
How simple robots benefit
from looking back

J. Chalopin, S. Das, Y. Disser, M. Mihalák, P. Widmayer

Introduction

motivation
Introduction

motivation
Introduction

• Robot inside an unknown
polygon

motivation
Introduction

• Robot inside an unknown
polygon

• Tasks:

motivation
Introduction

• Robot inside an unknown
polygon

• Tasks:

• meet identical robots

motivation
Introduction

• Robot inside an unknown
polygon

• Tasks:

• meet identical robots

• draw a map

motivation
Introduction

• Robot inside an unknown
polygon

• Tasks:

• meet identical robots

• draw a map

• Q: How simple can we
make the robot?

motivation
Introduction

• Robot inside an unknown
polygon

• Tasks:

• meet identical robots

• draw a map

• Q: How simple can we
make the robot?
⇒find simplistic design

visibilities
Introduction

visibilities
Introduction

• Vertices are mut. visible:
segment is inside polygon

visibilities
Introduction

• Vertices are mut. visible:
segment is inside polygon

visibilities
Introduction

• Vertices are mut. visible:
segment is inside polygon

• Visibility graph: edge for
every pair of visible verts

visibilities
Introduction

• Vertices are mut. visible:
segment is inside polygon

• Visibility graph: edge for
every pair of visible verts
⇒topological map

visibilities
Introduction

• Vertices are mut. visible:
segment is inside polygon

• Visibility graph: edge for
every pair of visible verts
⇒topological map

• Meeting problem:

visibilities
Introduction

• Vertices are mut. visible:
segment is inside polygon

• Visibility graph: edge for
every pair of visible verts
⇒topological map

• Meeting problem:
⇒robots form a clique

visibilities
Introduction

• Vertices are mut. visible:
segment is inside polygon

• Visibility graph: edge for
every pair of visible verts
⇒topological map

• Meeting problem:
⇒robots form a clique

• Mapping problem:

visibilities
Introduction

• Vertices are mut. visible:
segment is inside polygon

• Visibility graph: edge for
every pair of visible verts
⇒topological map

• Meeting problem:
⇒robots form a clique

• Mapping problem:
⇒reconstruct vis. graph

robot model
Introduction

robot model
Introduction

• We assume n is given

robot model
Introduction

• We assume n is given

• We allow the robot to

robot model
Introduction

• We assume n is given

• We allow the robot to

• while at a vertex:

robot model
Introduction

• We assume n is given

• We allow the robot to

• while at a vertex:
• see visible vertices

robot model
Introduction

• We assume n is given

• We allow the robot to

• while at a vertex:
• see visible vertices

robot model
Introduction

• We assume n is given

• We allow the robot to

• while at a vertex:
• see visible vertices
• order vertices (ccw)

robot model
Introduction

• We assume n is given

• We allow the robot to

• while at a vertex:
• see visible vertices
• order vertices (ccw)

1

2

3

4

5

6

robot model
Introduction

• We assume n is given

• We allow the robot to

• while at a vertex:
• see visible vertices
• order vertices (ccw)
⇒ no global ID!

1

2

3

4

5

6

robot model
Introduction

• We assume n is given

• We allow the robot to

• while at a vertex:
• see visible vertices
• order vertices (ccw)
⇒ no global ID!

1

2

3

4

5

6

1

2

3

4

5

6

7

89

robot model
Introduction

• We assume n is given

• We allow the robot to

• while at a vertex:
• see visible vertices
• order vertices (ccw)
⇒ no global ID!

• have (enough) memory

1

2

3

4

5

6

1

2

3

4

5

6

7

89

robot model
Introduction

• We assume n is given

• We allow the robot to

• while at a vertex:
• see visible vertices
• order vertices (ccw)
⇒ no global ID!

• have (enough) memory

• move to visible verts

1

2

3

4

5

6

1

2

3

4

5

6

7

89

robot model
Introduction

• We assume n is given

• We allow the robot to

• while at a vertex:
• see visible vertices
• order vertices (ccw)
⇒ no global ID!

• have (enough) memory

• move to visible verts

1

2

3

4

5

6

1

2

3

4

5

6

7

89

robot model
Introduction

• We assume n is given

• We allow the robot to

• while at a vertex:
• see visible vertices
• order vertices (ccw)
⇒ no global ID!

• have (enough) memory

• move to visible verts

• look-back

1

2

3

4

5

6

1

2

3

4

5

6

7

89

robot model
Introduction

• We assume n is given

• We allow the robot to

• while at a vertex:
• see visible vertices
• order vertices (ccw)
⇒ no global ID!

