$

- We show: $LB = -(y+I) \Rightarrow v_j = v_{i+k}$
- Assume $v_j \neq v_{i+k}$ but LB = -(y+1)
- v_{i+k} and v_j are same class
 ⇒v_j has y back-edges
 ⇒all back-edges identified

vert	class	neighbors
i	С	$C_{A}, C_{B}, C_{C},, C_{L},, C_{M},, C_{X}, C_{Y}, C_{Z}$

- We show: $LB = -(y+1) \Rightarrow v_j = v_{i+k}$
- Assume $v_j \neq v_{i+k}$ but LB = -(y+1)
- v_{i+k} and v_j are same class
 ⇒v_j has y back-edges
 ⇒all back-edges identified
- Use C^{*} as a frame

vert	class	neighbors
i	С	C _A ,C _B ,C _C ,,C _L ,,C _M ,,C _X ,C _Y ,C _Z

- We show: $LB = -(y+I) \Rightarrow v_j = v_{i+k}$
- Assume $v_j \neq v_{i+k}$ but LB = -(y+1)
- v_{i+k} and v_j are same class
 ⇒v_j has y back-edges
 ⇒all back-edges identified
- Use C^{*} as a frame
 ⇒2 cases

vert	class	neighbors
i	C	$C_{A}, C_{B}, C_{C},, C_{L},, C_{M},, C_{X}, C_{Y}, C_{Z}$

- We show: $LB = -(y+1) \Rightarrow v_j = v_{i+k}$
- Use C^* as frame \Rightarrow 2 cases

vert	class	neighbors
i	С	$C_{A}, C_{B}, C_{C},, C_{L},, C_{M},, C_{X}, C_{Y}, C_{Z}$

- We show: $LB = -(y+1) \Rightarrow v_j = v_{i+k}$
- Use C^* as frame \Rightarrow 2 cases
- Case I: there are multiple
 C* between v_i,v_j

vert	class	neighbors
i	С	$C_{A}, C_{B}, C_{C},, C_{L},, C_{M},, C_{X}, C_{Y}, C_{Z}$

- We show: $LB = -(y+I) \Rightarrow v_j = v_{i+k}$
- Use C^* as frame \Rightarrow 2 cases
- Case I: there are multiple
 C* between v_i,v_j
 - ⇒forbidden polygon 4

vert	class	neighbors
i	С	$C_{A}, C_{B}, C_{C},, C_{L},, C_{M},, C_{X}, C_{Y}, C_{Z}$

- We show: $LB = -(y+I) \Rightarrow v_j = v_{i+k}$
- Use C^* as frame $\Rightarrow 2$ cases
- Case I: there are multiple
 C* between v_i,v_j
 - ⇒forbidden polygon 4
- Case II: there is one C*

vert	class	neighbors
i	С	$C_{A}, C_{B}, C_{C},, C_{L},, C_{M},, C_{X}, C_{Y}, C_{Z}$

- We show: $LB = -(y+I) \Rightarrow v_j = v_{i+k}$
- Use C^* as frame \Rightarrow 2 cases
- Case I: there are multiple
 C* between v_i,v_j

 \Rightarrow forbidden polygon \$

Case II: there is one C^{*}
 ⇒forbidden polygon 4

- We show: $LB = -(y+1) \Rightarrow v_j = v_{i+k}$
- Use C^* as frame $\Rightarrow 2$ cases
- Case I: there are multiple
 C* between v_i,v_j

 \Rightarrow forbidden polygon \$

Case II: there is one C^{*}
 ⇒forbidden polygon 4

 \Rightarrow Criterion for deciding $v_j = v_{i+k}$

• The class of a vertex can be determined in finite time by a look-back robot

- The class of a vertex can be determined in finite time by a look-back robot
- Every polygon has a class C* that forms a clique

- The class of a vertex can be determined in finite time by a look-back robot
- Every polygon has a class C* that forms a clique
- Because of this, robots can always meet "easily"

- The class of a vertex can be determined in finite time by a look-back robot
- Every polygon has a class C* that forms a clique
- Because of this, robots can always meet "easily"
- C* can be used as frame to infer the visibility graph

Thank you!