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Abstract. We consider the self-deployment problem in a ring for a net-
work of identical sensors: starting from some initial random placement
in the ring, the sensors in the network must move, in a purely decentral-
ized and distributed fashion, so to reach in finite time a state of static
equilibrium in which they evenly cover the ring. A self-deployment al-
gorithm is exact if within finite time the sensors reach a static uniform
configuration: the distance between any two consecutive sensors along
the ring is the same, d; the self-deployment algorithm is ε-approximate if
the distance between two consecutive sensors is between d− ε and d + ε.

We prove that exact self-deployment is impossible if the sensors do not
share a common orientation of the ring.

We then consider the problem in an oriented ring. We prove that if the
sensors know the desired final distance d, then exact self-deployment is
possible. Otherwise, we present another protocol based on a very simple
strategy and prove that it is ε-approximate for any chosen ε > 0.

Our results show that a shared orientation of the ring is an important
computational and complexity factor for a network of mobile sensors
operating in a ring.

1 Introduction

1.1 The Framework

A mobile sensors network is composed of a distributed collection of sensors that
in addition to the traditional sensing, computation, and communication capa-
bilities of static sensors, have also locomotion capabilities. Mobility facilitates
a number of useful network capabilities; for example, they can patrol a wide
area, they can be re-positioned for better surveillance, etc.; moreover, they are
especially useful in environments that may be both hostile and dynamic. There
have been some research efforts on the deploying of mobile sensors, most of them
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Fig. 1. Starting from an initial arbitrary placement (a), the sensors must move to a
uniform cover of the ring (b)

based on centralized approaches; e.g., [22] assumes that a powerful cluster head
is available to collect the sensor location and determine the target location of
the mobile sensors.

Locomotion however allows the sensors to self-deploy; that is, starting from
some initial random configuration, the sensors in the network can spread out in a
purely decentralized and distributed fashion, and cover the area satisfying some
optimization criteria (e.g., evenly, maximizing coverage, etc.) [11,12,13,15,21].
In contrast to [12] where the sensors are deployed one at the time, we consider
the case when the sensors are deployed at the same time and they organize
themselves in an adaptive manner. Unlike [15], we do not require prespecified
destinations for the sensors, and unlike [12] we do not assume the sensors know
where they are, since for small sensors localization is very hard. An essential
requirement is that the network will reach a state of static equilibrium within
finite time.

The self-deployment problem is quite similar to the scattering or coverage
problem considered in cooperative mobile sensorics (e.g., [1]), and related to the
formation problem (e.g. [10,18,19]); a key difference in these investigations is
that usually there is no requirement that the network reaches a state of static
equilibrium.

1.2 The Problem

In this paper, we are interested in the self-deployment of a mobile sensor net-
work in a ring (e.g., a circular rim, as shown in Figure 1): starting from an ini-
tial random placement on the ring, the sensors must within finite time position
themselves along the ring at (approximately) equal distance. A self-deployment
algorithm, the same for all sensors, will specify which sequence of operations
(communication/sensing, computing a destination, moving towards a point) a
sensor must perform whenever it is active. We say that a self-deployment algo-
rithm is exact if within finite time the sensors reach a uniform configuration: the
distance between any two consecutive sensors along the ring is the same, d. We
say that a self-deployment algorithm is ε-approximate if the distance between
two consecutive sensors is between d − ε and d + ε.
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A self-deployment algorithm has recently been developed for the line [5] (e.g.,
a rectilinear corridor), and one has been designed for the ring as part of a larger
protocol for uniform circle formation [2,6,14,17,20]. Both protocols yield only ap-
proximate solutions. However, they operate even with very weak sensors: anony-
mous (i.e., the sensors are indistinguishable), oblivious (i.e., each sensor has
no memory of past actions and computations), asynchronous (i.e., each sensor
becomes active at unpredictable times and the duration of its actions is unpre-
dictable), and without a common coordinate system (e.g., no access to GPS).
To date, no exact solution exists for these types of sensors.

1.3 Our Results

We first prove a strong negative result. In fact, we prove that exact self-deployment
is actually impossible if the sensors do not share a common orientation of the ring;
notice that this is much less a requirement than having global coordinates or shar-
ing a common coordinate system. This impossibility result holds even if the sen-
sors have unlimited memory and unbounded computational power, and even if all
their actions, when active, are instantaneous and their visibility/communication
radius is unlimited.