• have (enough) memory

• move to visible verts

• look-back
⇒ origin of last move

1

2

3

4

5

6

1

2

3

4

5

6

7

89

3

Vertices as Viewpoints

view
Vertices as Viewpoints

view
Vertices as Viewpoints

• Capture information a
robot can collect about v

view
Vertices as Viewpoints

• Capture information a
robot can collect about v
⇒view from v

view
Vertices as Viewpoints

• Capture information a
robot can collect about v
⇒view from v
⇒collection of all paths

view
Vertices as Viewpoints

• Capture information a
robot can collect about v
⇒view from v
⇒collection of all paths

• level-1-view:

view
Vertices as Viewpoints

• Capture information a
robot can collect about v
⇒view from v
⇒collection of all paths

• level-1-view:
. . .N1 N2 Nd

v

view
Vertices as Viewpoints

• Capture information a
robot can collect about v
⇒view from v
⇒collection of all paths

• level-1-view:
. . .N1 N2 Nd

v

look back

view
Vertices as Viewpoints

• Capture information a
robot can collect about v
⇒view from v
⇒collection of all paths

• level-1-view:
v1 = (L1, L2, ..., Ld)

. . .N1 N2 Nd

v

look back L1

L2

Ld

view
Vertices as Viewpoints

• Capture information a
robot can collect about v
⇒view from v
⇒collection of all paths

• level-1-view:
v1 = (L1, L2, ..., Ld)

• level-k-view:

. . .N1 N2 Nd

v

k-1 k-1 k-1

k

view
Vertices as Viewpoints

• Capture information a
robot can collect about v
⇒view from v
⇒collection of all paths

• level-1-view:
v1 = (L1, L2, ..., Ld)

• level-k-view:

. . .N1 N2 Nd

v

k-1 k-1 k-1

k

view
Vertices as Viewpoints

• Capture information a
robot can collect about v
⇒view from v
⇒collection of all paths

• level-1-view:
v1 = (L1, L2, ..., Ld)

• level-k-view:
vk = (N1k-1,N2k-1, ..., Ndk-1)

. . .N1 N2 Nd

v

classes
Vertices as Viewpoints

classes
Vertices as Viewpoints

• group all vertices with
same v∞ into classes Ci

classes
Vertices as Viewpoints

• group all vertices with
same v∞ into classes Ci

⇒periodic on boundary

classes
Vertices as Viewpoints

• group all vertices with
same v∞ into classes Ci

⇒periodic on boundary
⇒|Ci| = |Cj| ∀i,j

classes
Vertices as Viewpoints

• group all vertices with
same v∞ into classes Ci

⇒periodic on boundary
⇒|Ci| = |Cj| ∀i,j

• |Ci| = 1: distinguishable ✓

classes
Vertices as Viewpoints

• group all vertices with
same v∞ into classes Ci

⇒periodic on boundary
⇒|Ci| = |Cj| ∀i,j

• |Ci| = 1: distinguishable ✓

• Norris95: vn-1 is enough!
(same resulting classes)

The Class C*

definition
The Class C*

definition
The Class C*

• C* is the lexicographically
smallest class that forms
a clique

definition
The Class C*

• C* is the lexicographically
smallest class that forms
a clique

• Will show:
Every polygon has a class
that forms a clique (!)

definition
The Class C*

• C* is the lexicographically
smallest class that forms
a clique

• Will show:
Every polygon has a class
that forms a clique (!)

⇒C* is well defined, unique

ears
The Class C*

ears
The Class C*

• Let a,b,c be a sequence of
vertices on the boundary

a

b

c

ears
The Class C*

• Let a,b,c be a sequence of
vertices on the boundary
⇒b is an ear, iff a sees c

a

b

c

ears
The Class C*

• Let a,b,c be a sequence of
vertices on the boundary
⇒b is an ear, iff a sees c

ears
The Class C*

• Let a,b,c be a sequence of
vertices on the boundary
⇒b is an ear, iff a sees c

• b is an ear, iff the move
-1, 2, look back yields “-2”

ears
The Class C*

• Let a,b,c be a sequence of
vertices on the boundary
⇒b is an ear, iff a sees c

• b is an ear, iff the move
-1, 2, look back yields “-2”

first left
neighbor

second right neighbor
second left
neighbor

ears
The Class C*

• Let a,b,c be a sequence of
vertices on the boundary
⇒b is an ear, iff a sees c

• b is an ear, iff the move
-1, 2, look back yields “-2”

