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Abstract Consider a networked environment, supporting
mobile agents, where there is a black hole: a harmful host
that disposes of visiting agents upon their arrival, leaving no
observable trace of such a destruction. The black hole search
problem is the one of assembling a team of asynchronous
mobile agents, executing the same protocol and communi-
cating by means of whiteboards, to successfully identify the
location of the black hole; we are concerned with solutions
that are generic (i.e., topology-independent). We establish
tight bounds on the size of the team (i.e., the number of
agents), and the cost (i.e., the number of moves) of a size-
optimal solution protocol. These bounds depend on the a pri-
ori knowledge the agents have about the network, and on the
consistency of the local labelings. In particular, we prove
that: with topological ignorance � + 1 agents are needed
and suffice, and the cost is �(n2), where � is the maximal
degree of a node and n is the number of nodes in the net-
work; with topological ignorance but in presence of sense of
direction only two agents suffice and the cost is �(n2); and
with complete topological knowledge only two agents suf-
fice and the cost is �(n log n). All the upper-bound proofs
are constructive.
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1 Introduction

1.1 The problem

In networked environments that make use of mobile agents,
security is a pressing concern of difficult resolution, and
even the most basic issues must still be effectively addressed
(e.g., see [13, 30, 34, 40, 46]). The causes of this situation are
not lack of interest and effort; witness, for example, the large
effort to determine how to protect a network site (a host)
from malicious agents, as well as to protect agents from host
attacks. Rather it is due to the difficulties found when devel-
oping solutions; the nature of these obstacles is varied, most
are technological, some computational.

In this paper we consider the issue of host attacks; that is,
the presence in a site of processes that harm incoming agents
(e.g., see [23, 32, 33, 39, 45, 48]). A first step in solving
such a problem should be to identify, if possible, the harm-
ful host; i.e., to determine and report its location; following
this phase, a “rescue” activity would conceivably be initi-
ated to deal with the destructive process resident there. The
task to identify the harmful host is clearly dangerous for the
searching agents and, depending on the nature of the harm,
might be impossible to perform.

In this paper, we consider a highly harmful process that
disposes of visiting agents upon their arrival, leaving no ob-
servable trace of such a destruction. Due to its nature, the site
where such a process is located is called a black hole [20].
The task is to unambiguously determine and report the lo-
cation of the black hole (BLACK HOLE SEARCH problem).
The research concern is to determine under what conditions
and at what cost mobile agents can successfully accomplish
this task. The searching agents start from the same safe site
and follow the same set of rules; the task is successfully
completed if, within finite time, at least one agent survives
and knows the location of the black hole.

The setting in which we study the BLACK HOLE
SEARCH problem is that of cooperating asynchronous
agents on an edge-labeled graph: the agents have computing
capabilities and storage, can move from node to neighboring
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node, obey the same set of behavioral rules (the “protocol”),
and all their actions (e.g., computation, movement, etc.) take
a finite but unpredictable amount of time. At each node, the
incident edges are distinctly labeled, and there is a limited
amount of storage, called whiteboard. Agents communicate
by reading from and writing on the whiteboards; access to a
whiteboard is done in mutual exclusion.

BLACK HOLE SEARCH is a non trivial problem, and
its difficulty is aggravated by the simultaneous presence of
asynchrony of the agents and absence of any trace of de-
struction (outside the black hole). We have investigated the
problem when the network is an anonymous ring (i.e., a
loop network of identical nodes sites), characterizing the
limits and presenting optimal solutions [20]. These results
are however topology-dependent, and in the solution proto-
cols the agents exploit the unique properties of the ring to
locate the black hole.

1.2 Our results

In this paper we are interested in the black hole search
problem in general graphs, and we are concerned with
generic (i.e., topology-independent) solutions. We ask com-
putational questions regarding the size of these solutions
(i.e., the number of agents in the team), and the conditions
for their existence.

Some answers follow from the asynchrony of the agents.
For example, as we show, the problem is unsolvable,
if the graph G representing the network topology
is not 2-connected; therefore, we only consider
2-connected graphs. As we prove later, also due to
asynchrony, the problem is unsolvable if the number of
nodes of G is not known; therefore, we assume n is known.
Some answers are immediate. For example, since a single
agent is incapable of performing the task, the size of a team
is at least two. How realistic is this bound? How many
agents suffice? We are also interested in the cost of the
minimal solutions (i.e., the number of moves performed by
the agents executing a size-optimal solution protocol).

In this paper we provide specific answers to these com-
putational questions. We show that the answers vary depend-
ing on the a priori knowledge the agents have about the net-
work, and on the consistency of the local labelings.

We consider first the situation of topological ignorance;
that is when the agents have no a priori knowledge of the
topological structure of G. We show that any generic solu-
tion needs at least � + 1 agents, where � is the maximal
degree of G, even if the agents know � and the number n of
nodes of G. We further prove that, in any minimal generic
solution, the agents must perform �(n2) moves in the worst
case. Both these bounds are tight. In fact we present a pro-
tocol that correctly locates the black hole in O(n2) moves
using � + 1 agents that know � and n.

We then consider the case of topological ignorance, in
systems where there is sense of direction (SD); informally,
sense of direction is a globally consistent labeling of the

ports that allows the nodes to determine whether two paths
starting from a node lead to the same node, using only the
labels of the ports along these paths. We show that, in this
case, two agents suffice to locate the black hole, regardless
of the (unknown) topological structure of G. The proof is
constructive, and the proposed algorithm has a O(n2) cost.
We further show that this cost is optimal; in fact, we show
the existence of types of sense of direction that, if present,
impose an �(n2) worst-case cost on any generic two-agent
algorithm for locating a black hole using SD.

Finally, we consider the case of complete topological
knowledge of the network; that is, the agents have a complete
knowledge of the edge-labeled graph G, the correspondence
between port labels and the link labels of G, and the location
of the source node (from where the agents start the search).
We show that, also in this case, two agents suffice. We then
constructively prove that the cost of a minimal protocol can
be reduced in this setting to �(n log n), showing a matching
lower bound as well.

1.3 Related work

This study is part of a larger investigation on the algorith-
mic issues arising in networked environments that support
autonomous mobile agents. At an abstract level, these envi-
ronments can be described as a team of autonomous mobile
entities located in a graph G. Depending on the context, the
entities are sometimes called agents or robots. The research
concern is on determining what tasks can be performed by
such entities, under what conditions, and at what cost.

In terms of topics, the investigations most closely re-
lated to the one of this paper are the studies on collabo-
rative graph-exploration. In these investigations, a team of
autonomous agents must explore (i.e., traverse every link
and visit every node) the graph in which they reside. None
of these investigations, however, considers the presence of
harmful hosts.

The investigations on exploration with multiple agents
are a generalization of the extensive earlier work on explo-
ration by a single agent (e.g., [1, 5, 9, 15, 17, 19, 28, 38, 41,
47]); they focus on different aspects of the problem, each
result giving us some knowledge on the impact that factors
such as memory size, computation capabilities, and a priori
knowledge have on the solvability and complexity of the
problem. For example, the earlier investigations, by Blum
and Kozen [12] and Kozen [35], considered a team of agents
that were finite-automata. It was later shown by Rollik that,
with those type of agents, there is no generic protocol re-
gardless of the (finite) number of agents employed [43],
proving an earlier conjecture by Rabin [42]. More recently
the investigations have focused on collaborative exploration
by Turing machines; one of the earlier contributions was by
Bender and Slonim [10]. Solution algorithms for collective
exploration were given by Frederickson et al. for arbitrary
graphs [29], by Averbakh and Berman for weighted trees
[4], and more recently by Fraigniaud et al. for trees [27].
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The impact of sense of direction on the exploratory
power of the agents was first examined in the work of
Blum and Kozen on the power of a compass [12]. We men-
tion only in passing the extensive investigations on explo-
ration and navigation in terrains other than graphs (e.g.,
[11, 14, 22, 44]), where orientation and sense of direction
play an important role.

It should be pointed out that, in general, the work on
graph exploration assumes synchronous agents, and in gen-
eral employs limited forms of communications between
agents; whiteboards are used only in [27]. Furthermore,
none of these investigations considers the presence of harm-
ful nodes.

Other investigations on cooperative solutions of prob-
lems by mobile agents include the studies on rendezvous
(e.g., see [2, 3, 16, 36, 49]), election (e.g., see [6, 8]), and
decontamination [7].

2 Definitions and basic properties

2.1 Framework and problem

Let G = (V, E) be a simple 2-connected graph; let n =
|V | be the size of G, E(x) be the links incident on x ∈ V ,
d(x) = |E(x)| denote the degree of x , and � denote the
maximum degree in G. If {x, y} ∈ E then x and y are said
to be neighbors. The nodes of G can be anonymous (i.e.,
without unique names). At each node x there is a distinct
label (called port number) associated to each of its incident
links (or ports); let λx ({x, z}) denote the label associated at x
to the link {x, z} ∈ E(x), and λx denote the overall injective
mapping at x . The set λ = {λx | x ∈ V } of those mappings is
called a labeling and we shall denote by (G, λ) the resulting
edge-labeled graph. Let P[x] denote the set of all paths with
x as a starting point, P[x, y] denote the set of paths starting
from node x and ending in node y, and let � be the extension
of the labeling function λ from edges to paths.