Faced with this strong negative result, the interesting question becomes un-
der what restriction the self-deployment problem can be solved with an exact
algorithm. Since the impossibility result holds in absence of common orientation
of the ring, we consider the problem in oriented rings.

We prove that, in an oriented ring, if the sensors know the desired final dis-
tance d, then exact self-deployment is possible. In fact we present a simple
protocol and prove that it allows the sensors to deploy themselves uniformly
along the ring in finite time. This positive result holds even for the weakest sen-
sors: anonymous, oblivious, asynchronous, with no common coordinate system;
it works correctly even when every sensor can “locate” only its two neighbors or
when the sensors have only a fixed sensing radius v > d.

Finally we turn to the case of an oriented ring when the desired final distance
d is unknown. We present another protocol based on a very simple strategy and
prove that it is ε-approximate for any fixed ε > 0. As in [3,4,5], the difficulty is not
in the protocol but in the proof of its correctness. Also in this case, the protocol
works even for the weakest sensors: anonymous, oblivious, asynchronous, with
no common coordinate system. The algorithm works correctly even when every
sensor can “locate” only its two neighbors or when the sensors have only a fixed
sensing radius v ≥ 2d.

In the last protocol, the strategy we use is go-to-half. Interestingly was shown
by Dijkstra [7] that in the unoriented ring go-to-half does not converge, and
hence can not be used for self-deployment1. In other words, as already shown by
our impossibility result, our result stresses that a shared ring orientation is an
important computational and complexity factor for a network of mobile sensors

1 It does however converge in a line as recently shown by Peleg [5] with a very involved
proof.
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operating in a ring. For space constraints, some of the proofs will be omitted
and can be found in [8].

1.4 Related Work

The self-deployment problem has been investigated with the goal to cover the
area so to satisfy some optimization criteria (e.g., evenly, maximizing coverage,
etc.) [11,12,13,15,21]. For example, in [21] the problem is to maximize the sen-
sor coverage of the target area minimizing the time needed to cover the area.
Typically, distributed self-deployment protocols first discover the existence of
coverage holes (the area not covered by any sensor) in the target area based
on the sensing service required by the application. After discovering a coverage
hole, the protocols calculate the target positions of these sensors, that is the po-
sitions where they should move. Loo et al. [15] considered a system consisting of
a number of cooperating mobile nodes that move toward a set of prioritized des-
tinations under sensing and communication constraints; unlike them, we do not
require prespecified destinations for the sensors. Howard et al. [12] address the
problem of incremental deployment, where sensors are deployed one-at-a-time
into an unknown environment, and each sensor uses information gathered by
previously deployed sensors to determine its deployment location. They assume
every sensor is equipped with an ideal localization sensor. We do not assume the
sensors know where they are, since for small sensors localization is very hard. The
goal is to maximize network coverage under the constraint that nodes maintain
line-of-sight with each other.

The self-deployment problem is related to a well studied problem in the field
of autonomous mobile sensors: that of the pattern formation [9,10,18,19]; in
particular to the one of uniform circle formation [2,6,17]. In this problem, very
simple sensors are required to uniformly place themselves on the circumference
of a circle not determined in advance (i.e., the sensors do not know the location
of the circle to form). The main difference between these robotics investigations
and our self-deployment problem in the ring is that in those problems, the sensors
can freely move on a two dimensional plane; in contrast, our sensors can move
only on the ring.

The strategy go-to-half, that we employ in one of our protocols was first
analyzed by Dijkstra [7]; he showed that in an unoriented ring go-to-half does
not converge (and hence can not be used for self-deployment). Recently, go-to-
half has been shown by Peleg [5] (with a very involved proof) to converge in a
line. Convergence in the unoriented ring has been announced for the go-to-half-
half strategy by Défago and Konagaya [6,17].

2 Terminology and Model

We consider a sensors network in a ring (i.e., a circular line). Let s1, . . . , sn be
the n sensors initially randomly placed on the ring (Figure 1). Let di(t) be the
distance between sensor si and sensor si+1 at time t. When no ambiguity arises,
we will omit the time and simply indicate the distance as di.