first left
neighbor

second right neighbor
second left
neighbor

ears
The Class C*

• Let a,b,c be a sequence of
vertices on the boundary
⇒b is an ear, iff a sees c

• b is an ear, iff the move
-1, 2, look back yields “-2”

first left
neighbor

second right neighbor
second left
neighbor

ears
The Class C*

• Let a,b,c be a sequence of
vertices on the boundary
⇒b is an ear, iff a sees c

• b is an ear, iff the move
-1, 2, look back yields “-2”

first left
neighbor

second right neighbor
second left
neighbor

-2

ears
The Class C*

• Let a,b,c be a sequence of
vertices on the boundary
⇒b is an ear, iff a sees c

• b is an ear, iff the move
-1, 2, look back yields “-2”

first left
neighbor

second right neighbor
second left
neighbor

ears
The Class C*

• Let a,b,c be a sequence of
vertices on the boundary
⇒b is an ear, iff a sees c

• b is an ear, iff the move
-1, 2, look back yields “-2”

first left
neighbor

second right neighbor
second left
neighbor

ears
The Class C*

• Let a,b,c be a sequence of
vertices on the boundary
⇒b is an ear, iff a sees c

• b is an ear, iff the move
-1, 2, look back yields “-2”

first left
neighbor

second right neighbor
second left
neighbor

ears
The Class C*

• Let a,b,c be a sequence of
vertices on the boundary
⇒b is an ear, iff a sees c

• b is an ear, iff the move
-1, 2, look back yields “-2”

first left
neighbor

second right neighbor
second left
neighbor

-3

ears
The Class C*

• Let a,b,c be a sequence of
vertices on the boundary
⇒b is an ear, iff a sees c

• b is an ear, iff the move
-1, 2, look back yields “-2”

first left
neighbor

second right neighbor
second left
neighbor

ears
The Class C*

• Let a,b,c be a sequence of
vertices on the boundary
⇒b is an ear, iff a sees c

• b is an ear, iff the move
-1, 2, look back yields “-2”
⇒vertices in the same

class as an ear are ears

ears
The Class C*

• Let a,b,c be a sequence of
vertices on the boundary
⇒b is an ear, iff a sees c

• b is an ear, iff the move
-1, 2, look back yields “-2”
⇒vertices in the same

class as an ear are ears

• Every polygon has an ear

existence of a clique
The Class C*

existence of a clique
The Class C*

• Cut ears repeatedly...

existence of a clique
The Class C*

• Cut ears repeatedly...
⇒cut the entire class

existence of a clique
The Class C*

• Cut ears repeatedly...
⇒cut the entire class
⇒no class will split!

existence of a clique
The Class C*

• Cut ears repeatedly...
⇒cut the entire class
⇒no class will split!

existence of a clique
The Class C*

• Cut ears repeatedly...
⇒cut the entire class
⇒no class will split!

existence of a clique
The Class C*

• Cut ears repeatedly...
⇒cut the entire class
⇒no class will split!

existence of a clique
The Class C*

• Cut ears repeatedly...
⇒cut the entire class
⇒no class will split!

existence of a clique
The Class C*

• Cut ears repeatedly...
⇒cut the entire class
⇒no class will split!

• ... until only one remains

existence of a clique
The Class C*

• Cut ears repeatedly...
⇒cut the entire class
⇒no class will split!

• ... until only one remains
⇒must be a clique!

existence of a clique
The Class C*

• Cut ears repeatedly...
⇒cut the entire class
⇒no class will split!

• ... until only one remains
⇒must be a clique!
⇒contains all vertices of

some original class

existence of a clique
The Class C*

• Cut ears repeatedly...
⇒cut the entire class
⇒no class will split!

• ... until only one remains
⇒must be a clique!
⇒contains all vertices of

some original class

existence of a clique
The Class C*

• Cut ears repeatedly...
⇒cut the entire class
⇒no class will split!

• ... until only one remains
⇒must be a clique!
⇒contains all vertices of

some original class

⇒Every polygon has a class
that is a clique!