Informally, (G, λ) has sense of direction if it is possible,
for any two paths π1, π2 ∈ P[x], to determine from the se-
quence of labels �x (π1) and �x (π2) whether or not π1 and
π2 lead to the same node. The formal definition as well as
examples of sense of direction is deferred to Sect. 4.

Operating in (G, λ) is a set of autonomous mobile
agents. The agents can move from node to neighboring node
in G, have computing capabilities and computational stor-
age, and obey the same set of behavioral rules (the “pro-
tocol”). The agents are asynchronous in the sense that ev-
ery action they perform (computing, moving, etc.) takes a
finite but otherwise unpredictable amount of time. Initially,
all agents are at the same node h, called home base.

Each node has available a limited amount of storage,
called whiteboard. Agents communicate by reading from
and writing on the whiteboards; access to a whiteboard is
gained fairly in mutual exclusion. When an agent is at a
node, we assume it can “see” the port numbers associated
to the incident links, as well as the information on the white-

board. Moreover, when an agent moves on a link {x, y}, it
can “see” the labels λx ({x, y}) and λy({y, x}) at the two
sides of the link (in other words, when arriving to y, the
agent can recognize that label λy({y, x}) leads back to x).

In the following, we assume the agents have distinct Ids;
notice however that, since the whiteboards are accessed in
mutual exclusion and the agents start from the same home-
base, distinct Ids could be easily constructed if the agents
are initially anonymous.

A black hole (shortly BH) is a node where resides a sta-
tionary process that destroys any agent arriving at that node;
no observable trace of such a destruction is evident to the
other agents. The location of the black hole is unknown to
the agents. The BLACK HOLE SEARCH (shortly BHS) prob-
lem is to find the location of the black hole. More precisely,
BHS is solved if at least one agent survives, and all surviving
agents know, for each edge, whether it leads to the BH.1

A solution protocol is generic if it solves BHS regardless
of G; in this paper we only consider generic protocols. The
main measure of complexity of a solution protocol P is the
size, that is the number of agents used by P . We also con-
sider the total number of moves performed by the agents,
and call it the cost of P .

We study generic solutions and their complexity depend-
ing on the type of topological information the agents might
have a priori available; we always assume they all know n. If
no additional topological information is available, the agents
operate with topological ignorance. If the system (G, λ) has
sense of direction that is known to the agents, we say the
agents operate with sense of direction. Finally, the agents
have complete topological knowledge of (G, λ) if the fol-
lowing information is available to all agents: (1) Knowledge
of the labeled graph (G, λ); (2) Correspondence between
port labels and the link labels of (G, λ); (3) Location of the
home base in (G, λ).

2.2 Basic tool and limitations

2.2.1 Cautious walk

At any moment of the execution of a protocol, the ports are
classified as unexplored – no agent has left from or arrived
to this port, explored – an agent has arrived via this port, or
dangerous – an agent has left via this port, but no agent has
arrived via it. Obviously, an explored port does not lead to
a black hole; on the other hand, both unexplored and dan-
gerous ports might lead to it. To minimize the number of
casualties (i.e., agents entering the black hole), we do not al-
low any agent to leave through a dangerous port. To prevent
the execution from stalling, in all our algorithms we require
any dangerous port not leading to the black hole, to be made
explored as soon as possible.

This is accomplished as follows: Whenever an agent a
leaves a node u through an unexplored port p (transforming

1 In the particular case of n − 4 < � < n, as explained later, we
will use a relaxed definition.
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it into dangerous), upon its arrival to node v, and before pro-
ceeding somewhere else, a returns to u (transforming that
port into explored). We call this technique Cautious Walk.

Similarly to the classification adopted for the ports, we
classify nodes as follows: at the beginning, all nodes except
for the home base h are unexplored; the first time a node
is visited by an agent, it becomes explored. Note that, by
definition, the BH never becomes explored.

2.2.2 Limits

The nature of the problem imposes several basic limits to
any solution. As the first move of the single agent might lead
to the BH, it follows that at least two agents are needed to
locate the BH.

The following lemma is directly implied by the defini-
tion of BHS and from asynchrony of the system:

Lemma 2.1 If there are two or more unexplored nodes, the
BHS problem is not solved.

Proof Let u and v be two such nodes. Because of the asyn-
chrony, for any finite amount of time, the scenario where u
is the BH and every agent traveling towards v is very slow
is indistinguishable from the scenario where v is the BH and
any agent traveling towards u is very slow. Hence no proto-
col terminating with both u and v unexplored can correctly
report the location of the BH. �

By using a similar argument, it follows that it is not pos-
sible to verify whether or not there is a black hole in the
system – the agents cannot distinguish in finite time whether
the last unexplored node is the BH or all agents moving to-
wards it are simply too slow.

Lemma 2.2 It is not possible to verify whether there is a BH
in the system.

The following two corollaries of Lemma 2.1 complete
the list of basic limitations:

Corollary 2.3 If G has a cut vertex different from the home
base, then it is impossible to determine the location of the
BH.

Proof If the BH is located in the cut vertex, any algorithm
terminating in finite time leaves at least two nodes unex-
plored. Contradiction with Lemma 2.1. �

Corollary 2.4 It is impossible to determine the location of
the black hole if the size of G is not known.

Proof Consider two scenarios: A graph G with a black hole
at node v and a graph G ′ with node v replaced by two nodes
v1 and v2 connected to each other, and dividing among them-
selves the edges leading to v in G. With all edges leading to
v1 and v2 being very slow, the algorithm cannot distinguish
between G and G ′ and would terminate in G ′ with both v1
and v2 unexplored; a contradiction with Lemma 2.1. �

As a consequence, we assume that there are at least two
agents working in a 2-connected network; furthermore, the
existence of the black hole and the size of G are common
knowledge to the agents.

3 Searching with topological ignorance

3.1 Lower bounds

3.1.1 The adversary

The lower bounds we are going to prove are for algorithms
that know n and an upper bound � on the maximum degree
of G, and work on all 2-connected graphs of maximal degree
at most �.

We follow an approach common in lower bound proofs
by viewing the execution as a game between an algorithm
and an adversary. The goal of the algorithm is to locate
the black hole and to terminate. The adversary tries to ei-
ther force the algorithm to behave incorrectly, or make it
costly. The adversary has the power (1) to choose the graph
(with port labels), (2) to place the black hole and (3) to set
link delays. The first two powers are due to the fact that the
algorithm does not know the network nor the location of the
black hole. The fact that agents are asynchronous gives the
adversary the third power. In particular, we say that the ad-
versary blocks a link l when it sets very high delays for that
link; as a consequence, we say that an agent traversing l is
blocked; viceversa, to block an agent traversing a link l, the
adversary blocks l.

Notice the adversary’s power to “direct” the agents leav-
ing via unexplored ports: When the algorithm specifies that
an agent leaves a node via an unexplored port, it chooses
the port based on the port labels. Since the adversary can
permute the port labels of the unexplored ports, this means
that the adversary can choose via which unexplored port the
agent leaves.

Because of asynchrony, we can limit ourselves to reac-
tive algorithms: If an algorithm uses timeouts, the adversary
can make all timeouts expire without allowing any agent to
arrive to its destination. This means that an agent at a node
must either wait for the arrival of an agent, or depart via one
of the incident ports.

We further simplify matters by turning a dangerous port
p into explored as soon as the agent that departed via p ar-
rives to its destination (provided it is not the black hole).
This essentially gives any algorithm the power of cautious
walk, without requiring that an agent must return to mark
an active port as explored. Clearly, this only strengthens the
algorithm and makes the lower bound result stronger. Since
every algorithm can be modified to use cautious walk,2 we
can limit ourselves to algorithms that avoid sending an agent
via a dangerous port.

The above discussion narrows the possible actions the
algorithm can specify for available (not in transit and not
waiting) agents to: (1) departure via an unexplored port, (2)
departure via an explored port, and (3) waiting until another
agent arrives, or a port status changes.

The adversary applies its power to set delays by being
able to specify at any moment of the execution which agents

2 by increasing the time and number of moves at most three times.
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in transit arrive to their destination, and which continue to
travel.

Since an explored link does not lead to a black hole,
whenever there are some agents in transit over such links,
the adversary must eventually allow all these agents to ar-
rive to their destinations. Call a configuration stable if there
are no agents in transit over explored links. Then the adver-
sary will use the following rule:

– If there are agents traveling via explored links, the adver-
sary blocks the agents that left through unexplored ports,
until a stable configuration is reached.

Applying this rule we are allowed to focus on the behavior
of the adversary in stable configurations only.

At any moment of the execution the maximal informa-
tion that the algorithm can have about the underlying graph
G can be described by a graph Gex induced by the explored
nodes, together with the information about their degree and
the labels of the ports incident in G. We denote this graph,
together with the additional information, by G+

ex.
The power of the adversary to choose the graph and the

port labeling comes into play in stable configurations, when
the adversary allows some agents to move and to arrive to
their destination. At that moment, the adversary chooses
a witness graph Gwit = (V, E) (together with its port
labeling): a graph with a BH consistent with the previous
execution of the algorithm. Consistency means that Gex
is an induced subgraph of Gwit and for all nodes in Gex
the information (degree and port labels) contained in G+

ex
matches these values in Gwit. Also note that Gwit must be
2-connected, of order n and should have maximal degree
at most �. In the rest of this section we restrict ourselves
only to such graphs, without explicitly stating these proper-
ties. Observe that there are usually many possible witness
graphs consistent with the current knowledge G+

ex, and the
adversary’s choices of the witness graph can vary during the
execution.