Self-deployment Algorithms for Mobile Sensors on a Ring 63

We will use a very general definition of a sensor as a computational unit
capable of sensing (e.g., by communication) the positions of other sensors in
its surrounding (within a fixed radius), performing local computations on the
located/communicated data, and moving towards the computed destination. The
local computation is done according to a deterministic algorithm that takes in
input the located/communicated data, and returns a destination point towards
which the sensor moves. All the sensors execute the same algorithm.

Each sensor repeatedly cycles through four states: when active, a sensor de-
termines the positions of the other sensors in its radius – Locate; it computes
the next destination point by executing the algorithm – Compute; and it moves
towards the computed point – Move; after such a move the sensor may become
inactive – Wait. The sequence: Wait - Locate - Compute - Move form a com-
putation cycle (or briefly cycle) of a sensor. In the following, the “view of the
world” of a sensor is defined as a snapshot of the positions of the other sensors
in its own coordinate system (obtained in the Locate state).

The sensors are completely autonomous: no central control is needed. Fur-
thermore they are anonymous, meaning that they are a priori indistinguishable
by their appearance, and they do not (need to) have any kind of identifiers that
can be used during the computation. They are oblivious: each sensor has no
memory of past actions and computations; in other words, the computation is
based solely on what located in the current cycle.

In general, no assumptions on the cycle time of each sensor and on the time
each sensor takes to execute each state of a given cycle are made. It is only as-
sumed that each cycle is completed in finite time, and that the distance traveled
in a cycle is finite. Moreover, the sensors do not need to have a common notion
of time, and each sensor can execute its actions at unpredictable time instants:
this scenario is called asynchronous (Async).

We also consider (in our impossibility result) a different scenario, where there
is a global clock tick reaching all sensors simultaneously, and a sensor’s cycle is
an instantaneous event that starts at a clock tick and ends by the next. This
scenario is called semi-synchronous (SSync). The only unpredictability is given
by the fact that at each clock tick, every sensor is either active or inactive, and
only active sensors perform their cycle. The unpredictability is restricted by the
fact that at least one sensor is active at every time instant, and every sensor
becomes active at infinitely many unpredictable time instants.

Let us denote by AS and SS the class of problems that are solvable in the
asynchronous and in the semi-synchronous setting, respectively. Then,

Theorem 1 ([16]). AS ⊂ SS.

3 Impossibility of Exact Self-deployment

In this section, we show that the exact self-deployment problem is unsolvable;
in other words, given a set of sensors placed on the rim of a circle, there exists
no deterministic algorithm that, in a finite number of cycles, places the sensors
uniformly on the ring.
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Fig. 2. (a) An example of starting configuration for the proof of Theorem 2. The black
sensors are in S1, while the white ones in S2. (b) Theorem 2: the adversary moves only
sensors in S1.

Theorem 2. Let s1, . . . , sn be all on a ring C. Then, in SSync, there is no
deterministic exact self-deployment algorithm.

Proof. By contradiction, let us assume there exists a deterministic algorithm A
that solves the problem in a finite number of cycles. Furthermore, let us assume
that there is an even number of sensors placed on C, and that the n sensors can
be split in two subsets according to their views of the world. In particular, in
the first subset, call it S1, there are s1, . . . , sn/2, and in the second subset, call
it S2 the other sensors. The sensors in S1 and S2 are placed on the vertices of
two regular n/2-gons, and the two polygons are rotated of an angle smaller than
360◦/n. Furthermore, all sensors have their local coordinate axes rotated so that
they all have the same view of the world (refer to Figure 2.a for an example).

Lemma 1. If activating only the sensors in S1 no exact self-deployment on C
is reached, then also activating only the ones in S2 no exact self-deployment on
C is reached.

Lemma 2. If activating only the sensors in S1 an exact self-deployment on C
is reached, then also activating only the sensors in S2 an exact self-deployment
on C is reached. Moreover, activating both sets no exact self-deployment on C is
reached.

In the following, we define an adversary so that A never succeed in solving the
problem. Algorithm 1 reports the protocol followed by the adversary.