Meeting and Mapping

problem re-definition
Meeting and Mapping

vert class neighbors
1 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

2 C2 C3,C4,C1,C2,C4,C1,C2,C4, C1

3 C3 C4,C1,C2

4 C4 C1,C2,C4,C1,C2,C4, C1,C2,C3

5 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

6 C2 C3,C4,C1,C2,C4,C1,C2,C4, C1

7 C3 C4,C1,C2

8 C4 C1,C2,C4,C1,C2,C4, C1,C2,C3

9 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

10 C2 C3,C4,C1,C2,C4,C1,C2,C4, C1

11 C3 C4,C1,C2

12 C4 C1,C2,C4,C1,C2,C4, C1,C2,C3

1

2

34

5

67

8 9
10

11

12

problem re-definition
Meeting and Mapping

• Views of level n-1 are
sufficient to infer classes

vert class neighbors
1 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

2 C2 C3,C4,C1,C2,C4,C1,C2,C4, C1

3 C3 C4,C1,C2

4 C4 C1,C2,C4,C1,C2,C4, C1,C2,C3

5 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

6 C2 C3,C4,C1,C2,C4,C1,C2,C4, C1

7 C3 C4,C1,C2

8 C4 C1,C2,C4,C1,C2,C4, C1,C2,C3

9 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

10 C2 C3,C4,C1,C2,C4,C1,C2,C4, C1

11 C3 C4,C1,C2

12 C4 C1,C2,C4,C1,C2,C4, C1,C2,C3

1

2

34

5

67

8 9
10

11

12

problem re-definition
Meeting and Mapping

• Views of level n-1 are
sufficient to infer classes
⇒task in terms of classes

vert class neighbors
1 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

2 C2 C3,C4,C1,C2,C4,C1,C2,C4, C1

3 C3 C4,C1,C2

4 C4 C1,C2,C4,C1,C2,C4, C1,C2,C3

5 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

6 C2 C3,C4,C1,C2,C4,C1,C2,C4, C1

7 C3 C4,C1,C2

8 C4 C1,C2,C4,C1,C2,C4, C1,C2,C3

9 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

10 C2 C3,C4,C1,C2,C4,C1,C2,C4, C1

11 C3 C4,C1,C2

12 C4 C1,C2,C4,C1,C2,C4, C1,C2,C3

1

2

34

5

67

8 9
10

11

12

problem re-definition
Meeting and Mapping

• Views of level n-1 are
sufficient to infer classes
⇒task in terms of classes

• Given:
vert class neighbors

1 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

2 C2 C3,C4,C1,C2,C4,C1,C2,C4, C1

3 C3 C4,C1,C2

4 C4 C1,C2,C4,C1,C2,C4, C1,C2,C3

5 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

6 C2 C3,C4,C1,C2,C4,C1,C2,C4, C1

7 C3 C4,C1,C2

8 C4 C1,C2,C4,C1,C2,C4, C1,C2,C3

9 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

10 C2 C3,C4,C1,C2,C4,C1,C2,C4, C1

11 C3 C4,C1,C2

12 C4 C1,C2,C4,C1,C2,C4, C1,C2,C3

1

2

34

5

67

8 9
10

11

12

problem re-definition
Meeting and Mapping

• Views of level n-1 are
sufficient to infer classes
⇒task in terms of classes

• Given:

• classes along boundaryvert class neighbors
1 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

2 C2 C3,C4,C1,C2,C4,C1,C2,C4, C1

3 C3 C4,C1,C2

4 C4 C1,C2,C4,C1,C2,C4, C1,C2,C3

5 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

6 C2 C3,C4,C1,C2,C4,C1,C2,C4, C1

7 C3 C4,C1,C2

8 C4 C1,C2,C4,C1,C2,C4, C1,C2,C3

9 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

10 C2 C3,C4,C1,C2,C4,C1,C2,C4, C1

11 C3 C4,C1,C2

12 C4 C1,C2,C4,C1,C2,C4, C1,C2,C3

1

2

34

5

67

8 9
10

11

12

problem re-definition
Meeting and Mapping

• Views of level n-1 are
sufficient to infer classes
⇒task in terms of classes

• Given:

• classes along boundary

• classes of neighbors

vert class neighbors
1 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

2 C2 C3,C4,C1,C2,C4,C1,C2,C4, C1

3 C3 C4,C1,C2

4 C4 C1,C2,C4,C1,C2,C4, C1,C2,C3

5 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

6 C2 C3,C4,C1,C2,C4,C1,C2,C4, C1

7 C3 C4,C1,C2

8 C4 C1,C2,C4,C1,C2,C4, C1,C2,C3

9 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

10 C2 C3,C4,C1,C2,C4,C1,C2,C4, C1

11 C3 C4,C1,C2

12 C4 C1,C2,C4,C1,C2,C4, C1,C2,C3

1

2

34

5

67

8 9
10

11

12

problem re-definition
Meeting and Mapping

• Views of level n-1 are
sufficient to infer classes
⇒task in terms of classes

• Given:

• classes along boundary

• classes of neighbors

• Tasks:

vert class neighbors
1 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

2 C2 C3,C4,C1,C2,C4,C1,C2,C4, C1

3 C3 C4,C1,C2

4 C4 C1,C2,C4,C1,C2,C4, C1,C2,C3

5 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

6 C2 C3,C4,C1,C2,C4,C1,C2,C4, C1

7 C3 C4,C1,C2

8 C4 C1,C2,C4,C1,C2,C4, C1,C2,C3

9 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

10 C2 C3,C4,C1,C2,C4,C1,C2,C4, C1

11 C3 C4,C1,C2

12 C4 C1,C2,C4,C1,C2,C4, C1,C2,C3

1

2

34

5

67

8 9
10

11

12

problem re-definition
Meeting and Mapping

• Views of level n-1 are
sufficient to infer classes
⇒task in terms of classes

• Given:

• classes along boundary

• classes of neighbors

• Tasks:

• meet other robots

vert class neighbors
1 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

2 C2 C3,C4,C1,C2,C4,C1,C2,C4, C1

3 C3 C4,C1,C2

4 C4 C1,C2,C4,C1,C2,C4, C1,C2,C3

5 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

6 C2 C3,C4,C1,C2,C4,C1,C2,C4, C1

7 C3 C4,C1,C2

8 C4 C1,C2,C4,C1,C2,C4, C1,C2,C3

9 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

10 C2 C3,C4,C1,C2,C4,C1,C2,C4, C1

11 C3 C4,C1,C2

12 C4 C1,C2,C4,C1,C2,C4, C1,C2,C3

1

2

34

5

67

8 9
10

11

12

problem re-definition
Meeting and Mapping

• Views of level n-1 are
sufficient to infer classes
⇒task in terms of classes

• Given:

• classes along boundary

• classes of neighbors

• Tasks:

• meet other robots

• infer visibility graph

vert class neighbors
1 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

2 C2 C3,C4,C1,C2,C4,C1,C2,C4, C1

3 C3 C4,C1,C2

4 C4 C1,C2,C4,C1,C2,C4, C1,C2,C3

5 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

6 C2 C3,C4,C1,C2,C4,C1,C2,C4, C1

7 C3 C4,C1,C2

8 C4 C1,C2,C4,C1,C2,C4, C1,C2,C3

9 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

10 C2 C3,C4,C1,C2,C4,C1,C2,C4, C1

11 C3 C4,C1,C2

12 C4 C1,C2,C4,C1,C2,C4, C1,C2,C3

1

2

34

5

67

8 9
10

11

12

meeting
Meeting and Mapping

vert class neighbors
1 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

2 C2 C3,C4,C1,C2,C4,C1,C2,C4, C1

3 C3 C4,C1,C2

4 C4 C1,C2,C4,C1,C2,C4, C1,C2,C3

5 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

6 C2 C3,C4,C1,C2,C4,C1,C2,C4, C1

7 C3 C4,C1,C2

8 C4 C1,C2,C4,C1,C2,C4, C1,C2,C3

9 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

10 C2 C3,C4,C1,C2,C4,C1,C2,C4, C1

11 C3 C4,C1,C2

12 C4 C1,C2,C4,C1,C2,C4, C1,C2,C3

1

2

34

5

67

8 9
10

11

12

meeting
Meeting and Mapping

• C* is unique

vert class neighbors
1 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

2 C2 C3,C4,C1,C2,C4,C1,C2,C4, C1

3 C3 C4,C1,C2

4 C4 C1,C2,C4,C1,C2,C4, C1,C2,C3

5 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

6 C2 C3,C4,C1,C2,C4,C1,C2,C4, C1

7 C3 C4,C1,C2

8 C4 C1,C2,C4,C1,C2,C4, C1,C2,C3

9 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

10 C2 C3,C4,C1,C2,C4,C1,C2,C4, C1

11 C3 C4,C1,C2

12 C4 C1,C2,C4,C1,C2,C4, C1,C2,C3

1

2

34

5

67

8 9
10

11

12

meeting
Meeting and Mapping

• C* is unique

vert class neighbors
1 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

2 C2 C3,C4,C1,C2,C4,C1,C2,C4, C1

3 C3 C4,C1,C2

4 C4 C1,C2,C4,C1,C2,C4, C1,C2,C3

5 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

6 C2 C3,C4,C1,C2,C4,C1,C2,C4, C1

7 C3 C4,C1,C2

8 C4 C1,C2,C4,C1,C2,C4, C1,C2,C3

9 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

10 C2 C3,C4,C1,C2,C4,C1,C2,C4, C1

11 C3 C4,C1,C2

12 C4 C1,C2,C4,C1,C2,C4, C1,C2,C3

1

2

34

5

67

8 9
10

11

12

meeting
Meeting and Mapping

• C* is unique

• C* can be infered
vert class neighbors

1 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

2 C2 C3,C4,C1,C2,C4,C1,C2,C4, C1

3 C3 C4,C1,C2

4 C4 C1,C2,C4,C1,C2,C4, C1,C2,C3

5 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

6 C2 C3,C4,C1,C2,C4,C1,C2,C4, C1

7 C3 C4,C1,C2

8 C4 C1,C2,C4,C1,C2,C4, C1,C2,C3

9 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

10 C2 C3,C4,C1,C2,C4,C1,C2,C4, C1

11 C3 C4,C1,C2

12 C4 C1,C2,C4,C1,C2,C4, C1,C2,C3

1

2

34

5

67

8 9
10

11

12

meeting
Meeting and Mapping

• C* is unique

• C* can be infered

⇒Meeting is trivial: move
along boundary until a
vertex in C*

vert class neighbors
1 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

2 C2 C3,C4,C1,C2,C4,C1,C2,C4, C1

3 C3 C4,C1,C2

4 C4 C1,C2,C4,C1,C2,C4, C1,C2,C3

5 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

6 C2 C3,C4,C1,C2,C4,C1,C2,C4, C1

7 C3 C4,C1,C2

8 C4 C1,C2,C4,C1,C2,C4, C1,C2,C3

9 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

10 C2 C3,C4,C1,C2,C4,C1,C2,C4, C1

11 C3 C4,C1,C2

12 C4 C1,C2,C4,C1,C2,C4, C1,C2,C3

1

2

34

5

67

8 9
10

11

12

visibility graph reconstruction
Meeting and Mapping

vert class neighbors
1 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

1

2

34

5

67

8 9
10

11

12

visibility graph reconstruction
Meeting and Mapping

• need to identify vertices
in the list of neighbors

vert class neighbors
1 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

1

2

34

5

67

8 9
10

11

12

? ? ? ? ? ? ? ? ?

visibility graph reconstruction
Meeting and Mapping

• need to identify vertices
in the list of neighbors

• If own class is a clique:

vert class neighbors
1 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

1

2

34

5

67

8 9
10

11

12

? ? ? ? ? ? ? ? ?

visibility graph reconstruction
Meeting and Mapping

• need to identify vertices
in the list of neighbors

• If own class is a clique:

• classmates are easy

vert class neighbors
1 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

1

2

34

5

67

8 9
10

11

12

? ? ? ? ? ? ? ? ?

visibility graph reconstruction
Meeting and Mapping

• need to identify vertices
in the list of neighbors

• If own class is a clique:

• classmates are easy

vert class neighbors
1 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

1

2

34

5

67

8 9
10

11

12

? ? ? ? ? ? ?5 9

visibility graph reconstruction
Meeting and Mapping

• need to identify vertices
in the list of neighbors

• If own class is a clique:

• classmates are easy

• classmates can be used
to segment neighbors

vert class neighbors
1 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

1

2

34

5

67

8 9
10

11

12

? ? ? ? ? ? ?5 9

I

II
III

I II III

visibility graph reconstruction
Meeting and Mapping

• need to identify vertices
in the list of neighbors

• If own class is a clique:

• classmates are easy

• classmates can be used
to segment neighbors

vert class neighbors
1 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

1

2

34

5

67

8 9
10

11

12

? ? ? ? ? ? ?5 9

I

II
III

I II III

visibility graph reconstruction
Meeting and Mapping

• need to identify vertices
in the list of neighbors

• If own class is a clique:

• classmates are easy

• classmates can be used
to segment neighbors

• Classes are periodic
vert class neighbors

1 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

1

2

34

5

67

8 9
10

11

12

? ? ? ? ? ? ?5 9

I

II
III

I II III

visibility graph reconstruction
Meeting and Mapping

• need to identify vertices
in the list of neighbors

• If own class is a clique:

• classmates are easy

• classmates can be used
to segment neighbors

• Classes are periodic
⇒segment + class → ID

vert class neighbors
1 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

1

2

34

5

67

8 9
10

11

12

? ? ? ? ? ?5 9 11

I

II
III

I II III

visibility graph reconstruction
Meeting and Mapping

• need to identify vertices
in the list of neighbors

• If own class is a clique:

• classmates are easy

• classmates can be used
to segment neighbors

• Classes are periodic
⇒segment + class → ID

⇒C* vertices can be done

vert class neighbors
1 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

1

2

34

5

67

8 9
10

11

12

? ? ? ? ? ?5 9 11

visibility graph reconstruction II
Meeting and Mapping

• Identify edges (vi,vi+k) of
increasing distances k

vert class neighbors
i C CA,CB,CC,...,CL,...,CM,...,CX,CY,CZ

vi

vi+k

visibility graph reconstruction II
Meeting and Mapping

• Identify edges (vi,vi+k) of
increasing distances k

• Is the next unidentified
vertex vj = vi+k or not?

vert class neighbors
i C CA,CB,CC,...,CL,...,CM,...,CX,CY,CZ

✓ ✓?

vi

vi+k

vj?

vj?

visibility graph reconstruction II
Meeting and Mapping

• Identify edges (vi,vi+k) of
increasing distances k

• Is the next unidentified
vertex vj = vi+k or not?
⇒easy, if of different class

vert class neighbors
i C CA,CB,CC,...,CL,...,CM,...,CX,CY,CZ

✓ ✓?

vi

vi+k

vj?

vj?

y edges

visibility graph reconstruction II
Meeting and Mapping

• Identify edges (vi,vi+k) of
increasing distances k

• Is the next unidentified
vertex vj = vi+k or not?
⇒easy, if of different class

• y is number of dist. k-1
backward-edges of vi+k

vert class neighbors
i C CA,CB,CC,...,CL,...,CM,...,CX,CY,CZ

✓ ✓?

vi

vi+k

vj?

vj?

y edges

visibility graph reconstruction II
Meeting and Mapping

• Identify edges (vi,vi+k) of
increasing distances k

• Is the next unidentified
vertex vj = vi+k or not?
⇒easy, if of different class

• y is number of dist. k-1
backward-edges of vi+k

• Move to vj and look backvert class neighbors
i C CA,CB,CC,...,CL,...,CM,...,CX,CY,CZ

✓ ✓?

vi

vi+k

vj?

vj?

y edges

visibility graph reconstruction II
Meeting and Mapping

• Identify edges (vi,vi+k) of
increasing distances k

• Is the next unidentified
vertex vj = vi+k or not?
⇒easy, if of different class

• y is number of dist. k-1
backward-edges of vi+k

• Move to vj and look back
• vj = vi+k ⇒LB = -(y+1)

vert class neighbors
i C CA,CB,CC,...,CL,...,CM,...,CX,CY,CZ

✓ ✓?

vi

vi+k

vj?

vj?

y edges

visibility graph reconstruction III
Meeting and Mapping

vert class neighbors
i C CA,CB,CC,...,CL,...,CM,...,CX,CY,CZ

vi

vi+k

vj

y edges

visibility graph reconstruction III
Meeting and Mapping

• We show:
LB = -(y+1) ⇒ vj = vi+k

vert class neighbors
i C CA,CB,CC,...,CL,...,CM,...,CX,CY,CZ

vi

vi+k

vj

y edges

visibility graph reconstruction III
Meeting and Mapping

• We show:
LB = -(y+1) ⇒ vj = vi+k

• Assume vj ≠ vi+k
but LB = -(y+1)

vert class neighbors
i C CA,CB,CC,...,CL,...,CM,...,CX,CY,CZ

vi

vi+k

vj

y edges

visibility graph reconstruction III
Meeting and Mapping

• We show:
LB = -(y+1) ⇒ vj = vi+k

• Assume vj ≠ vi+k
but LB = -(y+1)

• vi+k and vj are same class

vert class neighbors
i C CA,CB,CC,...,CL,...,CM,...,CX,CY,CZ

vi

vi+k

vj

y
ed

ge
s

y edges

visibility graph reconstruction III
Meeting and Mapping

• We show:
LB = -(y+1) ⇒ vj = vi+k

• Assume vj ≠ vi+k
but LB = -(y+1)

• vi+k and vj are same class
⇒vj has y back-edges

vert class neighbors
i C CA,CB,CC,...,CL,...,CM,...,CX,CY,CZ

vi

vi+k

vj

y
ed

ge
s

y edges

visibility graph reconstruction III
Meeting and Mapping

• We show:
LB = -(y+1) ⇒ vj = vi+k

• Assume vj ≠ vi+k
but LB = -(y+1)