The following observation and fact capture the limits of
the adversary’s powers and give additional intuition behind
our choice of graphs in the lower bound proofs of this sec-
tion.

Since the adversary must eventually unblock links not
leading to the BH, we get the following:

Observation 3.1 If, for a stable configuration, there is no
witness graph such that all dangerous ports lead to the BH,
then the adversary must allow at least one agent to arrive to
its destination.

The following fact describes in detail some conditions
under which such a witness graph does not exist.

Observation 3.2 If any of the following conditions hold in a
stable configuration, then the adversary must allow at least
one agent to arrive to its destination.

1. There is a node u with two incident dangerous ports.
2. There are at least � + 1 dangerous ports.

3. There are � dangerous ports, at most one open node (ex-
plored node with an unexplored port) and at most n − 2
explored nodes.

4. There are some dangerous ports, no open node and at
most n − 2 explored nodes.

Proof For each case we prove that there is no witness graph
Gwit and location of the BH in Gwit such that all dangerous
ports lead to BH.

1. Since Gwit does not contain multiple edges, there can be
at most one link from any node to the BH. Therefore, not
both dangerous ports of u can lead to the BH; hence, at
least one dangerous port does not lead to the BH.

2. Since Gwit has degree at most �, if there are � + 1 or
more dangerous port at least one of them does not lead
to the BH.

3. Suppose, by contradiction, that all dangerous ports lead
to the BH. By definition of dangerous port, and since
there are � dangerous ports, it follows that there is no
link connecting the BH and the unexplored part of Gwit.
Therefore, the unexplored part of Gwit must be directly
connected to the explored part. By hypothesis, however,
there is at most one open node that can connect the un-
explored and the explored part of Gwit; this contradicts
the 2-connectivity of Gwit.

4. Using an argument similar to the one adopted in Point 3.,
it follows that the unexplored part can be connected only
to the BH, which again contradicts the 2-connectivity of
Gwit. �

If any of the conditions stated in Observation 3.2 holds,
the adversary can not find a witness graph with all dangerous
ports leading to the BH. However, avoiding those conditions
is not sufficient:

Observation 3.3 Even if none of the conditions of
Observation 3.2 holds in a stable configuration, it might be
impossible for the adversary to connect all dangerous ports
to the BH.

Proof Consider the following G+
ex: a) Gex contains n − 2

nodes; b) � = 3; c) there are three explored nodes v1, v2, v3
with one dangerous and zero unexplored ports each; and d)
there is one open node v4 with two unexplored links (see
Fig. 1). None of the conditions of Observation 3.2 is satis-
fied; however, it is still not possible to have all dangerous
ports leading to the BH: in fact, in such a case, v4 has also to
be connected to the BH, violating � = 3. �

unexplored

dangerous

Fig. 1 Example of insufficiency of conditions from Observation 3.2
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Fig. 2 Theorem 3.4: The lower bound graphs for � ≥ n − 4 (left) and � ≤ n − 4 (right)

3.1.2 Lower bound on the number of agents

The following theorem gives us the first lower bound, bind-
ing the size of the team to the maximal degree of the net-
work:

Theorem 3.4 There is an n node graph G with maximum
degree 3 ≤ � ≤ n − 4 such that, without topological in-
formation, any algorithm for locating the black hole in arbi-
trary networks needs at least �+1 agents in G. In addition,
if n − 4 < � < n then any such algorithm needs at least �
agents.

Proof We first prove the second part for � = n−1. Consider
the graph shown in Fig. 2a, with the BH at node 0, and the
home base at node 1. The first agent departing the home base
is sent via the link leading to 0 and it is blocked on this link.
Therefore, there must be an agent moving to node 2. Again,
the first agent departing node 2 via unexplored link is sent to
0; the same is applied for nodes 3, 4, . . . ,�− 1, resulting in
� − 1 agents being blocked before the algorithm can reach
node n−1 and terminate. If � = n−2, the adversary chooses
the same graph, except that node 2 is not connected to 0.
If � = n − 3, also 3 is not connected to 0. It is easy to
see that the previous approach can be applied also in these
cases.

The case � ≤ n − 4 is played on a spoked ring graph G ′
consisting of an n − 1 node ring with each node connected
to the central node – the BH. The home base is one of the
ring nodes. The adversary applies the following rule: The
first agent leaving a node via an unexplored link is sent via
the link leading to the BH. We call a node v completed if an
agent has left v towards the BH. At any moment, the sub-
graph induced by the completed nodes is a path containing
the home base. Moreover, there are at most two explored but
non-completed nodes – the non-BH neighbors of the com-
pleted path.

Consider now the situation during the execution of an
algorithm A on G ′ where there are exactly � completed
nodes. The graph G of maximum degree � on which A
needs at least �+1 agents is obtained from G ′ by removing
all edges leading to the BH from non-complete vertices and
adding an edge connecting the two neighbors of the com-
pleted path – see Fig. 2b. While the number of completed
nodes is at most �, A sees only a path of degree-3 nodes and

therefore behaves the same on G and G ′. Since � ≤ n−4, at
the moment when there are � completed nodes there are still
at least two unexplored nodes and at least one more agent is
needed. �

The case � = 2 corresponds to the ring and has been
studied in [20] (two agents are necessary and sufficient).

3.1.3 Lower bound on the cost using optimal number
of agents

In this subsection we establish a lower bound on the cost of
BLACK HOLE SEARCH using a team of optimal (i.e., �+1)
size. Let G(�, n) denote the set of 2-connected graphs of n
nodes of maximal degree at most 3 ≤ � ≤ n − 4. We show
that for every agent-optimal (using � + 1 agents) algorithm
A that correctly locates the BH in all graphs in G(�, n),
there exists a G ∈ G(�, n) such that A spends �(n2) moves
on G in the worst case.

Let us call basic cell the graph obtained from a mesh
(� + 2) × 2 by collapsing the outermost pairs of nodes. The
game is played on an �n/(2� + 2)�-node ring having each
node replaced by a basic cell (see Fig. 3). If n is not divisible
by 2� + 2, an appropriate number of nodes is connected to
the basic cell opposite to the starting node to yield an n node
graph G.

Note that G is of degree 3, not �. Still, A must work
correctly on it, and we will show that it incurs �(n2) cost.
Interestingly, this means that the mere possibility of the
graph having a node of degree � pushes the lower bound up
to �(n2).

Overview At any moment of an execution the explored part
of the network can be divided into three parts (see Fig. 4):

E : The middle, fully explored part, consisting of fully ex-
plored basic cells.

Fig. 3 The graph G for � = 3
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...

...

...

...

Open Explored Closed

Fig. 4 An example of explored part of the network. The arrows correspond to agents in transit

O: Open border, containing a single partially explored basic
cell.

C: Closed border, consisting of a single blocked bridge link
leading to the next (yet unexplored) basic cell.

The idea is to force the agents to repeatedly migrate be-
tween the opposite ends of the explored subgraph, crossing
the ever increasing middle part. This migration is forced by
the adversary “closing” the open border part by blocking
the horizontal link to the next basic cell, and simultaneously
“opening” the closed border part. Eventually, all unexplored
ports in the newly closed part will be explored and there
will be no exploration work left there. If the agents do not
move to the open part (i.e., they start waiting for the blocked
link to become unblocked), the adversary chooses a witness
graph in which all dangerous ports lead to the black hole.
Once all agents (except the agent blocked at the horizontal
link) have migrated, the closed part is opened, the open
part is closed and the process is repeated until (almost) the
whole network is explored.

Detailed description To reduce the number of cases we must
consider, we give all algorithms solving the BHS problem
the following additional power: Whenever an agent arrives
to a node with a dangerous port, all remaining unexplored
ports are revealed (explored) at no cost. Clearly, this modi-
fication only further strengthens our lower bound.

Between two stable configurations, an agent either re-
mains blocked, or moves over explored links until it de-
parts via an unexplored port (becoming blocked), or starts
waiting. These choices are called “meta-actions” by the
algorithm. We describe the adversary’s actions as responses
to such meta-actions of the algorithm. In particular, we spec-
ify how the adversary acts (1) at the beginning of the execu-
tion, until a closed and open border parts are formed; (2) in
an open border part, until it is closed; and (3) in a closed
border part, until it is opened. The actions of the adversary
are described as reaction to arrival of an agent to the particu-
lar part. Note that, although there could be several available
agents (e.g., at the beginning of the execution), the adversary
can handle them sequentially by allowing only one of them
to move, while blocking all others. The adversary reacts to
awakening of an agent in the same way as if the agent has
just arrived.

Initialization. The adversary chooses a graph with the home
base node at the right border of a basic cell. The ini-
tialization is achieved by sending the first agent to the

ClosedOpen

Fig. 5 The initial configuration

right and blocking it on that link. In addition, the two
left links are revealed to the algorithm without any cost
(this is done to simplify presentation, and it clearly only
strengthens our lower bound). This terminates initializa-
tion, with the right border part being closed and the left
border part being open (see Fig. 5).