First we note that, by the way the adversary is defined and since the sensors
in S1 (resp. S2) have the same view, these sensors will always move together
(when all activated). In the following, we will prove by induction the following
property Prop:

for all t ≥ 0, the sensors all have the same view of the world and are not
in an exact self-deployment on C.
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Algorithm 1. The Adversary
(a) If activating only the sensors in S1 no exact self-deployment on C is reached. Acti-

vates all sensors in S1, while all sensors in S2 are inactive, and goto (c). Otherwise,
(b) If activating only the sensors in S2, no exact self-deployment on C is reached.

In this case, it activates all sensors in S2, while all sensors in S1 are inactive,
and goto (c). Otherwise, all sensors are activated, and goto (c).

(c) If activating only the sensors in S2 no exact self-deployment on C is reached. In
this case, it activates all sensors in S2, while all sensors in S1 are inactive, and goto
(a). Otherwise,
(d) If activating only the sensors in S1 no exact self-deployment on C is reached.

In this case, it activates all sensors in S1, while all sensors in S2 are inactive,
and goto (a). Otherwise, all sensors are activated, and goto (a).

By construction, Prop is clearly true at t = 0. Let us assume it is true at a
given time t > 0. We distinguish the possible cases.

1. If the check performed in (a) is true, then clearly at time t + 1 there is no
exact self-deployment on C. Furthermore, all sensors will still have the same
view of the world (see the example depicted in Figure 2.b).

2. If the check performed in (a) is true, then rule (b) is executed. Two subcases
can occur.
3.1. If the check of rule (b) is false, then at time t + 1 there is no exact

self-deployment on C, and all sensors have the same view of the world.
3.2. Otherwise, all sensors are activated at time t, and by Lemma 2 no exact

self-deployment on C is reached at time t + 1.
3. Rules (c) and (d) are handled symmetrically to previous rules (a) and (b).

Therefore, there is no time t′ ≥ t so that the sensors are in a exact self-
deployment on C, having a contradiction.

By Theorem 1, we have

Corollary 1. Let s1, . . . , sn be all on C. Then, in Async there is no determin-
istic algorithm that brings them uniformly distributed on C in a finite number of
cycles.

4 Self-deployment in an Oriented Ring: Interdistance
Known

In this section we assume that the final distance d between two sensors is known
to them. Moreover, the sensors have a fixed visibility radius of 2d and they can
only locate up to such distance.
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4.1 The Algorithm

The algorithm is very simple: sensors asynchronously and independently observe
clockwise at distance 2d, then they position themselves at distance d from the
closest observed sensor (if any).

Protocol Uniform Known (for sensor si)

– Locate clockwise at distance 2d. Let di be the distance
to next sensor. If none, di = 2d.

– If di ≤ d do not move.
– If di > d move clockwise and place yourself at distance

d from si+1.

4.2 Correctness

We say that a sensor is white if its distance to the clockwise neighbor is greater
than or equal to d. We say that a sensor is gray if such a distance is smaller than
d. Moreover we say that a white sensor is good if its distance to the clockwise
neighbor is exactly d, it is large if its distance is strictly greater than d.

We call a white bubble a sequence of consecutive white sensors delimited by
grey sensors. Let W = si, si+1, . . . , si+m be a white bubble. Sensor si−1 is said
to be the predecessor of the bubble, sensor si+m+1 is the successor. Clearly
predecessors and successors of a white bubble are gray, unless the ring contains
white sensors only; notice that in this case all sensors are good. The size of
W , indicated as |W | is the number of white sensors composing the bubble
(in this example m), its length, indicated by l(W ), is the length of the ring
between the predecessor of the white bubble and its successor (assuming not all
sensors are white); i.e., l(W ) =

∑m
j=−1 di+j . Similarly, we define a gray bubble

G = si, si+1, . . . , si+m as a sequence of consecutive gray sensors delimited by
white sensors. Its size |G| is the number of gray sensors in G; the length l(G) is
defined as the length of the ring between the first and the last gray sensor in G
(note that this definition is different from l(W )).

The next two lemmas contain some simple facts.

Lemma 3. At each point in time, if there are gray sensors, then the number of
white bubbles equals the number of gray bubbles.