• vi+k and vj are same class
⇒vj has y back-edges
⇒all back-edges identified

vert class neighbors
i C CA,CB,CC,...,CL,...,CM,...,CX,CY,CZ

vi

vi+k

vj

y
ed

ge
s

y edges

visibility graph reconstruction III
Meeting and Mapping

• We show:
LB = -(y+1) ⇒ vj = vi+k

• Assume vj ≠ vi+k
but LB = -(y+1)

• vi+k and vj are same class
⇒vj has y back-edges
⇒all back-edges identified

• Use C* as a framevert class neighbors
i C CA,CB,CC,...,CL,...,CM,...,CX,CY,CZ

vi

vi+k

vj

y
ed

ge
s

y edges

visibility graph reconstruction III
Meeting and Mapping

• We show:
LB = -(y+1) ⇒ vj = vi+k

• Assume vj ≠ vi+k
but LB = -(y+1)

• vi+k and vj are same class
⇒vj has y back-edges
⇒all back-edges identified

• Use C* as a frame
⇒2 cases

vert class neighbors
i C CA,CB,CC,...,CL,...,CM,...,CX,CY,CZ

vi

vi+k

vj

y
ed

ge
s

y edges

visibility graph reconstruction IV
Meeting and Mapping

• We show:
LB = -(y+1) ⇒ vj = vi+k

• Use C* as frame ⇒2 cases

vert class neighbors
i C CA,CB,CC,...,CL,...,CM,...,CX,CY,CZ

vi

vi+k

vj

y
ed

ge
s

y edges

visibility graph reconstruction IV
Meeting and Mapping

• We show:
LB = -(y+1) ⇒ vj = vi+k

• Use C* as frame ⇒2 cases

• Case 1: there are multiple
C* between vi,vj

vert class neighbors
i C CA,CB,CC,...,CL,...,CM,...,CX,CY,CZ

vi

vi+k

vj

y
ed

ge
s

y edges

visibility graph reconstruction IV
Meeting and Mapping

• We show:
LB = -(y+1) ⇒ vj = vi+k

• Use C* as frame ⇒2 cases

• Case 1: there are multiple
C* between vi,vj

⇒forbidden polygon ↯

vert class neighbors
i C CA,CB,CC,...,CL,...,CM,...,CX,CY,CZ

vi

vi+k

vj

y
ed

ge
s

y edges

visibility graph reconstruction IV
Meeting and Mapping

• We show:
LB = -(y+1) ⇒ vj = vi+k

• Use C* as frame ⇒2 cases

• Case 1: there are multiple
C* between vi,vj

⇒forbidden polygon ↯
• Case II: there is one C*

vert class neighbors
i C CA,CB,CC,...,CL,...,CM,...,CX,CY,CZ

vi

vi+k

vj

y
ed

ge
s

y edges

visibility graph reconstruction IV
Meeting and Mapping

• We show:
LB = -(y+1) ⇒ vj = vi+k

• Use C* as frame ⇒2 cases

• Case 1: there are multiple
C* between vi,vj

⇒forbidden polygon ↯
• Case II: there is one C*

⇒forbidden polygon ↯vert class neighbors
i C CA,CB,CC,...,CL,...,CM,...,CX,CY,CZ

vi

vi+k

vj

y
ed

ge
s

y edges

visibility graph reconstruction IV
Meeting and Mapping

• We show:
LB = -(y+1) ⇒ vj = vi+k

• Use C* as frame ⇒2 cases

• Case 1: there are multiple
C* between vi,vj

⇒forbidden polygon ↯
• Case II: there is one C*

⇒forbidden polygon ↯vert class neighbors
i C CA,CB,CC,...,CL,...,CM,...,CX,CY,CZ

vi

vi+k

vj

⇒ Criterion for deciding vj = vi+k

Summary

Summary

Summary

• The class of a vertex can be determined in finite
time by a look-back robot

Summary

• The class of a vertex can be determined in finite
time by a look-back robot

• Every polygon has a class C* that forms a clique

Summary

• The class of a vertex can be determined in finite
time by a look-back robot

• Every polygon has a class C* that forms a clique

• Because of this, robots can always meet “easily”

Summary

• The class of a vertex can be determined in finite
time by a look-back robot

• Every polygon has a class C* that forms a clique

• Because of this, robots can always meet “easily”

• C* can be used as frame to infer the visibility graph

Thank you!