Open part. Whenever an agent arrives to an open part (ei-
ther from the closed segment, or being awakened) and
departs from a node v via an unexplored port, the adver-
sary directs it to the vertical link incident to v and blocks
it. This ensures that, in general, an open part looks like
in Fig. 4; the only freedom the algorithm has is to choose
whether to explore from the top line or from the bottom
one.
When the number of agents that are creating dangerous
links in the open part reaches �, the adversary switches
the open and closed parts as follows.

The open part is closed by blocking the link leading to
the next basic cell. Moreover, all agents that have been
blocked in this part are unblocked, and all remaining un-
explored links in this basic cell are revealed at no cost to
the algorithm. The resulting fully explored basic cell is
then added to the middle (explored) part.

The closed part is opened by unblocking the bridge
link and revealing the two incident links of the neighbor-
ing unexplored basic cell.

Closed part. The adversary keeps the bridge link blocked.
Since there are no unexplored ports in this part, all agents
will either start waiting or leave for the open part.

Lemma 3.5 If an open part does not switch to closed, and
the number of explored nodes is at most n − 3, then the al-
gorithm does not locate the black hole.

Proof We show that, in such a case, the adversary can con-
struct a witness graph in which all dangerous ports lead to
the BH.

First note that an open part has at most two open nodes –
the last explored node in each horizontal line. Since, by hy-
pothesis, the open part does not switch to closed, then there
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Fig. 6 (a) A stable configuration with three agents on dangerous links (shown by arrows) and others waiting (not shown). Note that there are two
open nodes, with one and two unexplored links, respectively. (b) The witness graph the adversary responds with to the configuration in (a). The
explored nodes are black, the newly added nodes are white. Note the additional edge added to maintain the proper node degrees in the witness
graph

are at most � − 1 dangerous ports there. However, there is
at most one dangerous port in the closed part. Since, there
are no dangerous ports in the middle segment, at most �
agents are blocked in dangerous ports. The witness graph
is constructed from Gex (the currently explored graph – the
subgraph of G the algorithm has seen so far) by adding a
new node u (the BH) connected to all dangerous ports; in
addition a loop of nodes is connected to Gex at the two open
nodes of the open part, in order to obtain a consistent graph
of n nodes. It may be the case that one or both of the open
nodes have two incident unexplored links (and therefore, not
all unexplored links are covered by the newly added loop).
If both open nodes have such spare unexplored port, an edge
is added connecting those ports. If there is only one spare
unexplored port, an edge is added leading to a node of the
newly added ring (see Fig. 6b). Note that since there at least
three unexplored nodes at this moment, the newly added
loop has at least two nodes and this can be done without
creating a multiple edge.

In the particular case when there is only one danger-
ous port, the BH is also connected to this loop, to ensure
2-connectivity. (Note that since � ≥ 3, the degree of the BH
would not exceed �.)

Therefore, in Gwit all dangerous ports lead to the BH.
Since, by hypothesis, the open part does not switch to closed,
it follows that no other agents ever reach the open part. This
means the algorithm can no longer progress nor locate the
black hole among the remaining unexplored nodes. �

We remind that G(�, n) denotes the set of 2-connected
graphs of n nodes of maximal degree at most 3 ≤ � ≤ n−4.

Based on the definitions introduced, we can finally state
the following:

Theorem 3.6 Let A be an algorithm that, with topological
ignorance, correctly locates the BH in all graphs in G(�, n)
using � + 1 agents, where n ≥ 7 and 3 ≤ � ≤ n − 4. Then

there exists a G ∈ G(�, n) such that A incurs �(n2) moves
on G in the worst case.

Proof During each change (or, flip) of open/closed parts,
� − 1 agents cross the middle explored part and this part
grows by one basic cell. Since � + 3 moves are needed to
cross a basic cell (and the bridge connecting to the next cell),
the number of moves between the i-th and i + 1-th flip is at
least (� − 1)(i − 1)(� + 3). From Lemma 3.5, it follows
that the number of flips is at least �n/(2� + 2)� − 1; hence,
summing until there is only the last basic cell left yields the
result of the theorem:

�n/(2�+2)�−1∑

i=1

(� − 1)(i − 1)(� + 3) = n2/8 + o(n2)

�

Note that, since a graph of degree 3 was used, this lower
bound does not carry for � = 2. However, only ring net-
works satisfy both � = 2 and 2-connectivity, and for those
matching upper and lower bounds of �(n log n) are already
known [20].

3.2 Optimal protocol

In this section we show that the lower bounds established in
the previous section are tight.

Let us refine the classification of the explored nodes as
follows: (1) an explored node v whose ports are either ex-
plored or dangerous is called expanded, (2) otherwise v is
called visited.

The idea of the algorithm, called IGNORANCE, is to have
the agents cooperatively visit the graph by expanding all
nodes until the black hole is localized. During this process,
the home base is used as the cooperation center; the agents
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must pass by it after finishing the expansion of a node, and
before starting a new expansion.

Since the graph is simple, two agents exploring the links
incident to a node are sufficient to eventually make that node
expanded. Thus, in our algorithm, at most two agents coop-
eratively expand a node; when an agent discovers that the
node is expanded, it goes back to the home base before start-
ing to look for a new node to expand.

As we want at most two agents to expand each node, we
associate an asking counter ca(v) with each explored node
v: two minus the number of agents currently expanding v.
Once v becomes expanded, ca(v) is set to 0. Thus, finding
a node to expand means finding a node with asking counter
greater than zero.

There are three main problems that have to be solved for
Algorithm IGNORANCE to work: to ensure that (1) at least
one agent survives, (2) each node is eventually expanded and
(3) the agents efficiently find a node with non-zero asking
counter.
The first problem is taken care of by using Cautious Walk.
The second two problems are addressed by maintaining two
counters cn (globally needed) and ce (already expanded) at
the home base. The idea is to have cn reflect the sum of all
the asking counters ca’s; ce is used to decide when to termi-
nate. If an agent a waiting at the home base sees a non-zero
cn , it knows that somewhere there is an explored node ask-
ing for an agent. The agent a then traverses a spanning tree
T constructed during the exploration of G (when a node u is
visited for the first time, the node from which the agent came
is set to be the u’s parent in T ) until it finds a node v with
ca(v) > 0. The counters cn and ca(v) are updated in such a
way that at any time cn is at most the sum of all ca’s, and if
the sum of ca’s is more than 0 then eventually also cn > 0.
The last property is achieved as follows: Whenever a new
node v is explored, the agent visiting it not only sets ca(v)
to two, but also travels to the home base and increments cn
by two (and then returns to the node it was expanding).

At any time, an agent will be either expanding a
node, searching for a node to expand, waiting at the home
base for an assignment, or being destroyed by the black
hole.

Theorem 3.7 Algorithm IGNORANCE correctly locates the
black hole in O(n2) moves using � + 1 agents.

Proof
Correctness Since Algorithm IGNORANCE uses a cautious
walk, at most one agent will enter each link incident to the
black hole.

Let us denote by #s the number of agents in searching
state and by #u the number of agents that are currently trav-
eling to the home base to update cn . By construction, it fol-
lows that at any time cn + #s + 2#u = ∑

ca(v).
Since a searching agent always finds a node with

ca(v) > 0 in at most O(n) moves, livelock is not possible
and the only possible terminal state of the system is with no
agents moving. As the number of agents is higher than the
degree of the BH, at least one agent must be waiting at the

Algorithm 1 IGNORANCE

There are � + 1 agents, with � ≤ n − 4. At the home base there are
two counters: cn (“agents-needed”) and ce (“nodes-expanded”). Fur-
thermore, at each node u there is a counter ca(u) (“asking”). Initially,
ca(h) = cn = d(h) (the degree of the home base), ce = 0, ca(u) = 0
for all u �= h, h is marked as visited, all agents are waiting at h. T is a
tree spanning the explored nodes; at the beginning it contains only h.

Waiting for Assignment–Agent a is waiting at h while cn = 0.
1. If cn > 0 then a sets cn ← cn − 1 and starts searching for a

node to expand.
Searching–Agent a is searching for a node to expand.

1. a traverses T until a node u with ca(u) > 0 is found. A “right-
hand-on-the-wall” rule for traversing mazes is used (the ports
at a node are cyclically ordered: after arriving by port p, an
agent leaves using the next port in the tree), as it does not
require additional memory at the agent and/or nodes.

2. a sets ca(u) ← ca(u) − 1.
3. a starts expanding u.

Node Expansion–Agent a is at u expanding it.
1. a leaves through an unexplored port p of u, making it danger-

ous. If the incident node v had already been visited, a returns
to u to continue its expansion. Otherwise
(1) a sets ca(v) ← 2, updates T by adding v and (u, v), and

returns to u (making p explored).
(2) a goes to h where it sets cn ← cn + 2 (to register that

another node has been visited and two agents must be
assigned to its expansion);

(3) It returns to u to continue its expansion. It is sufficient
for a to remember the identifier of u and traverse T until
u is found. If the nodes did not have unique identifiers at
the beginning, the algorithm can be modified to assign to
each node a unique identifier when it is first visited.

2. If no port of u is unexplored (a has finished its expansion of
u): if u is already marked as expanded, a returns to h to wait;
otherwise, a marks u as expanded, returns to h, sets ca(u) ←
0 and ce ← ce + 1, and waits.

Termination – When ce = n − 1, then T includes every node except
the black hole; furthermore, at that time, every port p that is still
dangerous leads to the black hole.

home base. However, that means cn = ∑
ca(v) = 0, i.e. all

nodes have been expanded.