Lemma 4. At each point in time, if there are grey sensors there must be at least
a bubble (i.e., a large sensor).

Lemma 5. A white sensor cannot become gray.

Proof. In order for a white sensor sj to become gray, its distance to the next
sensor sj+1 should become smaller than d. By definition, sensors move clockwise
and move according to the algorithm; so sensor sj+1 will never get closer to sj .
On the other hand, by definition of our algorithm, sensor sj will never move at
a distance smaller than d to sj+1.
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Lemma 6. Let W = si, si+1, . . . si+m be a white bubble in the ring at time t. If
l(W ) ≥ d·(|W |+1), in finite time, say at time t′, the size of the bubble increases.

Lemma 7. Let W1, . . . Wz be the white bubbles present in the ring at time t. At
least one of these bubble Wk is such that l(Wk) ≥ d · |Wk| + 1.

By Lemmas 6 and 7, we have that:

Lemma 8. The number of grey sensors decreases.

Finally, by Lemmas 5 and 8 we derive the main theorem.

Theorem 3. In finite time all sensors are good.

5 Self-deployment in an Oriented Ring: Interdistance
Unknown

In this section we assume that each sensor has a fixed visibility radius of v, and
does not know the final interdistance d between the sensors. Although d is not
known, we must have that v > 2d for our algorithm to work.

5.1 The Algorithm

Also this algorithm is very simple: sensors asynchronously and independently
locate in both directions at distance v, then they position themselves in the
middle between the closest observed sensor (if any).

Protocol Uniform Unknown (for sensor si)

– Locate around at distance v. Let di be the distance to next sensor,
di−1 the distance to the previous (if no sensor is visible clockwise,
di = v, analogously for counterclockwise).

– If di ≤ di−1 do not move.
– If di > di−1 move to di+di−1

2 − di−1 clockwise.

5.2 Correctness

Let dmin(t) = Min{di(t)} and dmax(t) = Max{di(t)}. Let C be the length of
the circumference of the ring. First observe the following simple fact:

Lemma 9. We have that: ∀t, dmin(t) ≤ d and dmax(t) ≥ d.

Proof. By contradiction. Let the minimum distance be greater than d. We would
have that C > k · d, which is impossible since by definition C = k · d. Same
argument holds for dmax.

The next lemma shows that if, at some point there is a unique minimum (resp.
maximum) interval, it will become bigger (resp. smaller).
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Lemma 10. If at time t there is a unique minimum interval, we have that:
∀t, ∃t′ > t : dmin(t′) > dmin(t). If at time t there is a unique maximum interval,
we have that: ∀t, ∃t′ > t : dmax(t′) < dmax(t).

Proof. Let sj−1 and sj be the sensors that delimit the minimum interval
[sj−1, sj ], whose length is dj−1(t) = dmin(t) at time t. First observe that, since
dj−2(t) > dj−1(t), by the algorithm we know that sensor sj−1 does not move at
time t; actually, it will not be able to move as long as dj−2 remains greater than
dj−1 (i.e., as long as sj does not move). Consider now the first time t′ when sj

is activated. Since sj−1 has not moved from time t to time t′, we have that, at
time t′, dj−2(t′) is still greater than dj−1(t′). At time t′, si then moves following
the rule of the algorithm and dj−1(t′) = dj−1(t)+dj(t

′)
2 ≥ dj−1(t)+dj(t)

2 > dj−1(t).
Similar argument holds for dmax.

We now show that if at some point there are several minimum (resp. maximum)
intervals of a certain length, their number will decrease.

Lemma 11. If at time t there are r > 1 minimum intervals of length dmin(t),
either all intervals have length d and the sensors are deployed, or there exists a
time t′ > t when the number of minimum intervals of length dmin(t) is r′ < r.

Analogously,

Lemma 12. If at time t there are r > 1 maximum intervals, either all intervals
have length d and the sensors are deployed, or there exists a time t′ when the
number of maximum intervals is r′ < r.

We now show that the minimum intervals converge to a value A = d − γmin,
with γmin ≥ 0, and the maximum intervals converge to a value B = d + γmin,
with γmax ≥ 0.