Cost A vertex v is charged (1) the cost of exploring its in-
cident links - O(deg(v)), (2) O(n) for updating cn when
v is found for the first time and (3) the searching cost
2|T | ∈ O(n) of the (at most two) agents that decrement
ca(v) and expand v. Summing up over all vertices results in
O(n2) overall cost. �

We have presented Algorithm IGNORANCE that locates
the BH using � + 1 agents and at a cost of O(n2) moves.
By Theorems 3.4 and 3.6 this is optimal for � ≤ n − 4. For
the case of n − 4 < � < n, an optimal algorithm using �
agents can be constructed based on Algorithm IGNORANCE,
with a case-analysis final stage when only few nodes remain
unexplored. Its description and analysis can be found in the
Appendix.

4 Searching with sense of direction

In this section we show that, even in a situation of topolog-
ical ignorance, if there is a sense of direction known to the
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agents, two agents suffice to locate the black hole, regardless
of the topology of G.

Sense of direction is a property of labeled graphs cap-
turing global consistency of the port labels [24]; it has been
extensively studied in the context of distributed computing
and has been shown to have an impact in reducing the com-
munication complexity of several problems (e.g., see [25]).

Informally, sense of direction is the ability (called cod-
ing) to decide, by looking at sequences of labels correspond-
ing to different paths starting from the same node, whether
or not they end up in the same node; plus the ability (called
decoding) to translate from neighbor to neighbor the coded
information about paths in the system.

For some graphs (e.g., the ones used for interconnection
networks), a sense of direction is provided by very natural
labelings. This is the case, for example, of the mesh consis-
tently labeled with North, South, East, West (compass la-
beling), or of the hypercube where the edges are labeled
by the corresponding dimensions (dimensional labeling).
Interestingly, every graph can be endowed with sense of
direction.

Formally, sense of direction is based on the notions of
coding and decoding functions for a labeled graph (G, λ).

A coding function for λ is any function c : L+ → N
where N is a finite set, such that walks originating from
the same node are mapped to the same element of N if
and only if they end in the same node. More precisely,
∀x, y, z ∈ V, ∀π1 ∈ P[x, y],∀π2 ∈ P[x, z],
c(�x (π1)) = c(�x (π2)) ⇔ y = z.

The value of c(�x (π1)) is also denoted by βx (y) and called
the local name of y at x according to c. Any coding func-
tion c, if it exists, is also called a weak sense of direction of
(G, λ).

A decoding function for c is a function d : L×N → N
which allows, for any two neighbors x and y and every walk
π from y to any z, to determine the coding of the walk π ′ =
〈{x, y}, π〉 from x to z just from the coding of π and the
label of the link {x, y}. More precisely, ∀x ∈ V, ∀π ∈ P[x],
with �x (π) = [α1, α2, , . . . , αk],
d(α1, c([α2, . . . , αk])) = c([α1, α2, . . . , αk])
In other words, while in general to know the coding of the
labels of a walk we need to know all the labels, with the
decoding function it is sufficient to know only the first label
and just the coding of the rest.

An edge-labeled graph (G, λ) has sense of direction if
and only if there exists a coding function c for (G, λ) and a
decoding function d for c. We also say that the pair (c, d) is
a sense of direction for (G, λ).

Examples Consider an arbitrary graph G = (V, E), V =
{v0, . . . , vn−1}, where the edge (vi , v j ) is labeled at vi by the
label j − i . With this labeling there is a simple coding func-
tion: two paths from the same node terminate in the same
node, if the sum of the corresponding labels is the same,

that is

∀x ∈ V, ∀π ∈ P[x], if �x (π) = [l0, . . . , lk]

then c(�x (π)) =
k∑

i=0

li .

The decoding function is defined as follows:

∀{x, y} ∈ E, ∀π ∈ P[y], d(λx ({x, y}),
c(�y(π))) = λx ({x, y}) + c(�y(π)).

It is easy to verify that λx ({x, y}) + c(�y(π)) =
c(λx ({x, y}) ◦ �y(π)), where ◦ denotes concatenation of
strings of labels. This labeling (called chordal) is one of
many endowed with sense of direction that can be con-
structed in every graph.

Another labeling, endowed with sense of direction, that
can be constructed in every non-anonymous graph is the
neighboring one defined as follows: ∀{x, z}, {y, w} ∈ E ,
λx ({x, z}) = λy{y, w} iff z = w. In this case the coding
function is:

∀x ∈ V, ∀π ∈ P[x], if �x (π) = [l0, . . . , lk] then

c(�x (π)) = lk

and the corresponding decoding function is:

∀{x, y} ∈ E, ∀π ∈ P[y], d(λx ({x, y}),
c(�y(π))) = c(�y(π)).

We now show that, even in a situation of topological ig-
norance, if there is a sense of direction known to the agents,
two agents suffice to locate the black hole, regardless of the
topology of G. We do so constructively, by designing a so-
lution protocol, called SD, that requires only two agents. We
further prove that the proposed solution is also cost-optimal.

The idea of the algorithm is similar to the one of
Algorithm IGNORANCE: the graph is traversed, expanding
the encountered nodes and constructing a spanning tree T of
G rooted at h. Unlike the previous solution, only two agents
a and b are employed.

The two agents, a and b, cooperate to expand every node
(except the black hole), starting from the home base. Using
only two agents, the crucial and difficult task is to prevent
both of them entering the BH. In particular, let u be the node
currently being expanded. To expand u, agent a successively
explores the incident unexplored ports: a leaves u via an un-
explored port p, comes to a node v (if v is not a black hole),
adds the link (v, u) to the spanning tree T of the explored
subgraph if v has not been visited before, and returns back
to u. This process is repeated until a returns to u and finds
that no port is unexplored; then a continues the traversal,
searching for another node to expand. However, if one port
p of u is dangerous (i.e., the other agent is currently explor-
ing it), the node w reachable through p might be the BH,
and must be avoided. Thus, from this moment on, until told
otherwise, agent a avoids entering an unexplored port lead-
ing to w. If a is not able to find an unexpanded node, w is
the BH and the algorithm terminates.
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Sense of direction (coding and decoding functions) is
used to identify the ports leading to the dangerous node.
While still at u, the agent a computes c(λu({u, w})) =
βu(w), where λu({u, w}) is the label of port p. Let z be
the first node a reaches after departing u to find another
node to expand. If z has an unexplored port, a can determine
whether or not it leads to the dangerous node w as follows:
It computes d(λz({z, u}), βu(w)) = βz(w); a port with label
l leads to w if and only if c(l) = βz(w). Similarly, at any
node z′ in the traversal, a computes βz′(w) and uses it to
determine if an unexplored port of z′ leads to the dangerous
node w.

The information that w is dangerous can be modified
only by the other agent b. If w was not the BH, when b com-
pletes the exploration of v, it becomes a follower and tries to
reach a following it in its traversal. Once b reaches the node
being expanded by a, it leaves a message for a notifying it of
its presence (and, thus, that w is no longer dangerous), and
joins in the expansion (leaving through an unexplored port,
or starting traversal, if there are none left).

Thus, at any point in time, an agent is either expanding
a node (Node Expansion), or searching for a node to expand
(Searching), or following the other agent (Following), or de-
stroyed by the black hole. In the first two cases, the agent
might carry with it information, in the variable danger, about
the dangerous node to be avoided. As before, we use a span-
ning tree T of all visited nodes; initially, T contains just h.

Theorem 4.1 In an arbitrary network with sense of direc-
tion, the black hole can be located by two agents with cost
O(n2).

Proof
Correctness We start by showing that at most one agent will
enter the black hole. First, note that a Following agent never
enters an unexplored port. In fact, when an agent becomes
Following (Rule 1.2.1), it follows the trace of the other agent
until it reaches a node that is being expanded by the other
agent (Rule 3); in doing this, it only follows safe links until it
reaches the node that the other agent is currently expanding.
Second, if both agents are expanding the same node (Rule
1), since the graph is simple, at most one of them enters the
black hole. Finally, the only possibility for the agents to ex-
pand different nodes u and v is when one (say b) is exploring
the last unexplored port p of a node u (leading to a node w)
(Rule 1.1), while a has already left u in search of the next
node v to expand (Rule 1.3). In such a case a remembers the
“name” (variable danger in Rule 2.1) of w and avoids enter-
ing any port leading to w, thanks to the properties of sense
of direction.

Thus, at least one agent survives; it eventually explores
n − 1 nodes and terminates, correctly identifying the only
remaining node (danger) as the black hole.

Cost The total cost for expanding the nodes is O(m) (each
link is visited at most twice). The number of moves made
by a following agent from the moment it became follower
until it caught up with the other agent is bounded by O(n)
(the follower visits each node at most once). An agent

Algorithm 2 SD

1. Expanding – Let a be the agent expanding node u; let w̃ be the cur-
rent dangerous node (if any) and danger = βu(w̃) be the infor-
mation known to a (if there is no dangerous node, danger = nil).
1.1 If there is an unexplored port p of u not leading to the danger-

ous node: a leaves u through p making it dangerous, and re-
turns to u (making p explored). If the incident node v had not
been previously visited, a updates T by adding v and (u, v) to
it.

1.2 If all ports are explored and none is leading to the dangerous
node:

1.2.1 If there is a note from b indicating that b is searching, a
removes the note, becomes Following.

1.2.2 If there are no notes from b, a marks u as expanded and
becomes Searching.

1.3 If one port p, leading to node w, is dangerous and all the oth-
ers are explored (i.e., b is currently exploring link (u, w) and
the dangerous node is w), a will: set danger = βu(w) =
c(λ(u, w)) = c(l), where l is the label of p; mark u as ex-
panded, and becomes Searching.

2. Searching – Let a be the searching agent. Agent a traverses T
searching for another node to expand, leaving a navigational in-
struction for b (a pebble marking the port over which a leaves the
current node is sufficient). Let w̃ be the current dangerous node (if
any); thus, danger = βu(w̃). Upon arriving at v:
2.1 a sets danger = βv(w̃) = d(λ(v, u), βu(w̃)) updating the

information about the dangerous node.
2.2 If v has been already expanded, a continues its traversal of

T searching for another node to expand, and leaves a naviga-
tional instruction for b.

2.3 If v is unexpanded, a becomes Expanding to start the expan-
sion of v.

3. Following – Let a arrive at v while following b. If v is not ex-
panded, a becomes Expanding (i.e., it joins b in the expansion);
otherwise a follows the navigational command left there by b.

4. Termination – When the searching agent finds that all nodes in T
are expanded, the node identified by danger is the black hole.

becomes follower only when the last port of a node is
explored, hence the total cost following is O(n2). The cost
of finding the next node to expand is O(n) (traversal of the
tree T ). The total cost of finding is again O(n2), as for a
given node at most one agent (the first one to not find an un-
explored port leading to non-dangerous node) leaves it in a
search for the next node to expand. �

We now show that the quadratic bound on the cost is
tight in the worst case. More precisely, we show that any
algorithm that works with all senses of direction (i.e., does
not assume a specific sense of direction) incurs a worst case
cost of �(n2). We prove this by showing that there ex-
ists a type of sense of direction (the neighboring SD de-
scribed earlier in this section) for which �(n2) is the lower
bound.

In a graph with neighboring sense of direction, the labels
on all the edges leading to the same node are identical; i.e,
∀x, y, z, w ∈ V : λx {x, z} = λy(y, w) if z = w; we shall
call such a label the identity of node z. The lower bound
is based on the observation that, although SD reveals to an
agent the identity of the node on the other side of an incident
unexplored link, it gives no information about what is deeper
inside the unexplored part.
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(b)

home base

...
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black hole

Fig. 7 Theorem 4.2: a The lower bound graph. b Directing the eagerly exploring agents to the black hole

Theorem 4.2 The worst case cost for locating a black hole
in arbitrary networks, independently of the type of sense of
direction available, is �(n2).

Proof To prove the lemma we show that with a specific
sense of direction (neighboring SD) �(n2) is a lower bound.
Let A be a two agents algorithm that correctly locates the
black hole in arbitrary networks with neighboring SD. We
view the execution as a game between the adversary and
the algorithm, played on the graph shown in Fig. 7a: a ring
with each vertex except the home base replaced by a “tri-
angle”. The game proceeds in rounds. At the beginning of
each round both agents are leaving the explored part in op-
posite directions over the “ring edges” (the edges coming
from the original ring; the edges of the triangles are called
triangle edges). The beginning of the first round is reached
by the adversary blocking both edges incident to the home
base and waiting until both agents depart in the opposite di-
rection (they must do so, otherwise the algorithm does not
correctly handle the situation with a black hole incident to
the home base).

During a round, the adversary performs two tests: (1) If
the left blocked edge is unblocked, will the agent return to
the middle node of the explored part before entering a tri-
angle edge of the next unexplored triangle? (2) The same
test on the right side. Note that these tests are only virtual,
by examining the algorithm. A negative answer to both tests
means that the agents proceed (without communicating) to
explore parts of the graph about which they have no knowl-
edge. In such a case, the adversary forces the algorithm to
direct both agents to the black hole (see Fig. 7b) contradict-
ing the correctness of the algorithm.

Hence, at most one agent enters a triangle edge without
returning to the middle of the explored part. The adversary
unblocks the agent a that would return there. Then the whole
next triangle is revealed and the next unexplored ring edge is

blocked (the other agent remains blocked all the time on the
ring edge on the opposite side). Eventually, the freed agent
enters the blocked ring edge and the next round starts (other-
wise the algorithm would not locate the black hole, as there
will be more than one unexplored node remaining).

Note that, since during round p the explored subgraph
G p

e contains p − 1 triangles, the freed agent performs �(p)
moves. Because the arguments above apply for all rounds
with at least one unexplored triangle (i.e., p < n/4 − 1),
summing over all such rounds results in the �(n2) lower
bound. �

5 Searching with complete knowledge

In this section we consider the case of an arbitrary sys-
tem where the agents have complete topological knowledge
of (G, λ). In this case, not surprisingly, two agents suffice,
even if there is no sense of direction. In fact, with complete
topological knowledge, each agent can unambiguously de-
termine the node being visited by the other agent, and thus
avoid that node. In other words, we can employ the solution
strategy for systems with sense of direction, even if there is
no sense of direction. This yields, by Theorem 4.1, a two-
agents solution with O(n2) cost.

We show how, using a different approach and making
full use of the available knowledge, the two agents can locate
the black hole with at most O(n log n) moves, which is op-
timal. The proposed algorithm, called COMPLETEKNOWL-
EDGE, does not use collaborative “expansion” of the nodes,
employed by all previous protocols. Instead, it is based on
the notion of individual “working sets” and of “safe” nodes,
using an approach similar to the one for ring networks [20].
The safe nodes are those in the subgraph induced by the ex-
plored links.
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Fig. 8 Splitting the unexplored subgraph Guex into Ga and Gb

Informally, the protocol works as follows. Let Gex be the
explored part of the network (i.e., the set of safe nodes); ini-
tially it consists only of the home base h. The nodes to be
explored are partitioned, and each agents explores its part
(“working set”). In particular, the two agents a and b, parti-
tion the unexplored area into disjoint subgraphs Ga and Gb,
such that for each connected component of Ga and Gb there
is a link connecting it to Gex (we show later that this is al-
ways possible). Ga and Gb are the working sets of a and
b, respectively. Let us define Ta and Tb to be trees spanning
Ga and Gb, respectively, such that Ta ∩ Gb = Tb ∩ Ga = ∅.
(The graphs Ga and Gb are not necessarily connected–the
trees Ta and Tb are obtained from the spanning forests of Ga
and Gb by adding edges from Gex as necessary, but avoiding
the vertices of the opposite working set.)

Each agent then traverses its working set using cautious
walk on the corresponding spanning tree. In this process, it
transforms unexplored nodes into safe.

Let a be the first agent to terminate the exploration of its
working set; when this happens, a goes to find b. It does so
by: first going to the node w where the working sets were
last computed, using an optimal path and avoiding Gb; then
following the trace of b; finally reaching the last safe node
w′ reached by b.

Agent a then computes the new subgraph Guex contain-
ing all non-safe nodes. If Guex contains a single node, that
node is the black hole. Otherwise a computes the new work-
ing sets for itself and b; it leaves a note for b at w′ indicating
the new working set Gb for b, and goes to explore its new
assigned area avoiding the (new) working set of b. When (if)
b returns to w′, it finds the note and starts exploring its new
working set. Note that, at any time, an agent is either explor-
ing its working set, or looking for the other agent to update
the workload, or destroyed by the black hole.

In the correctness proof of Algorithm COMPLETE-
KNOWLEDGE we need the following special case of the
Györi–Lovasz Theorem [31, 37]:

Lemma 5.1 Let G = (V, E) be a 2-connected graph and
let x and y be any two nodes in V . Let s < |V |. Then there
exists a partition of V into V1 and V2 such that |V1| = s,
x ∈ V1, y ∈ V2 and the graphs induced in G by V1 and V2
are connected.

Algorithm 3 COMPLETEKNOWLEDGE

Let Gex be the explored part of the network and Guex be the remaining
unexplored part; initially, Gex consists only of the home base h, and
Guex = G \ Gex.

Computing the working sets – Let a be the agent computing the work-
ing sets, and let u be the node where this is done (initially u = h).
1. a partitions Guex into disjoint subgraphs, Ga and Gb of (al-

most) equal size, such that for each connected component of
Ga and Gb there is a link connecting it to Gex (Algorithm
PARTITIONC). If this is not the first assignment of working
sets (i.e. u is the last safe node visited by b, and b has left u
towards node v) then Gb is the subgraph containing v.

2. a leaves a note for b informing it of the new working set Gb,
and leaves to explore its working set Ga .

Exploring the working set –
1. a uses the shortest possible route in Gex to reach a node in Ta .
2. a explores Ga using cautious walk on Ta .
3. During the cautious walk, if a finds at a node w a note from b

informing it of the new working sets Ga and Gb, a starts the
exploration of the (new) Ga .

4. If a completes the exploration of its working set, it will search
for b to recompute the working sets.

Searching for the other agent – Let a be searching for b.
1. Let u be the last node where the working sets have been com-

puted. a uses the shortest path avoiding Gb to reach u.
2. Starting from u, a follows the trace of b (a shortest path in Gex

to reach Tb, and then the safe links of the Tb) until it reaches
the last safe node w reached by b.

3. a computes the new working sets.
Termination – When computing the working set, if Guex contains a

single node, that node is the black hole.