Lemma 13. Let dmin(t) (resp dmax(t)) be the distance of a minimum (resp.
maximum) interval at time t. We have that, for any arbitrary small ε > 0 there
exists a time t′ > t such that, ∀t′′ > t′: |dmin(t′′) − A| ≤ ε, and, ∀t′′ > t′:
|dmax(t′′) − B| ≤ ε.

Proof. From Lemmas 10 and 11 the intervals must converge; from Lemma 9
the minimum must converge to a value smaller than (or equal to) d, and the
maximum must converge to a value greater than (or equal to) d.

Let us call A-regular at time t an interval that, at time t is ε-close to A; that
is an interval whose length dj(t) is such that |dj(t) − A| ≤ ε. Analogously, we
call B-regular an interval that is ε-close to B. We call A-irregular at time t an
interval that, at time t, is smaller than d, but not ε-close to A; B-irregular one
that is greater than d, but not ε-close to B.

The following lemma shows that there exists a time t, after the time when the
previous Lemma 13 holds, when any interval greater than the minimum (and
smaller than d) is A-regular, and any interval smaller than the maximum (and
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greater than d) is B-regular. In other words, each interval is either ε-close to A
or to B. Notice that this property is not obvious; in fact, the only thing we know
up to now is the convergence to A and B of the minimum/maximum intervals
over time, while nothing is known about the other intervals.

Lemma 14. Let ε > 0 be arbitrarily small, and let t′ε be a time when Lemma 13
holds. There exists a time t′′ε > t′ε when: for all intervals [sj , sj+1] with dj(t′′) ≤
d, |dj(t′′ε ) − A| ≤ ε; for all intervals [si, si+1] with di(t′′ε ) ≥ d, |di(t′′) − B| ≤ ε.

Lemma 15. Let t be a time when Lemma 14 holds. If at some time t′ > t at
least an interval becomes irregular, then there exists a time t′′ > t′ when all
intervals are irregular.

We now show that, after a time when Lemma 14 holds, all intervals actually
converge to d (i.e., A = B = d).

Lemma 16. Let ε > 0 be arbitrarily small, and let t′ε be a time when Lemma 14
holds. If B − A > 2ε, at least an interval becomes irregular.

Theorem 4. For any arbitrary small ε > 0 there exists a time t, such that
∀t′ > t, ∀i: |di(t′) − d| ≤ ε.

Proof. By contradiction. Let A �= B. From Lemma 14, there is a time t when
all intervals are ε-close to A and B. From Lemma 16, at least one interval will
become irregular at some time t′ > t. However, by Lemma 15 there is a time
t′′ > t′ when all intervals become irregular (including the minimum and the
maximum). This contradicts Lemma 13.
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17. S. Samia, X. Défago, and T. Katayama. Convergence Of a Uniform Circle For-
mation Algorithm for Distributed Autonomous Mobile Robots. In In Journés
Scientifiques Francophones (JSF), Tokio, Japan, 2004.

18. K. Sugihara and I. Suzuki. Distributed Algorithms for Formation of Geometric
Patterns with Many Mobile Robots. Journal of Robotics Systems, 13:127–139,
1996.

19. I. Suzuki and M. Yamashita. Distributed Anonymous Mobile Robots: Formation
of Geometric Patterns. Siam J. Computing, 28(4):1347–1363, 1999.

20. O. Tanaka. Forming a Circle by Distributed Anonymous Mobile Robots. Technical
report, Department of Electrical Engineering, Hiroshima University, Hiroshima,
Japan, 1992.

21. G. Wang, G. Cao, and T. La Porta. Movement-assisted Sensor Deployment. In In
Proceedings of IEEE INFOCOM, volume 4, pages 2469–2479, 2004.

22. Y. Zou and K. Chakrabarty. Sensor Deployment and Target Localization in Dis-
tributed Sensor Networks. ACM Transactions on Embedded Computing Systems,
3(1):61–91, 2004.


	Introduction
	The Framework
	The Problem
	Our Results
	Related Work

	Terminology and Model
	Impossibility of Exact Self-deployment
	Self-deployment in an Oriented Ring: Interdistance Known
	The Algorithm
	Correctness

	Self-deployment in an Oriented Ring: Interdistance Unknown
	The Algorithm
	Correctness



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Europe ISO Coated FOGRA27)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