The following lemma states that the Step 1 of Computing
the Working Sets can always be performed (see Fig.8):

Lemma 5.2 Let G = (V, E) be a 2-connected graph and
let {Vex, Vuex} be a partition of V such that Gex (the graph
induced by Vex) is connected. Let (u, v) ∈ E, where u ∈
Vex and v ∈ Vuex, and let 1 ≤ s < |Vuex|. Then Vuex can
be partitioned into V1 and V2 such that |V1| = s, v ∈ V1
and every connected component of Ga and Gb (the graphs
induced in G by V1 and V2) is directly reachable from Gex.

Proof We prove that the sets Va and Vb computed by
Algorithm PARTITIONC satisfy the lemma.

Let Guex be the graph induced by Vuex in G. Each con-
nected component of Guex can be viewed as a set of 2-
connected components3 connected by the bridge edges into
a tree of 2-connected components.

Since s < |Vuex|, by construction we get that Algorithm
PARTITIONC eventually constructs Va of size s. The reach-
ability property for Va follows by construction (line 9. for
2-connected components fully in Va) and from Lemma 5.1
(for the last 2-connected component that is only partially in
Va). Since the fact that v ∈ Va also follows from construc-
tion (lines 1. and 5.), we have only to prove the reachability
property for Vb.

By construction, we have that there is at most one con-
nected component C of Guex shared between Va and Vb, all

3 Or a single node.
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Algorithm 4 PARTITIONC
1: Keep adding the connected components of Guex to Va (starting

with the component containing v), until Va contains at least s
nodes.

2: If |Va | > s Then
3: Remove the last added connected component C from Va .
4: If v ∈ C Then
5: Add to Va the 2-connected component of C containing

v.
6: Else
7: Add to Va any 2-connected component of C from which

there is an edge leading to a node in Vex.
8: While |Va | < s Do
9: Find a 2-connected component B of C which neighbors

an already added 2-connected component of C and add
B to Va .

10: If |Va | > s Then
11: Remove the last added 2-connected component B from

Va .
12: Let s′ = s − |Va |.
13: Use Lemma 5.1 applied to B to choose the s′ nodes to

be added to Va . (If v ∈ B, a is set to v, otherwise a is
any node of B which has a neighbor in Va ∪ Vex. b �= a
is any other node of B with a neighbor in V \ (Va ∪ B).
Note that since G and B are 2-connected, such b must
exist.)

14: Set Vb = Vuex \ Va .

other connected components are either fully in Va or fully in
Vb. Therefore, it is sufficient to prove reachability only for
Vb ∩ C .

The component C can be seen as a rooted tree T of 2-
connected components, with the root being the 2-connected
component of C that was first added to Va . From construc-
tion (line 5.) we have that Va ∩ C is a connected subtree of
C and at most one 2-connected component (B from line 9.)
is shared between Va and Vb. This means that Vb ∩ C is a
union of connected components, with each connected com-
ponent containing a 2-connected component that is a leaf in
T . From the 2-connectivity of the original graph G it follows
that each leaf 2-connected component has an edge leading to
Vex. Therefore, each such a connected component of Vb ∩ C
satisfies the reachability property. There is one possible ex-
ception – if Vb ∩ B is not connected to another part of Vb.
In such case the reachability property for Vb ∩ B follows
directly from Lemma 5.1. �

The existence of a link between Vex and Va implies that
a can safely reach the part (subgraph Ga induced by Va)
it has to explore. The lemma is more general than strictly
needed, as only the case s = |Vuex|/2 is used by the
algorithm.

Theorem 5.3 The black hole can be located by two agents
with full topological knowledge in arbitrary networks of ver-
tex connectivity 2 with cost O(n log n), and this is optimal.

Proof
Correctness Since Ga and Gb are disjoint, one agent always
survives. This, together with the fact that agents never wait
for each other, ensures progress. Lemma 5.2 used with
s = |Vuex|/2 allows to halve in each round (iteration of the

main loop) the size of the unexplored area. This means after
O(log n) rounds the algorithm terminates.

Cost Note that each action an agent (say a) performs within
one round is either (1) a local computation, or (2) moving to
another node of Gex, or (3) traversing Ta or (4) following the
traces of b in Tb). Clearly, the cost of each of these actions
is at most O(n). Since the number of such actions per round
is constant, and there are only two agents, the total cost of
one round is O(n). As the number of rounds is O(log n), the
total cost of Algorithm 3 is O(n log n).

The cost optimality follows from the �(n log n) lower
bound for ring networks by [20]. �

Note that the analysis above uses very weak arguments to
prove that the cost of one round is O(n). Nevertheless, they
can not be improved in general – the cost of communication
(an agent finding the other agent, and leaving a message) in
the ring network is O(|Gex|), which over all rounds sums to
O(n log n).

6 Conclusions and open problems

We have studied conditions under which a team of au-
tonomous asynchronous mobile agents can identify the loca-
tion of the harmful host. We have shown that the size and the
cost of an optimal solution depend on the a priori knowledge
the agents have about the network, and on the consistency
of the local port labelings. In particular, we have provided
tight bounds when computing with topological ignorance,
in presence of sense of direction, and with complete topo-
logical knowledge.

Let us stress that, in the case of topological ignorance,
the lower bound on the cost depends on the smallest upper
bound known to the agents on the maximal degree of the
graph. In particular, if the agents know only that it is possible
for the graph to have maximal degree �, then any team of
� + 1 might incur worst time cost of O(n2), regardless of
the actual degree of the graph; in fact, in the proof we use a
graph of maximum degree 3. In other words, at play is not
only structural property (the maximal degree of the graph)
but also and more predominantly the a priori information
(the upper bound �) the agents have about that property.

Our results provide a characterization of the impact that
factors such as a priori network knowledge and consistency
of the local port labelings have on the complexity of the
black hole location problem. This characterization, far from
being complete, poses many new questions and opens many
new research problems, some of them outlined below.

Topological ignorance and complete topological knowl-
edge represent the two extreme levels of possible knowl-
edge. Interesting natural questions arise about the interme-
diate levels of topological knowledge. In particular, can two
agents locate the black hole with O(n log n) cost with less
than complete knowledge?

We have shown that the presence of sense of direction al-
lows two agents to overcome any ignorance about the topol-
ogy. Because of its computational equivalence with sense of
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direction, it follows that the same result holds if the labeled
graph has backward consistency4 [26]. An immediate ques-
tion is whether there are other consistency properties capable
of similar results.

In our model, agents communicate by means of white-
boards. An interesting research area is to investigate the
black hole location problem using other models of inter-
agent communication. Examples of such means range from
the more powerful messaging service (providing commu-
nication between agents regardless of their locations, e.g.,
[18]) to the weaker tokens used mostly as markers (e.g.,
[9, 36]). Such an investigation would have many important
objectives, e.g., to identify the weakest type of inter-agent
communication mechanism that allows black hole location
by two agents with a network map.

The graphs we have considered are simple; indeed our
results do not carry over to multigraphs. The problem of lo-
cating the black hole in multigraphs is open.

All our protocols are deterministic. This leaves the door
open to the obvious and natural question of determining the
impact, if any, of randomization.

Finally, an immediate obvious generalization of our in-
vestigation is to consider the presence of more than one
black hole. Some of the existing results generalize immedi-
ately. For example, it is clear that the graph must be at least
k + 1 connected to deal with the presence of k black holes.
However the problem in its generality is open.

Acknowledgements The authors would like to thank the anonymous
referees, whose comments and suggestions have contributed to greatly
improve the presentation, and Doug West for pointing out the source
of Lemma 5.1. This research has been partially supported by “Progetto
ALINWEB: Algoritmica per Internet e per il Web,” MIUR Programmi
di Ricerca Scientifica di Rilevante Interesse Nazionale, and by the Nat-
ural Sciences and Engineering Research Council of Canada.

A Appendix

A.1 Case n − 4 < � ≤ n − 1

By Theorem 3.4, we know that when n − 4 < � ≤ n − 1 there are
cases when � agents are sufficient, and thus Algorithm IGNORANCE is
not optimal. In this section we present an optimal protocol for the case
n − 4 < � ≤ n − 1: Algorithm IGNORANCE�. This new protocol is
based on algorithm IGNORANCE: the main idea is to make sure that at
most �−1 nodes are being expanded simultaneously. Since from each
node there is at most one link to the black hole, this guarantees that at
least one agent survives. However, if the black hole is of degree �, it
may be necessary to expand � nodes simultaneously in order to com-
plete exploration of the graph. In such a case, algorithm IGNORANCE�
carefully chooses in procedure Choose() the order in which to ex-
pand the remaining few nodes, so that when the algorithm terminates
n − 1 nodes are explored, and one agent survives. There might be
however an ambiguity about three unexplored ports: two correspond
to the same link, connecting two safe nodes, while the other leads

4 Backward consistency requires the existence of a “backward cod-
ing function” cb : L+ → N such that walks ending in the same node
are mapped to the same element of N if and only if they start from the
same node.

to the black hole; in other words, two ports might be incorrectly sus-
pected. We conjecture that this level of ambiguity is actually inevitable
when using only � agents in this restricted range of values. In the fol-
lowing, by correct termination we mean termination with this level of
ambiguity.

In order to describe algorithm IGNORANCE� in more detail, we
need to refine the classification of the nodes in the following way. An
unexplored node that is reached for the first time by an agent turns
into visited: such nodes have only one explored port and all the others
are unexplored. When a port of a visited node becomes dangerous, the
node turns into partially expanded. A node stays partially expanded
until it has exactly one dangerous incident edge and all the remaining
edges are explored: it is now quasi expanded. Finally, when a node has
all its incident edges explored, it is called fully expanded. A node that
is either unexplored or visited is called unexpanded.

Algorithm 5 IGNORANCE�

1: When an agent b detects that there are nodes to expand (cn > 0
at the home base) and starts to search for a node to expand, it first
tries to take a token. (If the home base is still being expanded, it
claims its token and the agent can only take a different token.)

2: If there is an available token Then
3: b takes the token and travels until it finds a node v to expand

(with ca(v) > 0).
4: If ca(v) = 2 Then
5: b places the token at v, decrements ca(v) and starts ex-

panding v.
6: Else
7: %ca(v) = 1, i.e., v is already being expanded by an-

other agent. Note that v already contains a token.%
8: b decrements ca(v), brings its token back to h and re-

turns to v to help the other agent in expanding v.
9: If when b returns to v from the home base, v is already

at least quasi-expanded Then
10: b returns to h, increments cn and starts again.
11: Else
12: b joins expanding v.
13: Else
14: %cn > 0 and there are no more tokens left.% Agent b still

tries to find a node to expand, but can only join in the expan-
sion of a partially expanded node. If b is not able to find such
a node (i.e., it traversed whole T and returned back to h) then
it executes procedure Choose() to choose the next node to
expand, and before leaving h to explore this node, it leaves a
note at h.

15: When an agent finishes expanding a node (so that the node is fully
expanded), it brings the token back to the home base. If it realizes
that an agent is expanding a node chosen by Choose() (by find-
ing the note left in Line 14), it removes the note and brings the just
freed token to the node being expanded.

Algorithm IGNORANCE� makes sure that at most � − 1 nodes
are being expanded simultaneously by having, at the beginning, � − 1
tokens at the home base; moreover, a node is being expanded if and
only if it contains one token (except the home base, which may contain
more tokens). The modifications to Algorithm IGNORANCE to ensure
this property are reported in Algorithm 5.

Procedure Choose(). Line 14 of Algorithm IGNORANCE� handles
the case when cn > 0, there are no more tokens left in h, there are at
most �−1 quasi expanded nodes and no partially expanded node: Pro-
cedure Choose() is called (reported in Fig. A.1). First note that, since
when this procedure is called �−1 agents are already employed in ex-
panding nodes, it cannot happen that more than one agent concurrently
execute this procedure: let c be the agent that executes Choose().
Furthermore, at the moment Choose() is called, the number of un-
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Fig. A.1 Procedure Choose() called in Line 14 of Algorithm IGNORANCE�

expanded nodes is at most 4, since � ≥ n − 3 and � − 1 nodes are
quasi-expanded. Finally, at least one of the unexpanded nodes is vis-
ited, otherwise the explored part of the network would be connected
to the unexplored part only through the BH, and G would not be 2-
connected.

This procedure uses case analysis to choose the next node to ex-
pand. In particular, the choice depends on the number of the remain-
ing unexpanded nodes and on the state of the links incident to them.
Once such a node has been located, say u, c expands it by call-
ing routine Expand(u): c first reaches u (with no token), and then
starts expanding it as in the Node Expansion of Algorithm IGNO-
RANCE. If, during the expansion, c finds in u a token, it exits procedure
Choose() and continues the expansion as if it were executing Algo-
rithm IGNORANCE�: that is, having a token, c is now performing a
legal expansion of node u. Such a token can be found in u by c in the
following scenario.

Scen When Choose() is called, not all of the � − 1 quasi ex-
panded nodes are connected to the BH. In this case, according
to IGNORANCE�, one of the � − 1 quasi expanded nodes will
eventually turn into fully explored, and agent b that completed the
expansion of this node will free its token, bringing it back to h.
At this point, it realizes that an agent is expanding a node, say
u, returned by Choose() (by finding the note left at h, Line 14
of IGNORANCE�); therefore, it brings to u the token it just freed.
When c realizes the presence of this token in u, it exits Choose()
(by routine Expand(u)) and keeps executing IGNORANCE�.

Theorem A.1 Algorithm IGNORANCE� correctly locates the black
hole using � agents, in O(n2) moves.

Proof Correctness First of all notice that, if the black hole
is not located by procedure Choose(), the execution of
algorithm IGNORANCE� can be seen as a special case of the
execution of algorithm IGNORANCE: In algorithm IGNORANCE� the
procedure Choose() chooses the next node to explore, in algorithm IG-
NORANCE the next node is chosen arbitrarily. Therefore, if the BH is
not located in Choose(), the correctness of algorithm IGNORANCE�
follows from correctness of algorithm IGNORANCE. Hence, we only
need to show that procedure Choose() correctly locates the black hole
in order to prove correctness of algorithm IGNORANCE�.

We analyze procedure Choose() depending on the number of un-
expanded nodes at the beginning of its main while loop.

1. Single unexpanded node v The black hole must be in v and
Choose() correctly identifies it and terminates at Line 27.

2. Two unexpanded nodes u and v Since one of these nodes must be
visited, the other one must contain the black hole. Again, Choose()
handles this case correctly at Line 29.

3. Three unexpanded nodes u, v and w There are two cases:
(a) If two of these nodes (say u and v) are visited, the black hole

must be in w. Note that at this moment, the unexplored ports in
u and v can only lead either to each other or to the black hole.
Since, by hypothesis, the black hole is already connected to
� − 1 quasi expanded nodes, it cannot be connected to both u
and v. That means that the node with the minimal number of
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Fig. A.2 The only possible configurations (up to symmetries) of unexplored ports in the remaining unexpanded nodes

unexplored links cannot be connected to the black hole, and
can be safely expanded in Line 9; at this point, the number
of unexpanded nodes decreased by one, and previous Case b.
applies.

Of course, if such a node has no unexplored links left, it is
not necessary to expand it at all (line 11).

(b) The second case is when only one (e.g., v) of the three nodes
has been visited. Then v is not connected to the BH and can
be safely expanded in Line 4. In fact, if by contradiction v is
connected to the black hole, then the BH cannot be connected
to the last (remaining) unexpanded node, contradicting the 2-
connectivity of G (i.e., removing v disconnects the graph).
With the expansion of v, the number of unexpanded nodes
decreased by one, and previous Case 2. applies.

4. Four unexpanded nodes u, v, w and t. Similarly to the previous
case, if there is a single visited node among u, v, w and t then it
is not connected to the black hole and can be safely expanded. At
this point, only 3 unexpanded nodes are left, and previous Case 3.
applies.

If there are three visited nodes (say u, v and w) then the black
hole is located at t . If each of u, v and w has single unexpanded
port, then the algorithm declares as dangerous all the correspond-
ing unexplored links (only on of them leads to the black hole, but
the algorithm cannot determine which one without expending an
agent), and correctly terminates. Otherwise the node with minimal
number of unexplored links is not connected to the black hole and
can be safely expanded in Line 24: If this minimal number is 0,
that node is clearly not connected to the black hole. The remain-
ing possible cases (up to permutation of u, v and w) are shown in
Fig. A.2, clearly the node(s) with minimal number of unexplored
links is(are) not connected to the black hole. After the expansion
of Line 24, only 3 unexpanded nodes are left, and previous Case
3. applies.

Finally, if there are two visited nodes (w.l.o.g. assume u and v)
the one with minimal number of unexplored ports is not connected
to the black hole and can be safely expanded at Line 18: This is
certainly true if the black hole is connected to the non-visited node.
Otherwise (the BH is connected to either u or v), since the graph
is 2-connected, the non-visited node must be connected to both u
and v. The claim now follows immediately, as the only other unex-
plored link can be the link connecting u and v. After the expansion

of Line 18, only 3 unexpanded nodes are left, and previous Case 3.
applies. �

Number of moves The only additional moves of algo-
rithm IGNORANCE� with respect to algorithm IGNORANCE are
incurred due to the token management. Since each expanded node
and each call/exit of Choose() incurs cost at most O(n), the overall
overhead is bounded by O(n2). �

Proof Correctness: We start by showing that at most one agent enters
the black hole. First, note that a following agent does not enter an un-
explored port. Second, if both agents are expanding the same node, at
most one of them enters the black hole. Finally, the only possibility for
the agents to expand different nodes u and v is when one (say b) is
exploring the last unexplored port p of a node u (leading to a node w),
while a has already left u in a search of the next node v to expand. In
such a case, a remembers that p leads to a dangerous node w and does
not enter the port leading to w.

That means that at least one agent survives; it will eventually
explore n − 1 nodes and terminate, correctly identifying the remaining
node as the black hole.

Cost: The total cost for expanding the nodes is O(m) (each link is vis-
ited at most twice). The cost of one following is bounded by O(n) (the
follower visits each node at most once). An agent becomes follower
only when the last port of a node is explored, hence the total cost fol-
lowing is O(n2). The cost of finding the next node to expand is O(n)

(traversal of the tree T ). The total cost of finding is again O(n2), as for
a given node at most one agent (the first one to not find an unexplored
port leading to non-dangerous node) leaves it in a search for the next
node to expand. �
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